1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
/**
@defgroup Bi-directional LIFO buffers used by DS-MRR implementation
@{
*/
class Forward_lifo_buffer;
class Backward_lifo_buffer;
/*
A base class for in-memory buffer used by DS-MRR implementation. Common
properties:
- The buffer is last-in-first-out, i.e. elements that are written last are
read first.
- The buffer contains fixed-size elements. The elements are either atomic
byte sequences or pairs of them.
- The buffer resides in the memory provided by the user. It is possible to
= dynamically (ie. between write operations) add ajacent memory space to
the buffer
= dynamically remove unused space from the buffer.
The intent of this is to allow to have two buffers on adjacent memory
space, one is being read from (and so its space shrinks), while the other
is being written to (and so it needs more and more space).
There are two concrete classes, Forward_lifo_buffer and Backward_lifo_buffer.
*/
class Lifo_buffer
{
protected:
size_t size1;
size_t size2;
public:
/**
write() will put into buffer size1 bytes pointed by write_ptr1. If
size2!=0, then they will be accompanied by size2 bytes pointed by
write_ptr2.
*/
uchar *write_ptr1;
uchar *write_ptr2;
/**
read() will do reading by storing pointers to read data into read_ptr1 or
into (read_ptr1, read_ptr2), depending on whether the buffer was set to
store single objects or pairs.
*/
uchar *read_ptr1;
uchar *read_ptr2;
protected:
uchar *start; /**< points to start of buffer space */
uchar *end; /**< points to just beyond the end of buffer space */
public:
enum enum_direction {
BACKWARD=-1, /**< buffer is filled/read from bigger to smaller memory addresses */
FORWARD=1 /**< buffer is filled/read from smaller to bigger memory addresses */
};
virtual enum_direction type() = 0;
/* Buffer space control functions */
/** Let the buffer store data in the given space. */
void set_buffer_space(uchar *start_arg, uchar *end_arg)
{
start= start_arg;
end= end_arg;
TRASH(start, end - start);
reset();
}
/**
Specify where write() should get the source data from, as well as source
data size.
*/
void setup_writing(size_t len1, size_t len2)
{
size1= len1;
size2= len2;
}
/**
Specify where read() should store pointers to read data, as well as read
data size. The sizes must match those passed to setup_writing().
*/
void setup_reading(size_t len1, size_t len2)
{
DBUG_ASSERT(len1 == size1);
DBUG_ASSERT(len2 == size2);
}
bool can_write()
{
return have_space_for(size1 + size2);
}
virtual void write() = 0;
bool is_empty() { return used_size() == 0; }
virtual bool read() = 0;
void sort(qsort2_cmp cmp_func, void *cmp_func_arg)
{
size_t elem_size= size1 + size2;
size_t n_elements= used_size() / elem_size;
my_qsort2(used_area(), n_elements, elem_size, cmp_func, cmp_func_arg);
}
virtual void reset() = 0;
virtual uchar *end_of_space() = 0;
protected:
virtual size_t used_size() = 0;
/* To be used only by iterator class: */
virtual uchar *get_pos()= 0;
virtual bool read(uchar **position, uchar **ptr1, uchar **ptr2)= 0;
friend class Lifo_buffer_iterator;
public:
virtual bool have_space_for(size_t bytes) = 0;
virtual void remove_unused_space(uchar **unused_start, uchar **unused_end)=0;
virtual uchar *used_area() = 0;
virtual ~Lifo_buffer() {};
};
/**
Forward LIFO buffer
The buffer that is being written to from start to end and read in the
reverse. 'pos' points to just beyond the end of used space.
It is possible to grow/shink the buffer at the end bound
used space unused space
*==============*-----------------*
^ ^ ^
| | +--- end
| +---- pos
+--- start
*/
class Forward_lifo_buffer: public Lifo_buffer
{
uchar *pos;
public:
enum_direction type() { return FORWARD; }
size_t used_size()
{
return (size_t)(pos - start);
}
void reset()
{
pos= start;
}
uchar *end_of_space() { return pos; }
bool have_space_for(size_t bytes)
{
return (pos + bytes < end);
}
void write()
{
write_bytes(write_ptr1, size1);
if (size2)
write_bytes(write_ptr2, size2);
}
void write_bytes(const uchar *data, size_t bytes)
{
DBUG_ASSERT(have_space_for(bytes));
memcpy(pos, data, bytes);
pos += bytes;
}
bool have_data(uchar *position, size_t bytes)
{
return ((position - start) >= (ptrdiff_t)bytes);
}
uchar *read_bytes(uchar **position, size_t bytes)
{
DBUG_ASSERT(have_data(*position, bytes));
*position= (*position) - bytes;
return *position;
}
bool read() { return read(&pos, &read_ptr1, &read_ptr2); }
bool read(uchar **position, uchar **ptr1, uchar **ptr2)
{
if (!have_data(*position, size1 + size2))
return TRUE;
if (size2)
*ptr2= read_bytes(position, size2);
*ptr1= read_bytes(position, size1);
return FALSE;
}
void remove_unused_space(uchar **unused_start, uchar **unused_end)
{
DBUG_ASSERT(0); /* Don't need this yet */
}
/**
Add more space to the buffer. The caller is responsible that the space
being added is adjacent to the end of the buffer.
@param unused_start Start of space
@param unused_end End of space
*/
void grow(uchar *unused_start, uchar *unused_end)
{
DBUG_ASSERT(unused_end >= unused_start);
DBUG_ASSERT(end == unused_start);
TRASH(unused_start, unused_end - unused_start);
end= unused_end;
}
/* Return pointer to start of the memory area that is occupied by the data */
uchar *used_area() { return start; }
friend class Lifo_buffer_iterator;
uchar *get_pos() { return pos; }
};
/**
Backward LIFO buffer
The buffer that is being written to from start to end and read in the
reverse. 'pos' points to the start of used space.
It is possible to grow/shink the buffer at the start.
unused space used space
*--------------*=================*
^ ^ ^
| | +--- end
| +---- pos
+--- start
*/
class Backward_lifo_buffer: public Lifo_buffer
{
uchar *pos;
public:
enum_direction type() { return BACKWARD; }
size_t used_size()
{
return (size_t)(end - pos);
}
void reset()
{
pos= end;
}
uchar *end_of_space() { return end; }
bool have_space_for(size_t bytes)
{
return (pos - bytes >= start);
}
void write()
{
if (write_ptr2)
write_bytes(write_ptr2, size2);
write_bytes(write_ptr1, size1);
}
void write_bytes(const uchar *data, size_t bytes)
{
DBUG_ASSERT(have_space_for(bytes));
pos -= bytes;
memcpy(pos, data, bytes);
}
bool read()
{
return read(&pos, &read_ptr1, &read_ptr2);
}
bool read(uchar **position, uchar **ptr1, uchar **ptr2)
{
if (!have_data(*position, size1 + size2))
return TRUE;
*ptr1= read_bytes(position, size1);
if (size2)
*ptr2= read_bytes(position, size2);
return FALSE;
}
bool have_data(uchar *position, size_t bytes)
{
return ((end - position) >= (ptrdiff_t)bytes);
}
uchar *read_bytes(uchar **position, size_t bytes)
{
DBUG_ASSERT(have_data(*position, bytes));
uchar *ret= *position;
*position= *position + bytes;
return ret;
}
/**
Stop using/return the unused part of the space
@param unused_start OUT Start of the unused space
@param unused_end OUT End of the unused space
*/
void remove_unused_space(uchar **unused_start, uchar **unused_end)
{
*unused_start= start;
*unused_end= pos;
start= pos;
}
void grow(uchar *unused_start, uchar *unused_end)
{
DBUG_ASSERT(0); /* Not used for backward buffers */
}
/* Return pointer to start of the memory area that is occupied by the data */
uchar *used_area() { return pos; }
friend class Lifo_buffer_iterator;
uchar *get_pos() { return pos; }
};
/** Iterator to walk over contents of the buffer without reading from it */
class Lifo_buffer_iterator
{
uchar *pos;
Lifo_buffer *buf;
public:
/* The data is read to here */
uchar *read_ptr1;
uchar *read_ptr2;
void init(Lifo_buffer *buf_arg)
{
buf= buf_arg;
pos= buf->get_pos();
}
/*
Read the next value. The calling convention is the same as buf->read()
has.
@retval FALSE - ok
@retval TRUE - EOF, reached the end of the buffer
*/
bool read()
{
return buf->read(&pos, &read_ptr1, &read_ptr2);
}
};
|