1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
|
/*
Copyright (c) 2011, 2012, Monty Program Ab
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
This file contains declarations for implementations
of block based join algorithms
*/
#define JOIN_CACHE_INCREMENTAL_BIT 1
#define JOIN_CACHE_HASHED_BIT 2
#define JOIN_CACHE_BKA_BIT 4
/*
Categories of data fields of variable length written into join cache buffers.
The value of any of these fields is written into cache together with the
prepended length of the value.
*/
#define CACHE_BLOB 1 /* blob field */
#define CACHE_STRIPPED 2 /* field stripped of trailing spaces */
#define CACHE_VARSTR1 3 /* short string value (length takes 1 byte) */
#define CACHE_VARSTR2 4 /* long string value (length takes 2 bytes) */
#define CACHE_ROWID 5 /* ROWID field */
/*
The CACHE_FIELD structure used to describe fields of records that
are written into a join cache buffer from record buffers and backward.
*/
typedef struct st_cache_field {
uchar *str; /**< buffer from/to where the field is to be copied */
uint length; /**< maximal number of bytes to be copied from/to str */
/*
Field object for the moved field
(0 - for a flag field, see JOIN_CACHE::create_flag_fields).
*/
Field *field;
uint type; /**< category of the of the copied field (CACHE_BLOB et al.) */
/*
The number of the record offset value for the field in the sequence
of offsets placed after the last field of the record. These
offset values are used to access fields referred to from other caches.
If the value is 0 then no offset for the field is saved in the
trailing sequence of offsets.
*/
uint referenced_field_no;
/* The remaining structure fields are used as containers for temp values */
uint blob_length; /**< length of the blob to be copied */
uint offset; /**< field offset to be saved in cache buffer */
} CACHE_FIELD;
class JOIN_TAB_SCAN;
class EXPLAIN_BKA_TYPE;
/*
JOIN_CACHE is the base class to support the implementations of
- Block Nested Loop (BNL) Join Algorithm,
- Block Nested Loop Hash (BNLH) Join Algorithm,
- Batched Key Access (BKA) Join Algorithm.
The first algorithm is supported by the derived class JOIN_CACHE_BNL,
the second algorithm is supported by the derived class JOIN_CACHE_BNLH,
while the third algorithm is implemented in two variant supported by
the classes JOIN_CACHE_BKA and JOIN_CACHE_BKAH.
These three algorithms have a lot in common. Each of them first accumulates
the records of the left join operand in a join buffer and then searches for
matching rows of the second operand for all accumulated records.
For the first two algorithms this strategy saves on logical I/O operations:
the entire set of records from the join buffer requires only one look-through
of the records provided by the second operand.
For the third algorithm the accumulation of records allows to optimize
fetching rows of the second operand from disk for some engines (MyISAM,
InnoDB), or to minimize the number of round-trips between the Server and
the engine nodes (NDB Cluster).
*/
class JOIN_CACHE :public Sql_alloc
{
private:
/* Size of the offset of a record from the cache */
uint size_of_rec_ofs;
/* Size of the length of a record in the cache */
uint size_of_rec_len;
/* Size of the offset of a field within a record in the cache */
uint size_of_fld_ofs;
/* This structure is used only for explain, not for execution */
bool for_explain_only;
protected:
/* 3 functions below actually do not use the hidden parameter 'this' */
/* Calculate the number of bytes used to store an offset value */
uint offset_size(uint len)
{ return (len < 256 ? 1 : len < 256*256 ? 2 : 4); }
/* Get the offset value that takes ofs_sz bytes at the position ptr */
ulong get_offset(uint ofs_sz, uchar *ptr)
{
switch (ofs_sz) {
case 1: return uint(*ptr);
case 2: return uint2korr(ptr);
case 4: return uint4korr(ptr);
}
return 0;
}
/* Set the offset value ofs that takes ofs_sz bytes at the position ptr */
void store_offset(uint ofs_sz, uchar *ptr, ulong ofs)
{
switch (ofs_sz) {
case 1: *ptr= (uchar) ofs; return;
case 2: int2store(ptr, (uint16) ofs); return;
case 4: int4store(ptr, (uint32) ofs); return;
}
}
/*
The maximum total length of the fields stored for a record in the cache.
For blob fields only the sizes of the blob lengths are taken into account.
*/
uint length;
/*
Representation of the executed multi-way join through which all needed
context can be accessed.
*/
JOIN *join;
/*
JOIN_TAB of the first table that can have it's fields in the join cache.
That is, tables in the [start_tab, tab) range can have their fields in the
join cache.
If a join tab in the range represents an SJM-nest, then all tables from the
nest can have their fields in the join cache, too.
*/
JOIN_TAB *start_tab;
/*
The total number of flag and data fields that can appear in a record
written into the cache. Fields with null values are always skipped
to save space.
*/
uint fields;
/*
The total number of flag fields in a record put into the cache. They are
used for table null bitmaps, table null row flags, and an optional match
flag. Flag fields go before other fields in a cache record with the match
flag field placed always at the very beginning of the record.
*/
uint flag_fields;
/* The total number of blob fields that are written into the cache */
uint blobs;
/*
The total number of fields referenced from field descriptors for other join
caches. These fields are used to construct key values.
When BKA join algorithm is employed the constructed key values serve to
access matching rows with index lookups.
The key values are put into a hash table when the BNLH join algorithm
is employed and when BKAH is used for the join operation.
*/
uint referenced_fields;
/*
The current number of already created data field descriptors.
This number can be useful for implementations of the init methods.
*/
uint data_field_count;
/*
The current number of already created pointers to the data field
descriptors. This number can be useful for implementations of
the init methods.
*/
uint data_field_ptr_count;
/*
Array of the descriptors of fields containing 'fields' elements.
These are all fields that are stored for a record in the cache.
*/
CACHE_FIELD *field_descr;
/*
Array of pointers to the blob descriptors that contains 'blobs' elements.
*/
CACHE_FIELD **blob_ptr;
/*
This flag indicates that records written into the join buffer contain
a match flag field. The flag must be set by the init method.
*/
bool with_match_flag;
/*
This flag indicates that any record is prepended with the length of the
record which allows us to skip the record or part of it without reading.
*/
bool with_length;
/*
The maximal number of bytes used for a record representation in
the cache excluding the space for blob data.
For future derived classes this representation may contains some
redundant info such as a key value associated with the record.
*/
uint pack_length;
/*
The value of pack_length incremented by the total size of all
pointers of a record in the cache to the blob data.
*/
uint pack_length_with_blob_ptrs;
/*
The total size of the record base prefix. The base prefix of record may
include the following components:
- the length of the record
- the link to a record in a previous buffer.
Each record in the buffer are supplied with the same set of the components.
*/
uint base_prefix_length;
/*
The expected length of a record in the join buffer together with
all prefixes and postfixes
*/
size_t avg_record_length;
/* The expected size of the space per record in the auxiliary buffer */
size_t avg_aux_buffer_incr;
/* Expected join buffer space used for one record */
size_t space_per_record;
/* Pointer to the beginning of the join buffer */
uchar *buff;
/*
Size of the entire memory allocated for the join buffer.
Part of this memory may be reserved for the auxiliary buffer.
*/
size_t buff_size;
/* The minimal join buffer size when join buffer still makes sense to use */
size_t min_buff_size;
/* The maximum expected size if the join buffer to be used */
size_t max_buff_size;
/* Size of the auxiliary buffer */
size_t aux_buff_size;
/* The number of records put into the join buffer */
size_t records;
/*
The number of records in the fully refilled join buffer of
the minimal size equal to min_buff_size
*/
size_t min_records;
/*
The maximum expected number of records to be put in the join buffer
at one refill
*/
size_t max_records;
/*
Pointer to the current position in the join buffer.
This member is used both when writing to buffer and
when reading from it.
*/
uchar *pos;
/*
Pointer to the first free position in the join buffer,
right after the last record into it.
*/
uchar *end_pos;
/*
Pointer to the beginning of the first field of the current read/write
record from the join buffer. The value is adjusted by the
get_record/put_record functions.
*/
uchar *curr_rec_pos;
/*
Pointer to the beginning of the first field of the last record
from the join buffer.
*/
uchar *last_rec_pos;
/*
Flag is set if the blob data for the last record in the join buffer
is in record buffers rather than in the join cache.
*/
bool last_rec_blob_data_is_in_rec_buff;
/*
Pointer to the position to the current record link.
Record links are used only with linked caches. Record links allow to set
connections between parts of one join record that are stored in different
join buffers.
In the simplest case a record link is just a pointer to the beginning of
the record stored in the buffer.
In a more general case a link could be a reference to an array of pointers
to records in the buffer.
*/
uchar *curr_rec_link;
/*
This flag is set to TRUE if join_tab is the first inner table of an outer
join and the latest record written to the join buffer is detected to be
null complemented after checking on conditions over the outer tables for
this outer join operation
*/
bool last_written_is_null_compl;
/*
The number of fields put in the join buffer of the join cache that are
used in building keys to access the table join_tab
*/
uint local_key_arg_fields;
/*
The total number of the fields in the previous caches that are used
in building keys to access the table join_tab
*/
uint external_key_arg_fields;
/*
This flag indicates that the key values will be read directly from the join
buffer. It will save us building key values in the key buffer.
*/
bool use_emb_key;
/* The length of an embedded key value */
uint emb_key_length;
/*
This object provides the methods to iterate over records of
the joined table join_tab when looking for join matches between
records from join buffer and records from join_tab.
BNL and BNLH join algorithms retrieve all records from join_tab,
while BKA/BKAH algorithm iterates only over those records from
join_tab that can be accessed by look-ups with join keys built
from records in join buffer.
*/
JOIN_TAB_SCAN *join_tab_scan;
void calc_record_fields();
void collect_info_on_key_args();
int alloc_fields();
void create_flag_fields();
void create_key_arg_fields();
void create_remaining_fields();
void set_constants();
int alloc_buffer();
/* Shall reallocate the join buffer */
virtual int realloc_buffer();
/* Check the possibility to read the access keys directly from join buffer */
bool check_emb_key_usage();
uint get_size_of_rec_offset() { return size_of_rec_ofs; }
uint get_size_of_rec_length() { return size_of_rec_len; }
uint get_size_of_fld_offset() { return size_of_fld_ofs; }
uchar *get_rec_ref(uchar *ptr)
{
return buff+get_offset(size_of_rec_ofs, ptr-size_of_rec_ofs);
}
ulong get_rec_length(uchar *ptr)
{
return (ulong) get_offset(size_of_rec_len, ptr);
}
ulong get_fld_offset(uchar *ptr)
{
return (ulong) get_offset(size_of_fld_ofs, ptr);
}
void store_rec_ref(uchar *ptr, uchar* ref)
{
store_offset(size_of_rec_ofs, ptr-size_of_rec_ofs, (ulong) (ref-buff));
}
void store_rec_length(uchar *ptr, ulong len)
{
store_offset(size_of_rec_len, ptr, len);
}
void store_fld_offset(uchar *ptr, ulong ofs)
{
store_offset(size_of_fld_ofs, ptr, ofs);
}
/* Write record fields and their required offsets into the join buffer */
uint write_record_data(uchar *link, bool *is_full);
/* Get the total length of all prefixes of a record in the join buffer */
virtual uint get_prefix_length() { return base_prefix_length; }
/* Get maximum total length of all affixes of a record in the join buffer */
virtual uint get_record_max_affix_length();
/*
Shall get maximum size of the additional space per record used for
record keys
*/
virtual uint get_max_key_addon_space_per_record() { return 0; }
/*
This method must determine for how much the auxiliary buffer should be
incremented when a new record is added to the join buffer.
If no auxiliary buffer is needed the function should return 0.
*/
virtual uint aux_buffer_incr(ulong recno);
/* Shall calculate how much space is remaining in the join buffer */
virtual size_t rem_space()
{
return MY_MAX(buff_size-(end_pos-buff)-aux_buff_size,0);
}
/*
Shall calculate how much space is taken by allocation of the key
for a record in the join buffer
*/
virtual uint extra_key_length() { return 0; }
/* Read all flag and data fields of a record from the join buffer */
uint read_all_record_fields();
/* Read all flag fields of a record from the join buffer */
uint read_flag_fields();
/* Read a data record field from the join buffer */
uint read_record_field(CACHE_FIELD *copy, bool last_record);
/* Read a referenced field from the join buffer */
bool read_referenced_field(CACHE_FIELD *copy, uchar *rec_ptr, uint *len);
/*
Shall skip record from the join buffer if its match flag
is set to MATCH_FOUND
*/
virtual bool skip_if_matched();
/*
Shall skip record from the join buffer if its match flag
commands to do so
*/
virtual bool skip_if_not_needed_match();
/*
True if rec_ptr points to the record whose blob data stay in
record buffers
*/
bool blob_data_is_in_rec_buff(uchar *rec_ptr)
{
return rec_ptr == last_rec_pos && last_rec_blob_data_is_in_rec_buff;
}
/* Find matches from the next table for records from the join buffer */
virtual enum_nested_loop_state join_matching_records(bool skip_last);
/* Shall set an auxiliary buffer up (currently used only by BKA joins) */
virtual int setup_aux_buffer(HANDLER_BUFFER &aux_buff)
{
DBUG_ASSERT(0);
return 0;
}
/*
Shall get the number of ranges in the cache buffer passed
to the MRR interface
*/
virtual uint get_number_of_ranges_for_mrr() { return 0; };
/*
Shall prepare to look for records from the join cache buffer that would
match the record of the joined table read into the record buffer
*/
virtual bool prepare_look_for_matches(bool skip_last)= 0;
/*
Shall return a pointer to the record from join buffer that is checked
as the next candidate for a match with the current record from join_tab.
Each implementation of this virtual function should bare in mind
that the record position it returns shall be exactly the position
passed as the parameter to the implementations of the virtual functions
skip_next_candidate_for_match and read_next_candidate_for_match.
*/
virtual uchar *get_next_candidate_for_match()= 0;
/*
Shall check whether the given record from the join buffer has its match
flag settings commands to skip the record in the buffer.
*/
virtual bool skip_next_candidate_for_match(uchar *rec_ptr)= 0;
/*
Shall read the given record from the join buffer into the
the corresponding record buffer
*/
virtual void read_next_candidate_for_match(uchar *rec_ptr)= 0;
/*
Shall return the location of the association label returned by
the multi_read_range_next function for the current record loaded
into join_tab's record buffer
*/
virtual uchar **get_curr_association_ptr() { return 0; };
/* Add null complements for unmatched outer records from the join buffer */
virtual enum_nested_loop_state join_null_complements(bool skip_last);
/* Restore the fields of the last record from the join buffer */
virtual void restore_last_record();
/* Set match flag for a record in join buffer if it has not been set yet */
bool set_match_flag_if_none(JOIN_TAB *first_inner, uchar *rec_ptr);
enum_nested_loop_state generate_full_extensions(uchar *rec_ptr);
/* Check matching to a partial join record from the join buffer */
bool check_match(uchar *rec_ptr);
/*
This constructor creates an unlinked join cache. The cache is to be
used to join table 'tab' to the result of joining the previous tables
specified by the 'j' parameter.
*/
JOIN_CACHE(JOIN *j, JOIN_TAB *tab)
{
join= j;
join_tab= tab;
prev_cache= next_cache= 0;
buff= 0;
}
/*
This constructor creates a linked join cache. The cache is to be
used to join table 'tab' to the result of joining the previous tables
specified by the 'j' parameter. The parameter 'prev' specifies the previous
cache object to which this cache is linked.
*/
JOIN_CACHE(JOIN *j, JOIN_TAB *tab, JOIN_CACHE *prev)
{
join= j;
join_tab= tab;
next_cache= 0;
prev_cache= prev;
buff= 0;
if (prev)
prev->next_cache= this;
}
public:
/*
The enumeration type Join_algorithm includes a mnemonic constant for
each join algorithm that employs join buffers
*/
enum Join_algorithm
{
BNL_JOIN_ALG, /* Block Nested Loop Join algorithm */
BNLH_JOIN_ALG, /* Block Nested Loop Hash Join algorithm */
BKA_JOIN_ALG, /* Batched Key Access Join algorithm */
BKAH_JOIN_ALG /* Batched Key Access with Hash Table Join Algorithm */
};
/*
The enumeration type Match_flag describes possible states of the match flag
field stored for the records of the first inner tables of outer joins and
semi-joins in the cases when the first match strategy is used for them.
When a record with match flag field is written into the join buffer the
state of the field usually is MATCH_NOT_FOUND unless this is a record of the
first inner table of the outer join for which the on precondition (the
condition from on expression over outer tables) has turned out not to be
true. In the last case the state of the match flag is MATCH_IMPOSSIBLE.
The state of the match flag field is changed to MATCH_FOUND as soon as
the first full matching combination of inner tables of the outer join or
the semi-join is discovered.
*/
enum Match_flag { MATCH_NOT_FOUND, MATCH_FOUND, MATCH_IMPOSSIBLE };
/* Table to be joined with the partial join records from the cache */
JOIN_TAB *join_tab;
/* Pointer to the previous join cache if there is any */
JOIN_CACHE *prev_cache;
/* Pointer to the next join cache if there is any */
JOIN_CACHE *next_cache;
/* Shall initialize the join cache structure */
virtual int init(bool for_explain);
/* Get the current size of the cache join buffer */
size_t get_join_buffer_size() { return buff_size; }
/* Set the size of the cache join buffer to a new value */
void set_join_buffer_size(size_t sz) { buff_size= sz; }
/* Get the minimum possible size of the cache join buffer */
virtual ulong get_min_join_buffer_size();
/* Get the maximum possible size of the cache join buffer */
virtual ulong get_max_join_buffer_size(bool optimize_buff_size);
/* Shrink the size if the cache join buffer in a given ratio */
bool shrink_join_buffer_in_ratio(ulonglong n, ulonglong d);
/* Shall return the type of the employed join algorithm */
virtual enum Join_algorithm get_join_alg()= 0;
/*
The function shall return TRUE only when there is a key access
to the join table
*/
virtual bool is_key_access()= 0;
/* Shall reset the join buffer for reading/writing */
virtual void reset(bool for_writing);
/*
This function shall add a record into the join buffer and return TRUE
if it has been decided that it should be the last record in the buffer.
*/
virtual bool put_record();
/*
This function shall read the next record into the join buffer and return
TRUE if there is no more next records.
*/
virtual bool get_record();
/*
This function shall read the record at the position rec_ptr
in the join buffer
*/
virtual void get_record_by_pos(uchar *rec_ptr);
/* Shall return the value of the match flag for the positioned record */
virtual enum Match_flag get_match_flag_by_pos(uchar *rec_ptr);
/* Shall return the position of the current record */
virtual uchar *get_curr_rec() { return curr_rec_pos; }
/* Shall set the current record link */
virtual void set_curr_rec_link(uchar *link) { curr_rec_link= link; }
/* Shall return the current record link */
virtual uchar *get_curr_rec_link()
{
return (curr_rec_link ? curr_rec_link : get_curr_rec());
}
/* Join records from the join buffer with records from the next join table */
enum_nested_loop_state join_records(bool skip_last);
/* Add a comment on the join algorithm employed by the join cache */
virtual void save_explain_data(EXPLAIN_BKA_TYPE *explain);
THD *thd();
virtual ~JOIN_CACHE() {}
void reset_join(JOIN *j) { join= j; }
void free()
{
my_free(buff);
buff= 0;
}
friend class JOIN_CACHE_HASHED;
friend class JOIN_CACHE_BNL;
friend class JOIN_CACHE_BKA;
friend class JOIN_TAB_SCAN;
friend class JOIN_TAB_SCAN_MRR;
};
/*
The class JOIN_CACHE_HASHED is the base class for the classes
JOIN_CACHE_HASHED_BNL and JOIN_CACHE_HASHED_BKA. The first of them supports
an implementation of Block Nested Loop Hash (BNLH) Join Algorithm,
while the second is used for a variant of the BKA Join algorithm that performs
only one lookup for any records from join buffer with the same key value.
For a join cache of this class the records from the join buffer that have
the same access key are linked into a chain attached to a key entry structure
that either itself contains the key value, or, in the case when the keys are
embedded, refers to its occurrence in one of the records from the chain.
To build the chains with the same keys a hash table is employed. It is placed
at the very end of the join buffer. The array of hash entries is allocated
first at the very bottom of the join buffer, while key entries are placed
before this array.
A hash entry contains a header of the list of the key entries with the same
hash value.
Each key entry is a structure of the following type:
struct st_join_cache_key_entry {
union {
uchar[] value;
cache_ref *value_ref; // offset from the beginning of the buffer
} hash_table_key;
key_ref next_key; // offset backward from the beginning of hash table
cache_ref *last_rec // offset from the beginning of the buffer
}
The references linking the records in a chain are always placed at the very
beginning of the record info stored in the join buffer. The records are
linked in a circular list. A new record is always added to the end of this
list.
The following picture represents a typical layout for the info stored in the
join buffer of a join cache object of the JOIN_CACHE_HASHED class.
buff
V
+----------------------------------------------------------------------------+
| |[*]record_1_1| |
| ^ | |
| | +--------------------------------------------------+ |
| | |[*]record_2_1| | |
| | ^ | V |
| | | +------------------+ |[*]record_1_2| |
| | +--------------------+-+ | |
|+--+ +---------------------+ | | +-------------+ |
|| | | V | | |
|||[*]record_3_1| |[*]record_1_3| |[*]record_2_2| | |
||^ ^ ^ | |
||+----------+ | | | |
||^ | |<---------------------------+-------------------+ |
|++ | | ... mrr | buffer ... ... | | |
| | | | |
| +-----+--------+ | +-----|-------+ |
| V | | | V | | |
||key_3|[/]|[*]| | | |key_2|[/]|[*]| | |
| +-+---|-----------------------+ | |
| V | | | | |
| |key_1|[*]|[*]| | | ... |[*]| ... |[*]| ... | |
+----------------------------------------------------------------------------+
^ ^ ^
| i-th entry j-th entry
hash table
i-th hash entry:
circular record chain for key_1:
record_1_1
record_1_2
record_1_3 (points to record_1_1)
circular record chain for key_3:
record_3_1 (points to itself)
j-th hash entry:
circular record chain for key_2:
record_2_1
record_2_2 (points to record_2_1)
*/
class JOIN_CACHE_HASHED: public JOIN_CACHE
{
typedef uint (JOIN_CACHE_HASHED::*Hash_func) (uchar *key, uint key_len);
typedef bool (JOIN_CACHE_HASHED::*Hash_cmp_func) (uchar *key1, uchar *key2,
uint key_len);
private:
/* Size of the offset of a key entry in the hash table */
uint size_of_key_ofs;
/*
Length of the key entry in the hash table.
A key entry either contains the key value, or it contains a reference
to the key value if use_emb_key flag is set for the cache.
*/
uint key_entry_length;
/* The beginning of the hash table in the join buffer */
uchar *hash_table;
/* Number of hash entries in the hash table */
uint hash_entries;
/* The position of the currently retrieved key entry in the hash table */
uchar *curr_key_entry;
/* The offset of the data fields from the beginning of the record fields */
uint data_fields_offset;
inline uint get_hash_idx_simple(uchar *key, uint key_len);
inline uint get_hash_idx_complex(uchar *key, uint key_len);
inline bool equal_keys_simple(uchar *key1, uchar *key2, uint key_len);
inline bool equal_keys_complex(uchar *key1, uchar *key2, uint key_len);
int init_hash_table();
void cleanup_hash_table();
protected:
/*
Index info on the TABLE_REF object used by the hash join
to look for matching records
*/
KEY *ref_key_info;
/*
Number of the key parts the TABLE_REF object used by the hash join
to look for matching records
*/
uint ref_used_key_parts;
/*
The hash function used in the hash table,
usually set by the init() method
*/
Hash_func hash_func;
/*
The function to check whether two key entries in the hash table
are equal or not, usually set by the init() method
*/
Hash_cmp_func hash_cmp_func;
/*
Length of a key value.
It is assumed that all key values have the same length.
*/
uint key_length;
/* Buffer to store key values for probing */
uchar *key_buff;
/* Number of key entries in the hash table (number of distinct keys) */
uint key_entries;
/* The position of the last key entry in the hash table */
uchar *last_key_entry;
/*
The offset of the record fields from the beginning of the record
representation. The record representation starts with a reference to
the next record in the key record chain followed by the length of
the trailing record data followed by a reference to the record segment
in the previous cache, if any, followed by the record fields.
*/
uint rec_fields_offset;
uint get_size_of_key_offset() { return size_of_key_ofs; }
/*
Get the position of the next_key_ptr field pointed to by
a linking reference stored at the position key_ref_ptr.
This reference is actually the offset backward from the
beginning of hash table.
*/
uchar *get_next_key_ref(uchar *key_ref_ptr)
{
return hash_table-get_offset(size_of_key_ofs, key_ref_ptr);
}
/*
Store the linking reference to the next_key_ptr field at
the position key_ref_ptr. The position of the next_key_ptr
field is pointed to by ref. The stored reference is actually
the offset backward from the beginning of the hash table.
*/
void store_next_key_ref(uchar *key_ref_ptr, uchar *ref)
{
store_offset(size_of_key_ofs, key_ref_ptr, (ulong) (hash_table-ref));
}
/*
Check whether the reference to the next_key_ptr field at the position
key_ref_ptr contains a nil value.
*/
bool is_null_key_ref(uchar *key_ref_ptr)
{
ulong nil= 0;
return memcmp(key_ref_ptr, &nil, size_of_key_ofs ) == 0;
}
/*
Set the reference to the next_key_ptr field at the position
key_ref_ptr equal to nil.
*/
void store_null_key_ref(uchar *key_ref_ptr)
{
ulong nil= 0;
store_offset(size_of_key_ofs, key_ref_ptr, nil);
}
uchar *get_next_rec_ref(uchar *ref_ptr)
{
return buff+get_offset(get_size_of_rec_offset(), ref_ptr);
}
void store_next_rec_ref(uchar *ref_ptr, uchar *ref)
{
store_offset(get_size_of_rec_offset(), ref_ptr, (ulong) (ref-buff));
}
/*
Get the position of the embedded key value for the current
record pointed to by get_curr_rec().
*/
uchar *get_curr_emb_key()
{
return get_curr_rec()+data_fields_offset;
}
/*
Get the position of the embedded key value pointed to by a reference
stored at ref_ptr. The stored reference is actually the offset from
the beginning of the join buffer.
*/
uchar *get_emb_key(uchar *ref_ptr)
{
return buff+get_offset(get_size_of_rec_offset(), ref_ptr);
}
/*
Store the reference to an embedded key at the position key_ref_ptr.
The position of the embedded key is pointed to by ref. The stored
reference is actually the offset from the beginning of the join buffer.
*/
void store_emb_key_ref(uchar *ref_ptr, uchar *ref)
{
store_offset(get_size_of_rec_offset(), ref_ptr, (ulong) (ref-buff));
}
/* Get the total length of all prefixes of a record in hashed join buffer */
uint get_prefix_length()
{
return base_prefix_length + get_size_of_rec_offset();
}
/*
Get maximum size of the additional space per record used for
the hash table with record keys
*/
uint get_max_key_addon_space_per_record();
/*
Calculate how much space in the buffer would not be occupied by
records, key entries and additional memory for the MMR buffer.
*/
size_t rem_space()
{
return MY_MAX(last_key_entry-end_pos-aux_buff_size,0);
}
/*
Calculate how much space is taken by allocation of the key
entry for a record in the join buffer
*/
uint extra_key_length() { return key_entry_length; }
/*
Skip record from a hashed join buffer if its match flag
is set to MATCH_FOUND
*/
bool skip_if_matched();
/*
Skip record from a hashed join buffer if its match flag setting
commands to do so
*/
bool skip_if_not_needed_match();
/* Search for a key in the hash table of the join buffer */
bool key_search(uchar *key, uint key_len, uchar **key_ref_ptr);
/* Reallocate the join buffer of a hashed join cache */
int realloc_buffer();
/*
This constructor creates an unlinked hashed join cache. The cache is to be
used to join table 'tab' to the result of joining the previous tables
specified by the 'j' parameter.
*/
JOIN_CACHE_HASHED(JOIN *j, JOIN_TAB *tab) :JOIN_CACHE(j, tab) {}
/*
This constructor creates a linked hashed join cache. The cache is to be
used to join table 'tab' to the result of joining the previous tables
specified by the 'j' parameter. The parameter 'prev' specifies the previous
cache object to which this cache is linked.
*/
JOIN_CACHE_HASHED(JOIN *j, JOIN_TAB *tab, JOIN_CACHE *prev)
:JOIN_CACHE(j, tab, prev) {}
public:
/* Initialize a hashed join cache */
int init(bool for_explain);
/* Reset the buffer of a hashed join cache for reading/writing */
void reset(bool for_writing);
/* Add a record into the buffer of a hashed join cache */
bool put_record();
/* Read the next record from the buffer of a hashed join cache */
bool get_record();
/*
Shall check whether all records in a key chain have
their match flags set on
*/
virtual bool check_all_match_flags_for_key(uchar *key_chain_ptr);
uint get_next_key(uchar **key);
/* Get the head of the record chain attached to the current key entry */
uchar *get_curr_key_chain()
{
return get_next_rec_ref(curr_key_entry+key_entry_length-
get_size_of_rec_offset());
}
};
/*
The class JOIN_TAB_SCAN is a companion class for the classes JOIN_CACHE_BNL
and JOIN_CACHE_BNLH. Actually the class implements the iterator over the
table joinded by BNL/BNLH join algorithm.
The virtual functions open, next and close are called for any iteration over
the table. The function open is called to initiate the process of the
iteration. The function next shall read the next record from the joined
table. The record is read into the record buffer of the joined table.
The record is to be matched with records from the join cache buffer.
The function close shall perform the finalizing actions for the iteration.
*/
class JOIN_TAB_SCAN: public Sql_alloc
{
private:
/* TRUE if this is the first record from the joined table to iterate over */
bool is_first_record;
protected:
/* The joined table to be iterated over */
JOIN_TAB *join_tab;
/* The join cache used to join the table join_tab */
JOIN_CACHE *cache;
/*
Representation of the executed multi-way join through which
all needed context can be accessed.
*/
JOIN *join;
public:
JOIN_TAB_SCAN(JOIN *j, JOIN_TAB *tab)
{
join= j;
join_tab= tab;
cache= join_tab->cache;
}
virtual ~JOIN_TAB_SCAN() {}
/*
Shall calculate the increment of the auxiliary buffer for a record
write if such a buffer is used by the table scan object
*/
virtual uint aux_buffer_incr(ulong recno) { return 0; }
/* Initiate the process of iteration over the joined table */
virtual int open();
/*
Shall read the next candidate for matches with records from
the join buffer.
*/
virtual int next();
/*
Perform the finalizing actions for the process of iteration
over the joined_table.
*/
virtual void close();
};
/*
The class JOIN_CACHE_BNL is used when the BNL join algorithm is
employed to perform a join operation
*/
class JOIN_CACHE_BNL :public JOIN_CACHE
{
private:
/*
The number of the records in the join buffer that have to be
checked yet for a match with the current record of join_tab
read into the record buffer.
*/
uint rem_records;
protected:
bool prepare_look_for_matches(bool skip_last);
uchar *get_next_candidate_for_match();
bool skip_next_candidate_for_match(uchar *rec_ptr);
void read_next_candidate_for_match(uchar *rec_ptr);
public:
/*
This constructor creates an unlinked BNL join cache. The cache is to be
used to join table 'tab' to the result of joining the previous tables
specified by the 'j' parameter.
*/
JOIN_CACHE_BNL(JOIN *j, JOIN_TAB *tab) :JOIN_CACHE(j, tab) {}
/*
This constructor creates a linked BNL join cache. The cache is to be
used to join table 'tab' to the result of joining the previous tables
specified by the 'j' parameter. The parameter 'prev' specifies the previous
cache object to which this cache is linked.
*/
JOIN_CACHE_BNL(JOIN *j, JOIN_TAB *tab, JOIN_CACHE *prev)
:JOIN_CACHE(j, tab, prev) {}
/* Initialize the BNL cache */
int init(bool for_explain);
enum Join_algorithm get_join_alg() { return BNL_JOIN_ALG; }
bool is_key_access() { return FALSE; }
};
/*
The class JOIN_CACHE_BNLH is used when the BNLH join algorithm is
employed to perform a join operation
*/
class JOIN_CACHE_BNLH :public JOIN_CACHE_HASHED
{
protected:
/*
The pointer to the last record from the circular list of the records
that match the join key built out of the record in the join buffer for
the join_tab table
*/
uchar *last_matching_rec_ref_ptr;
/*
The pointer to the next current record from the circular list of the
records that match the join key built out of the record in the join buffer
for the join_tab table. This pointer is used by the class method
get_next_candidate_for_match to iterate over records from the circular
list.
*/
uchar *next_matching_rec_ref_ptr;
/*
Get the chain of records from buffer matching the current candidate
record for join
*/
uchar *get_matching_chain_by_join_key();
bool prepare_look_for_matches(bool skip_last);
uchar *get_next_candidate_for_match();
bool skip_next_candidate_for_match(uchar *rec_ptr);
void read_next_candidate_for_match(uchar *rec_ptr);
public:
/*
This constructor creates an unlinked BNLH join cache. The cache is to be
used to join table 'tab' to the result of joining the previous tables
specified by the 'j' parameter.
*/
JOIN_CACHE_BNLH(JOIN *j, JOIN_TAB *tab) : JOIN_CACHE_HASHED(j, tab) {}
/*
This constructor creates a linked BNLH join cache. The cache is to be
used to join table 'tab' to the result of joining the previous tables
specified by the 'j' parameter. The parameter 'prev' specifies the previous
cache object to which this cache is linked.
*/
JOIN_CACHE_BNLH(JOIN *j, JOIN_TAB *tab, JOIN_CACHE *prev)
: JOIN_CACHE_HASHED(j, tab, prev) {}
/* Initialize the BNLH cache */
int init(bool for_explain);
enum Join_algorithm get_join_alg() { return BNLH_JOIN_ALG; }
bool is_key_access() { return TRUE; }
};
/*
The class JOIN_TAB_SCAN_MRR is a companion class for the classes
JOIN_CACHE_BKA and JOIN_CACHE_BKAH. Actually the class implements the
iterator over the records from join_tab selected by BKA/BKAH join
algorithm as the candidates to be joined.
The virtual functions open, next and close are called for any iteration over
join_tab record candidates. The function open is called to initiate the
process of the iteration. The function next shall read the next record from
the set of the record candidates. The record is read into the record buffer
of the joined table. The function close shall perform the finalizing actions
for the iteration.
*/
class JOIN_TAB_SCAN_MRR: public JOIN_TAB_SCAN
{
/* Interface object to generate key ranges for MRR */
RANGE_SEQ_IF range_seq_funcs;
/* Number of ranges to be processed by the MRR interface */
uint ranges;
/* Flag to to be passed to the MRR interface */
uint mrr_mode;
/* MRR buffer assotiated with this join cache */
HANDLER_BUFFER mrr_buff;
/* Shall initialize the MRR buffer */
virtual void init_mrr_buff()
{
cache->setup_aux_buffer(mrr_buff);
}
public:
JOIN_TAB_SCAN_MRR(JOIN *j, JOIN_TAB *tab, uint flags, RANGE_SEQ_IF rs_funcs)
:JOIN_TAB_SCAN(j, tab), range_seq_funcs(rs_funcs), mrr_mode(flags) {}
uint aux_buffer_incr(ulong recno);
int open();
int next();
friend class JOIN_CACHE_BKA; /* it needs to add an mrr_mode flag after JOIN_CACHE::init() call */
};
/*
The class JOIN_CACHE_BKA is used when the BKA join algorithm is
employed to perform a join operation
*/
class JOIN_CACHE_BKA :public JOIN_CACHE
{
private:
/* Flag to to be passed to the companion JOIN_TAB_SCAN_MRR object */
uint mrr_mode;
/*
This value is set to 1 by the class prepare_look_for_matches method
and back to 0 by the class get_next_candidate_for_match method
*/
uint rem_records;
/*
This field contains the current association label set by a call of
the multi_range_read_next handler function.
See the function JOIN_CACHE_BKA::get_curr_key_association()
*/
uchar *curr_association;
protected:
/*
Get the number of ranges in the cache buffer passed to the MRR
interface. For each record its own range is passed.
*/
uint get_number_of_ranges_for_mrr() { return (uint)records; }
/*
Setup the MRR buffer as the space between the last record put
into the join buffer and the very end of the join buffer
*/
int setup_aux_buffer(HANDLER_BUFFER &aux_buff)
{
aux_buff.buffer= end_pos;
aux_buff.buffer_end= buff+buff_size;
return 0;
}
bool prepare_look_for_matches(bool skip_last);
uchar *get_next_candidate_for_match();
bool skip_next_candidate_for_match(uchar *rec_ptr);
void read_next_candidate_for_match(uchar *rec_ptr);
public:
/*
This constructor creates an unlinked BKA join cache. The cache is to be
used to join table 'tab' to the result of joining the previous tables
specified by the 'j' parameter.
The MRR mode initially is set to 'flags'.
*/
JOIN_CACHE_BKA(JOIN *j, JOIN_TAB *tab, uint flags)
:JOIN_CACHE(j, tab), mrr_mode(flags) {}
/*
This constructor creates a linked BKA join cache. The cache is to be
used to join table 'tab' to the result of joining the previous tables
specified by the 'j' parameter. The parameter 'prev' specifies the previous
cache object to which this cache is linked.
The MRR mode initially is set to 'flags'.
*/
JOIN_CACHE_BKA(JOIN *j, JOIN_TAB *tab, uint flags, JOIN_CACHE *prev)
:JOIN_CACHE(j, tab, prev), mrr_mode(flags) {}
uchar **get_curr_association_ptr() { return &curr_association; }
/* Initialize the BKA cache */
int init(bool for_explain);
enum Join_algorithm get_join_alg() { return BKA_JOIN_ALG; }
bool is_key_access() { return TRUE; }
/* Get the key built over the next record from the join buffer */
uint get_next_key(uchar **key);
/* Check index condition of the joined table for a record from BKA cache */
bool skip_index_tuple(range_id_t range_info);
void save_explain_data(EXPLAIN_BKA_TYPE *explain);
};
/*
The class JOIN_CACHE_BKAH is used when the BKAH join algorithm is
employed to perform a join operation
*/
class JOIN_CACHE_BKAH :public JOIN_CACHE_BNLH
{
private:
/* Flag to to be passed to the companion JOIN_TAB_SCAN_MRR object */
uint mrr_mode;
/*
This flag is set to TRUE if the implementation of the MRR interface cannot
handle range association labels and does not return them to the caller of
the multi_range_read_next handler function. E.g. the implementation of
the MRR inteface for the Falcon engine could not return association
labels to the caller of multi_range_read_next.
The flag is set by JOIN_CACHE_BKA::init() and is not ever changed.
*/
bool no_association;
/*
This field contains the association label returned by the
multi_range_read_next function.
See the function JOIN_CACHE_BKAH::get_curr_key_association()
*/
uchar *curr_matching_chain;
protected:
uint get_number_of_ranges_for_mrr() { return key_entries; }
/*
Initialize the MRR buffer allocating some space within the join buffer.
The entire space between the last record put into the join buffer and the
last key entry added to the hash table is used for the MRR buffer.
*/
int setup_aux_buffer(HANDLER_BUFFER &aux_buff)
{
aux_buff.buffer= end_pos;
aux_buff.buffer_end= last_key_entry;
return 0;
}
bool prepare_look_for_matches(bool skip_last);
/*
The implementations of the methods
- get_next_candidate_for_match
- skip_recurrent_candidate_for_match
- read_next_candidate_for_match
are inherited from the JOIN_CACHE_BNLH class
*/
public:
/*
This constructor creates an unlinked BKAH join cache. The cache is to be
used to join table 'tab' to the result of joining the previous tables
specified by the 'j' parameter.
The MRR mode initially is set to 'flags'.
*/
JOIN_CACHE_BKAH(JOIN *j, JOIN_TAB *tab, uint flags)
:JOIN_CACHE_BNLH(j, tab), mrr_mode(flags) {}
/*
This constructor creates a linked BKAH join cache. The cache is to be
used to join table 'tab' to the result of joining the previous tables
specified by the 'j' parameter. The parameter 'prev' specifies the previous
cache object to which this cache is linked.
The MRR mode initially is set to 'flags'.
*/
JOIN_CACHE_BKAH(JOIN *j, JOIN_TAB *tab, uint flags, JOIN_CACHE *prev)
:JOIN_CACHE_BNLH(j, tab, prev), mrr_mode(flags) {}
uchar **get_curr_association_ptr() { return &curr_matching_chain; }
/* Initialize the BKAH cache */
int init(bool for_explain);
enum Join_algorithm get_join_alg() { return BKAH_JOIN_ALG; }
/* Check index condition of the joined table for a record from BKAH cache */
bool skip_index_tuple(range_id_t range_info);
void save_explain_data(EXPLAIN_BKA_TYPE *explain);
};
|