1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
/* Copyright (c) 2003, 2013, Oracle and/or its affiliates
Copyright (c) 2009, 2013, Monty Program Ab.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
/*
Implementation of a bitmap type.
The idea with this is to be able to handle any constant number of bits but
also be able to use 32 or 64 bits bitmaps very efficiently
*/
#ifndef SQL_BITMAP_INCLUDED
#define SQL_BITMAP_INCLUDED
#include <my_sys.h>
#include <my_bitmap.h>
#include <my_bit.h>
/* An iterator to quickly walk over bits in ulonglong bitmap. */
class Table_map_iterator
{
ulonglong bmp;
public:
Table_map_iterator(ulonglong t): bmp(t){}
uint next_bit()
{
if (!bmp)
return BITMAP_END;
uint bit= my_find_first_bit(bmp);
bmp &= ~(1ULL << bit);
return bit;
}
int operator++(int) { return next_bit(); }
enum { BITMAP_END= 64 };
};
template <uint width> class Bitmap
{
/*
Workaround GCC optimizer bug (generating SSE instuctions on unaligned data)
*/
#if defined (__GNUC__) && defined(__x86_64__) && (__GNUC__ < 6) && !defined(__clang__)
#define NEED_GCC_NO_SSE_WORKAROUND
#endif
#ifdef NEED_GCC_NO_SSE_WORKAROUND
#pragma GCC push_options
#pragma GCC target ("no-sse")
#endif
private:
static const int BITS_PER_ELEMENT= sizeof(ulonglong) * 8;
static const int ARRAY_ELEMENTS= (width + BITS_PER_ELEMENT - 1) / BITS_PER_ELEMENT;
static const ulonglong ALL_BITS_SET= ULLONG_MAX;
ulonglong buffer[ARRAY_ELEMENTS];
uint bit_index(uint n) const
{
DBUG_ASSERT(n < width);
return ARRAY_ELEMENTS == 1 ? 0 : n / BITS_PER_ELEMENT;
}
ulonglong bit_mask(uint n) const
{
DBUG_ASSERT(n < width);
return ARRAY_ELEMENTS == 1 ? 1ULL << n : 1ULL << (n % BITS_PER_ELEMENT);
}
ulonglong last_element_mask(int n) const
{
DBUG_ASSERT(n % BITS_PER_ELEMENT != 0);
return bit_mask(n) - 1;
}
public:
/*
The default constructor does nothing.
The caller is supposed to either zero the memory
or to call set_all()/clear_all()/set_prefix()
to initialize bitmap.
*/
Bitmap() { }
explicit Bitmap(uint prefix)
{
set_prefix(prefix);
}
void init(uint prefix)
{
set_prefix(prefix);
}
uint length() const
{
return width;
}
void set_bit(uint n)
{
buffer[bit_index(n)] |= bit_mask(n);
}
void clear_bit(uint n)
{
buffer[bit_index(n)] &= ~bit_mask(n);
}
bool is_set(uint n) const
{
return buffer[bit_index(n)] & bit_mask(n);
}
void set_prefix(uint prefix_size)
{
set_if_smaller(prefix_size, width);
size_t idx= prefix_size / BITS_PER_ELEMENT;
for (size_t i= 0; i < idx; i++)
buffer[i]= ALL_BITS_SET;
if (prefix_size % BITS_PER_ELEMENT)
buffer[idx++]= last_element_mask(prefix_size);
for (size_t i= idx; i < ARRAY_ELEMENTS; i++)
buffer[i]= 0;
}
bool is_prefix(uint prefix_size) const
{
DBUG_ASSERT(prefix_size <= width);
size_t idx= prefix_size / BITS_PER_ELEMENT;
for (size_t i= 0; i < idx; i++)
if (buffer[i] != ALL_BITS_SET)
return false;
if (prefix_size % BITS_PER_ELEMENT)
if (buffer[idx++] != last_element_mask(prefix_size))
return false;
for (size_t i= idx; i < ARRAY_ELEMENTS; i++)
if (buffer[i] != 0)
return false;
return true;
}
void set_all()
{
if (width % BITS_PER_ELEMENT)
set_prefix(width);
else if (ARRAY_ELEMENTS > 1)
memset(buffer, 0xff, sizeof(buffer));
else
buffer[0] = ALL_BITS_SET;
}
void clear_all()
{
if (ARRAY_ELEMENTS > 1)
memset(buffer, 0, sizeof(buffer));
else
buffer[0]= 0;
}
void intersect(const Bitmap& map2)
{
for (size_t i= 0; i < ARRAY_ELEMENTS; i++)
buffer[i] &= map2.buffer[i];
}
private:
/*
Intersect with a bitmap represented as as longlong.
In addition, pad the rest of the bitmap with 0 or 1 bits
depending on pad_with_ones parameter.
*/
void intersect_and_pad(ulonglong map2buff, bool pad_with_ones)
{
buffer[0] &= map2buff;
for (size_t i= 1; i < ARRAY_ELEMENTS; i++)
buffer[i]= pad_with_ones ? ALL_BITS_SET : 0;
if (ARRAY_ELEMENTS > 1 && (width % BITS_PER_ELEMENT) && pad_with_ones)
buffer[ARRAY_ELEMENTS - 1]= last_element_mask(width);
}
public:
void intersect(ulonglong map2buff)
{
intersect_and_pad(map2buff, 0);
}
/* Use highest bit for all bits above first element. */
void intersect_extended(ulonglong map2buff)
{
intersect_and_pad(map2buff, (map2buff & (1ULL << 63)));
}
void subtract(const Bitmap& map2)
{
for (size_t i= 0; i < ARRAY_ELEMENTS; i++)
buffer[i] &= ~(map2.buffer[i]);
}
void merge(const Bitmap& map2)
{
for (size_t i= 0; i < ARRAY_ELEMENTS; i++)
buffer[i] |= map2.buffer[i];
}
bool is_clear_all() const
{
for (size_t i= 0; i < ARRAY_ELEMENTS; i++)
if (buffer[i])
return false;
return true;
}
bool is_subset(const Bitmap& map2) const
{
for (size_t i= 0; i < ARRAY_ELEMENTS; i++)
if (buffer[i] & ~(map2.buffer[i]))
return false;
return true;
}
bool is_overlapping(const Bitmap& map2) const
{
for (size_t i= 0; i < ARRAY_ELEMENTS; i++)
if (buffer[i] & map2.buffer[i])
return true;
return false;
}
bool operator==(const Bitmap& map2) const
{
if (ARRAY_ELEMENTS > 1)
return !memcmp(buffer,map2.buffer,sizeof(buffer));
return buffer[0] == map2.buffer[0];
}
bool operator!=(const Bitmap& map2) const
{
return !(*this == map2);
}
/*
Print hexadecimal representation of bitmap.
Truncate trailing zeros.
*/
char *print(char *buf) const
{
size_t last; /*index of the last non-zero element, or 0. */
for (last= ARRAY_ELEMENTS - 1; last && !buffer[last]; last--){}
const int HEX_DIGITS_PER_ELEMENT= BITS_PER_ELEMENT / 4;
for (size_t i= 0; i < last; i++)
{
ulonglong num = buffer[i];
uint shift = BITS_PER_ELEMENT - 4;
size_t pos= i * HEX_DIGITS_PER_ELEMENT;
for (size_t j= 0; j < HEX_DIGITS_PER_ELEMENT; j++)
{
buf[pos + j]= _dig_vec_upper[(num >> shift) & 0xf];
shift += 4;
}
}
longlong2str(buffer[last], buf, 16);
return buf;
}
ulonglong to_ulonglong() const
{
return buffer[0];
}
uint bits_set()
{
uint res= 0;
for (size_t i= 0; i < ARRAY_ELEMENTS; i++)
res += my_count_bits(buffer[i]);
return res;
}
class Iterator
{
const Bitmap& map;
uint offset;
Table_map_iterator tmi;
public:
Iterator(const Bitmap<width>& map2) : map(map2), offset(0), tmi(map2.buffer[0]) {}
int operator++(int)
{
for (;;)
{
int nextbit= tmi++;
if (nextbit != Table_map_iterator::BITMAP_END)
return offset + nextbit;
if (offset + BITS_PER_ELEMENT >= map.length())
return BITMAP_END;
offset += BITS_PER_ELEMENT;
tmi= Table_map_iterator(map.buffer[offset / BITS_PER_ELEMENT]);
}
}
enum { BITMAP_END = width };
};
#ifdef NEED_GCC_NO_SSE_WORKAROUND
#pragma GCC pop_options
#undef NEED_GCC_NO_SSE_WORKAROUND
#endif
};
typedef Bitmap<MAX_INDEXES> key_map; /* Used for finding keys */
#endif /* SQL_BITMAP_INCLUDED */
|