1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
#ifndef SQL_ARRAY_INCLUDED
#define SQL_ARRAY_INCLUDED
/* Copyright (c) 2003, 2005-2007 MySQL AB, 2009 Sun Microsystems, Inc.
Use is subject to license terms.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <my_sys.h>
/**
A wrapper class which provides array bounds checking.
We do *not* own the array, we simply have a pointer to the first element,
and a length.
@remark
We want the compiler-generated versions of:
- the copy CTOR (memberwise initialization)
- the assignment operator (memberwise assignment)
@param Element_type The type of the elements of the container.
*/
template <typename Element_type> class Bounds_checked_array
{
public:
Bounds_checked_array() : m_array(NULL), m_size(0) {}
Bounds_checked_array(Element_type *el, size_t size)
: m_array(el), m_size(size)
{}
void reset() { m_array= NULL; m_size= 0; }
void reset(Element_type *array, size_t size)
{
m_array= array;
m_size= size;
}
/**
Set a new bound on the array. Does not resize the underlying
array, so the new size must be smaller than or equal to the
current size.
*/
void resize(size_t new_size)
{
DBUG_ASSERT(new_size <= m_size);
m_size= new_size;
}
Element_type &operator[](size_t n)
{
DBUG_ASSERT(n < m_size);
return m_array[n];
}
const Element_type &operator[](size_t n) const
{
DBUG_ASSERT(n < m_size);
return m_array[n];
}
size_t element_size() const { return sizeof(Element_type); }
size_t size() const { return m_size; }
bool is_null() const { return m_array == NULL; }
void pop_front()
{
DBUG_ASSERT(m_size > 0);
m_array+= 1;
m_size-= 1;
}
Element_type *array() const { return m_array; }
private:
Element_type *m_array;
size_t m_size;
};
/*
A typesafe wrapper around DYNAMIC_ARRAY
*/
template <class Elem> class Dynamic_array
{
DYNAMIC_ARRAY array;
public:
Dynamic_array(uint prealloc=16, uint increment=16)
{
my_init_dynamic_array(&array, sizeof(Elem), prealloc, increment,
MYF(MY_THREAD_SPECIFIC));
}
Elem& at(size_t idx)
{
DBUG_ASSERT(idx < array.elements);
return *(((Elem*)array.buffer) + idx);
}
Elem *front()
{
return (Elem*)array.buffer;
}
Elem *back()
{
return ((Elem*)array.buffer) + array.elements;
}
bool append(Elem &el)
{
return (insert_dynamic(&array, (uchar*)&el));
}
bool append_val(Elem el)
{
return (insert_dynamic(&array, (uchar*)&el));
}
size_t elements()
{
return array.elements;
}
void set_elements(size_t n)
{
array.elements= n;
}
bool resize(size_t new_size, Elem default_val)
{
size_t old_size= elements();
if (allocate_dynamic(&array, new_size))
return true;
if (new_size > old_size)
{
set_dynamic(&array, (uchar*)&default_val, new_size - 1);
/*for (size_t i= old_size; i != new_size; i++)
{
at(i)= default_val;
}*/
}
return false;
}
~Dynamic_array()
{
delete_dynamic(&array);
}
typedef int (*CMP_FUNC)(const Elem *el1, const Elem *el2);
void sort(CMP_FUNC cmp_func)
{
my_qsort(array.buffer, array.elements, sizeof(Elem), (qsort_cmp)cmp_func);
}
};
/*
Array of pointers to Elem that uses memory from MEM_ROOT
MEM_ROOT has no realloc() so this is supposed to be used for cases when
reallocations are rare.
*/
template <class Elem> class Array
{
enum {alloc_increment = 16};
Elem **buffer;
uint n_elements, max_element;
public:
Array(MEM_ROOT *mem_root, uint prealloc=16)
{
buffer= (Elem**)alloc_root(mem_root, prealloc * sizeof(Elem**));
max_element = buffer? prealloc : 0;
n_elements= 0;
}
Elem& at(int idx)
{
return *(((Elem*)buffer) + idx);
}
Elem **front()
{
return buffer;
}
Elem **back()
{
return buffer + n_elements;
}
bool append(MEM_ROOT *mem_root, Elem *el)
{
if (n_elements == max_element)
{
Elem **newbuf;
if (!(newbuf= (Elem**)alloc_root(mem_root, (n_elements + alloc_increment)*
sizeof(Elem**))))
{
return FALSE;
}
memcpy(newbuf, buffer, n_elements*sizeof(Elem*));
buffer= newbuf;
}
buffer[n_elements++]= el;
return FALSE;
}
int elements()
{
return n_elements;
}
void clear()
{
n_elements= 0;
}
typedef int (*CMP_FUNC)(Elem * const *el1, Elem *const *el2);
void sort(CMP_FUNC cmp_func)
{
my_qsort(buffer, n_elements, sizeof(Elem*), (qsort_cmp)cmp_func);
}
};
#endif /* SQL_ARRAY_INCLUDED */
|