summaryrefslogtreecommitdiff
path: root/sql/sql_partition.cc
blob: 932877c257bed2b76e9391dc615f67b48dbe2ca7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
/* Copyright (C) 2005 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

/*
  This file was introduced as a container for general functionality related
  to partitioning introduced in MySQL version 5.1. It contains functionality
  used by all handlers that support partitioning, which in the first version
  is the partitioning handler itself and the NDB handler.

  The first version was written by Mikael Ronstrom.

  This version supports RANGE partitioning, LIST partitioning, HASH
  partitioning and composite partitioning (hereafter called subpartitioning)
  where each RANGE/LIST partitioning is HASH partitioned. The hash function
  can either be supplied by the user or by only a list of fields (also
  called KEY partitioning, where the MySQL server will use an internal
  hash function.
  There are quite a few defaults that can be used as well.
*/

/* Some general useful functions */

#include "mysql_priv.h"
#include <errno.h>
#include <m_ctype.h>
#include "md5.h"

#ifdef WITH_PARTITION_STORAGE_ENGINE
#include <ha_partition.h>
/*
  Partition related functions declarations and some static constants;
*/
static const char *hash_str= "HASH";
static const char *range_str= "RANGE";
static const char *list_str= "LIST";
static const char *part_str= "PARTITION";
static const char *sub_str= "SUB";
static const char *by_str= "BY";
static const char *key_str= "KEY";
static const char *space_str= " ";
static const char *equal_str= "=";
static const char *end_paren_str= ")";
static const char *begin_paren_str= "(";
static const char *comma_str= ",";
static char buff[22];

bool get_partition_id_list(partition_info *part_info,
                           uint32 *part_id);
bool get_partition_id_range(partition_info *part_info,
                            uint32 *part_id);
bool get_partition_id_hash_nosub(partition_info *part_info,
                                 uint32 *part_id);
bool get_partition_id_key_nosub(partition_info *part_info,
                                uint32 *part_id);
bool get_partition_id_linear_hash_nosub(partition_info *part_info,
                                        uint32 *part_id);
bool get_partition_id_linear_key_nosub(partition_info *part_info,
                                       uint32 *part_id);
bool get_partition_id_range_sub_hash(partition_info *part_info,
                                     uint32 *part_id);
bool get_partition_id_range_sub_key(partition_info *part_info,
                                    uint32 *part_id);
bool get_partition_id_range_sub_linear_hash(partition_info *part_info,
                                            uint32 *part_id);
bool get_partition_id_range_sub_linear_key(partition_info *part_info,
                                           uint32 *part_id);
bool get_partition_id_list_sub_hash(partition_info *part_info,
                                    uint32 *part_id);
bool get_partition_id_list_sub_key(partition_info *part_info,
                                   uint32 *part_id);
bool get_partition_id_list_sub_linear_hash(partition_info *part_info,
                                           uint32 *part_id);
bool get_partition_id_list_sub_linear_key(partition_info *part_info,
                                          uint32 *part_id);
uint32 get_partition_id_hash_sub(partition_info *part_info); 
uint32 get_partition_id_key_sub(partition_info *part_info); 
uint32 get_partition_id_linear_hash_sub(partition_info *part_info); 
uint32 get_partition_id_linear_key_sub(partition_info *part_info); 
#endif


/*
  A routine used by the parser to decide whether we are specifying a full
  partitioning or if only partitions to add or to split.
  SYNOPSIS
    is_partition_management()
    lex                    Reference to the lex object
  RETURN VALUE
    TRUE                   Yes, it is part of a management partition command
    FALSE                  No, not a management partition command
  DESCRIPTION
    This needs to be outside of WITH_PARTITION_STORAGE_ENGINE since it is
    used from the sql parser that doesn't have any #ifdef's
*/

my_bool is_partition_management(LEX *lex)
{
  return (lex->sql_command == SQLCOM_ALTER_TABLE &&
          (lex->alter_info.flags == ALTER_ADD_PARTITION ||
           lex->alter_info.flags == ALTER_REORGANISE_PARTITION));
}

#ifdef WITH_PARTITION_STORAGE_ENGINE
/*
  A support function to check if a partition name is in a list of strings
  SYNOPSIS
    is_partition_in_list()
    part_name          String searched for
    list_part_names    A list of names searched in
  RETURN VALUES
    TRUE               String found
    FALSE              String not found
*/

bool is_partition_in_list(char *part_name,
                          List<char> list_part_names)
{
  List_iterator<char> part_names_it(list_part_names);
  uint no_names= list_part_names.elements;
  uint i= 0;
  do
  {
    char *list_name= part_names_it++;
    if (!(my_strcasecmp(system_charset_info, part_name, list_name)))
      return TRUE;
  } while (++i < no_names);
  return FALSE;
}


/*
  A support function to check partition names for duplication in a
  partitioned table
  SYNOPSIS
    is_partitions_in_table()
    new_part_info      New partition info
    old_part_info      Old partition info
  RETURN VALUES
    TRUE               Duplicate names found
    FALSE              Duplicate names not found
  DESCRIPTION
    Can handle that the new and old parts are the same in which case it
    checks that the list of names in the partitions doesn't contain any
    duplicated names.
*/

bool is_partitions_in_table(partition_info *new_part_info,
                            partition_info *old_part_info)
{
  uint no_new_parts= new_part_info->partitions.elements, new_count;
  uint no_old_parts= old_part_info->partitions.elements, old_count;
  List_iterator<partition_element> new_parts_it(new_part_info->partitions);
  bool same_part_info= (new_part_info == old_part_info);
  DBUG_ENTER("is_partitions_in_table");

  new_count= 0;
  do
  {
    List_iterator<partition_element> old_parts_it(old_part_info->partitions);
    char *new_name= (new_parts_it++)->partition_name;
    new_count++;
    old_count= 0;
    do
    {
      char *old_name= (old_parts_it++)->partition_name;
      old_count++;
      if (same_part_info && old_count == new_count)
        break;
      if (!(my_strcasecmp(system_charset_info, old_name, new_name)))
      {
        DBUG_RETURN(TRUE);
      }
    } while (old_count < no_old_parts);
  } while (new_count < no_new_parts);
  DBUG_RETURN(FALSE);
}


/*
  A useful routine used by update_row for partition handlers to calculate
  the partition ids of the old and the new record.
  SYNOPSIS
    get_part_for_update()
    old_data                Buffer of old record
    new_data                Buffer of new record
    rec0                    Reference to table->record[0]
    part_info               Reference to partition information
    part_field_array        A NULL-terminated array of fields for partition
                            function
    old_part_id             The returned partition id of old record 
    new_part_id             The returned partition id of new record 
  RETURN VALUE
    0                       Success
    > 0                     Error code
  DESCRIPTION
    Dependent on whether buf is not record[0] we need to prepare the
    fields. Then we call the function pointer get_partition_id to
    calculate the partition ids.
*/

int get_parts_for_update(const byte *old_data, byte *new_data,
                         const byte *rec0, partition_info *part_info,
                         uint32 *old_part_id, uint32 *new_part_id)
{
  Field **part_field_array= part_info->full_part_field_array;
  int error;
  DBUG_ENTER("get_parts_for_update");
  DBUG_ASSERT(new_data == rec0);

  set_field_ptr(part_field_array, old_data, rec0);
  error= part_info->get_partition_id(part_info, old_part_id);
  set_field_ptr(part_field_array, rec0, old_data);
  if (unlikely(error))                             // Should never happen
  {
    DBUG_ASSERT(0);
    DBUG_RETURN(error);
  }
#ifdef NOT_NEEDED
  if (new_data == rec0)
#endif
  {
    if (unlikely(error= part_info->get_partition_id(part_info,new_part_id)))
    {
      DBUG_RETURN(error);
    }
  }
#ifdef NOT_NEEDED
  else
  {
    /*
      This branch should never execute but it is written anyways for
      future use. It will be tested by ensuring that the above
      condition is false in one test situation before pushing the code.
    */
    set_field_ptr(part_field_array, new_data, rec0);
    error= part_info->get_partition_id(part_info, new_part_id);
    set_field_ptr(part_field_array, rec0, new_data);
    if (unlikely(error))
    {
      DBUG_RETURN(error);
    }
  }
#endif
  DBUG_RETURN(0);
}


/*
  A useful routine used by delete_row for partition handlers to calculate
  the partition id.
  SYNOPSIS
    get_part_for_delete()
    buf                     Buffer of old record
    rec0                    Reference to table->record[0]
    part_info               Reference to partition information
    part_field_array        A NULL-terminated array of fields for partition
                            function
    part_id                 The returned partition id to delete from
  RETURN VALUE
    0                       Success
    > 0                     Error code
  DESCRIPTION
    Dependent on whether buf is not record[0] we need to prepare the
    fields. Then we call the function pointer get_partition_id to
    calculate the partition id.
*/

int get_part_for_delete(const byte *buf, const byte *rec0,
                        partition_info *part_info, uint32 *part_id)
{
  int error;
  DBUG_ENTER("get_part_for_delete");

  if (likely(buf == rec0))
  {
    if (unlikely((error= part_info->get_partition_id(part_info, part_id))))
    {
      DBUG_RETURN(error);
    }
    DBUG_PRINT("info", ("Delete from partition %d", *part_id));
  }
  else
  {
    Field **part_field_array= part_info->full_part_field_array;
    set_field_ptr(part_field_array, buf, rec0);
    error= part_info->get_partition_id(part_info, part_id);
    set_field_ptr(part_field_array, rec0, buf);
    if (unlikely(error))
    {
      DBUG_RETURN(error);
    }
    DBUG_PRINT("info", ("Delete from partition %d (path2)", *part_id));
  }
  DBUG_RETURN(0);
}


/*
  This routine allocates an array for all range constants to achieve a fast
  check what partition a certain value belongs to. At the same time it does
  also check that the range constants are defined in increasing order and
  that the expressions are constant integer expressions.
  SYNOPSIS
    check_range_constants()
      part_info
  RETURN VALUE
    TRUE                An error occurred during creation of range constants
    FALSE               Successful creation of range constant mapping
  DESCRIPTION
    This routine is called from check_partition_info to get a quick error
    before we came too far into the CREATE TABLE process. It is also called
    from fix_partition_func every time we open the .frm file. It is only
    called for RANGE PARTITIONed tables.
*/

static bool check_range_constants(partition_info *part_info)
{
  partition_element* part_def;
  longlong current_largest_int= LONGLONG_MIN, part_range_value_int;
  uint no_parts= part_info->no_parts, i;
  List_iterator<partition_element> it(part_info->partitions);
  bool result= TRUE;
  DBUG_ENTER("check_range_constants");
  DBUG_PRINT("enter", ("INT_RESULT with %d parts", no_parts));

  part_info->part_result_type= INT_RESULT;
  part_info->range_int_array= 
                      (longlong*)sql_alloc(no_parts * sizeof(longlong));
  if (unlikely(part_info->range_int_array == NULL))
  {
    my_error(ER_OUTOFMEMORY, MYF(0), no_parts*sizeof(longlong));
    goto end;
  }
  i= 0;
  do
  {
    part_def= it++;
    if ((i != (no_parts - 1)) || !part_info->defined_max_value)
      part_range_value_int= part_def->range_value; 
    else
      part_range_value_int= LONGLONG_MAX;
    if (likely(current_largest_int < part_range_value_int))
    {
      current_largest_int= part_range_value_int;
      part_info->range_int_array[i]= part_range_value_int;
    }
    else
    {
      my_error(ER_RANGE_NOT_INCREASING_ERROR, MYF(0));
      goto end;
    }
  } while (++i < no_parts);
  result= FALSE;
end:
  DBUG_RETURN(result);
}


/*
  A support routine for check_list_constants used by qsort to sort the
  constant list expressions.
  SYNOPSIS
    list_part_cmp()
      a                First list constant to compare with
      b                Second list constant to compare with
  RETURN VALUE
    +1                 a > b
    0                  a  == b
    -1                 a < b
*/

static int list_part_cmp(const void* a, const void* b)
{
  longlong a1, b1;
  a1= ((LIST_PART_ENTRY*)a)->list_value;
  b1= ((LIST_PART_ENTRY*)b)->list_value;
  if (a1 < b1)
    return -1;
  else if (a1 > b1)
    return +1;
  else
    return 0;
}


/*
  This routine allocates an array for all list constants to achieve a fast
  check what partition a certain value belongs to. At the same time it does
  also check that there are no duplicates among the list constants and that
  that the list expressions are constant integer expressions.
  SYNOPSIS
    check_list_constants()
      part_info
  RETURN VALUE
    TRUE                  An error occurred during creation of list constants
    FALSE                 Successful creation of list constant mapping
  DESCRIPTION
    This routine is called from check_partition_info to get a quick error
    before we came too far into the CREATE TABLE process. It is also called
    from fix_partition_func every time we open the .frm file. It is only
    called for LIST PARTITIONed tables.
*/

static bool check_list_constants(partition_info *part_info)
{
  uint i, no_list_values= 0, no_parts, list_index= 0;
  longlong *list_value;
  bool not_first, result= TRUE;
  longlong curr_value, prev_value;
  partition_element* part_def;
  List_iterator<partition_element> list_func_it(part_info->partitions);
  DBUG_ENTER("check_list_constants");

  part_info->part_result_type= INT_RESULT;

  /*
    We begin by calculating the number of list values that have been
    defined in the first step.

    We use this number to allocate a properly sized array of structs
    to keep the partition id and the value to use in that partition.
    In the second traversal we assign them values in the struct array.

    Finally we sort the array of structs in order of values to enable
    a quick binary search for the proper value to discover the
    partition id.
    After sorting the array we check that there are no duplicates in the
    list.
  */

  no_parts= part_info->no_parts;
  i= 0;
  do
  {
    part_def= list_func_it++;
    List_iterator<longlong> list_val_it1(part_def->list_val_list);
    while (list_val_it1++)
      no_list_values++;
  } while (++i < no_parts);
  list_func_it.rewind();
  part_info->no_list_values= no_list_values;
  part_info->list_array=
      (LIST_PART_ENTRY*)sql_alloc(no_list_values*sizeof(LIST_PART_ENTRY));
  if (unlikely(part_info->list_array == NULL))
  {
    my_error(ER_OUTOFMEMORY, MYF(0), no_list_values*sizeof(LIST_PART_ENTRY));
    goto end;
  }

  i= 0;
  do
  {
    part_def= list_func_it++;
    List_iterator<longlong> list_val_it2(part_def->list_val_list);
    while ((list_value= list_val_it2++))
    {
      part_info->list_array[list_index].list_value= *list_value;
      part_info->list_array[list_index++].partition_id= i;
    }
  } while (++i < no_parts);

  qsort((void*)part_info->list_array, no_list_values,
        sizeof(LIST_PART_ENTRY), &list_part_cmp);

  not_first= FALSE;
  i= prev_value= 0; //prev_value initialised to quiet compiler
  do
  {
    curr_value= part_info->list_array[i].list_value;
    if (likely(!not_first || prev_value != curr_value))
    {
      prev_value= curr_value;
      not_first= TRUE;
    }
    else
    {
      my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0));
      goto end;
    }
  } while (++i < no_list_values);
  result= FALSE;
end:
  DBUG_RETURN(result);
}


/*
  Create a memory area where default partition names are stored and fill it
  up with the names.
  SYNOPSIS
    create_default_partition_names()
    no_parts                        Number of partitions
    subpart                         Is it subpartitions
  RETURN VALUE
    A pointer to the memory area of the default partition names
  DESCRIPTION
    A support routine for the partition code where default values are
    generated.
    The external routine needing this code is check_partition_info
*/

#define MAX_PART_NAME_SIZE 8

static char *create_default_partition_names(uint no_parts, uint start_no,
                                            bool subpart)
{
  char *ptr= sql_calloc(no_parts*MAX_PART_NAME_SIZE);
  char *move_ptr= ptr;
  uint i= 0;
  DBUG_ENTER("create_default_partition_names");
  if (likely(ptr != 0))
  {
    do
    {
      if (subpart)
        my_sprintf(move_ptr, (move_ptr,"sp%u", (start_no + i)));
      else
        my_sprintf(move_ptr, (move_ptr,"p%u", (start_no + i)));
      move_ptr+=MAX_PART_NAME_SIZE;
    } while (++i < no_parts);
  }
  else
  {
    my_error(ER_OUTOFMEMORY, MYF(0), no_parts*MAX_PART_NAME_SIZE);
  }
  DBUG_RETURN(ptr);
}


/*
  Set up all the default partitions not set-up by the user in the SQL
  statement. Also perform a number of checks that the user hasn't tried
  to use default values where no defaults exists.
  SYNOPSIS
    set_up_default_partitions()
    part_info           The reference to all partition information
    file                A reference to a handler of the table
    max_rows            Maximum number of rows stored in the table
  RETURN VALUE
    TRUE                Error, attempted default values not possible
    FALSE               Ok, default partitions set-up
  DESCRIPTION
    The routine uses the underlying handler of the partitioning to define
    the default number of partitions. For some handlers this requires
    knowledge of the maximum number of rows to be stored in the table.
    This routine only accepts HASH and KEY partitioning and thus there is
    no subpartitioning if this routine is successful.
    The external routine needing this code is check_partition_info
*/

static bool set_up_default_partitions(partition_info *part_info,
                                      handler *file, ulonglong max_rows,
                                      uint start_no)
{
  uint no_parts, i;
  char *default_name;
  bool result= TRUE;
  DBUG_ENTER("set_up_default_partitions");

  if (part_info->part_type != HASH_PARTITION)
  {
    const char *error_string;
    if (part_info->part_type == RANGE_PARTITION)
      error_string= range_str;
    else
      error_string= list_str;
    my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_string);
    goto end;
  }
  if (part_info->no_parts == 0)
    part_info->no_parts= file->get_default_no_partitions(max_rows);
  no_parts= part_info->no_parts;
  part_info->use_default_partitions= FALSE;
  if (unlikely(no_parts > MAX_PARTITIONS))
  {
    my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
    goto end;
  }
  if (unlikely((!(default_name= create_default_partition_names(no_parts,
                                                               start_no,
                                                               FALSE)))))
    goto end;
  i= 0;
  do
  {
    partition_element *part_elem= new partition_element();
    if (likely(part_elem != 0))
    {
      part_elem->engine_type= DB_TYPE_UNKNOWN;
      part_elem->partition_name= default_name;
      default_name+=MAX_PART_NAME_SIZE;
      part_info->partitions.push_back(part_elem);
    }
    else
    {
      my_error(ER_OUTOFMEMORY, MYF(0), sizeof(partition_element));
      goto end;
    }
  } while (++i < no_parts);
  result= FALSE;
end:
  DBUG_RETURN(result);
}


/*
  Set up all the default subpartitions not set-up by the user in the SQL
  statement. Also perform a number of checks that the default partitioning
  becomes an allowed partitioning scheme.
  SYNOPSIS
    set_up_default_subpartitions()
    part_info           The reference to all partition information
    file                A reference to a handler of the table
    max_rows            Maximum number of rows stored in the table
  RETURN VALUE
    TRUE                Error, attempted default values not possible
    FALSE               Ok, default partitions set-up
  DESCRIPTION
    The routine uses the underlying handler of the partitioning to define
    the default number of partitions. For some handlers this requires
    knowledge of the maximum number of rows to be stored in the table.
    This routine is only called for RANGE or LIST partitioning and those
    need to be specified so only subpartitions are specified.
    The external routine needing this code is check_partition_info
*/

static bool set_up_default_subpartitions(partition_info *part_info,
                                         handler *file, ulonglong max_rows)
{
  uint i, j, no_parts, no_subparts;
  char *default_name, *name_ptr;
  bool result= TRUE;
  partition_element *part_elem;
  List_iterator<partition_element> part_it(part_info->partitions);
  DBUG_ENTER("set_up_default_subpartitions");

  if (part_info->no_subparts == 0)
    part_info->no_subparts= file->get_default_no_partitions(max_rows);
  no_parts= part_info->no_parts;
  no_subparts= part_info->no_subparts;
  part_info->use_default_subpartitions= FALSE;
  if (unlikely((no_parts * no_subparts) > MAX_PARTITIONS))
  {
    my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
    goto end;
  }
  if (unlikely((!(default_name=
             create_default_partition_names(no_subparts, (uint)0, TRUE)))))
    goto end;
  i= 0;
  do
  {
    part_elem= part_it++;
    j= 0;
    name_ptr= default_name;
    do
    {
      partition_element *subpart_elem= new partition_element();
      if (likely(subpart_elem != 0))
      {
        subpart_elem->engine_type= DB_TYPE_UNKNOWN;
        subpart_elem->partition_name= name_ptr;
        name_ptr+= MAX_PART_NAME_SIZE;
        part_elem->subpartitions.push_back(subpart_elem);
      }
      else
      {
        my_error(ER_OUTOFMEMORY, MYF(0), sizeof(partition_element));
        goto end;
      }
    } while (++j < no_subparts);
  } while (++i < no_parts);
  result= FALSE;
end:
  DBUG_RETURN(result);
}


/*
  Set up defaults for partition or subpartition (cannot set-up for both,
  this will return an error.
  SYNOPSIS
    set_up_defaults_for_partitioning()
    part_info           The reference to all partition information
    file                A reference to a handler of the table
    max_rows            Maximum number of rows stored in the table
  RETURN VALUE
    TRUE                Error, attempted default values not possible
    FALSE               Ok, default partitions set-up
  DESCRIPTION
    Support routine for check_partition_info
*/

bool set_up_defaults_for_partitioning(partition_info *part_info,
                                      handler *file,
                                      ulonglong max_rows, uint start_no)
{
  DBUG_ENTER("set_up_defaults_for_partitioning");

  if (part_info->use_default_partitions)
    DBUG_RETURN(set_up_default_partitions(part_info, file, max_rows,
                                          start_no));
  if (is_sub_partitioned(part_info) && part_info->use_default_subpartitions)
    DBUG_RETURN(set_up_default_subpartitions(part_info, file, max_rows));
  DBUG_RETURN(FALSE);
}


/*
  Check that all partitions use the same storage engine.
  This is currently a limitation in this version.
  SYNOPSIS
    check_engine_mix()
    engine_array           An array of engine identifiers
    no_parts               Total number of partitions
  RETURN VALUE
    TRUE                   Error, mixed engines
    FALSE                  Ok, no mixed engines
*/

static bool check_engine_mix(u_char *engine_array, uint no_parts)
{
  /*
    Current check verifies only that all handlers are the same.
    Later this check will be more sophisticated.
  */
  uint i= 0;
  bool result= FALSE;
  DBUG_ENTER("check_engine_mix");

  do
  {
    if (engine_array[i] != engine_array[0])
    {
      result= TRUE;
      break;
    }
  } while (++i < no_parts);
  DBUG_RETURN(result);
}


/*
  We will check that the partition info requested is possible to set-up in
  this version. This routine is an extension of the parser one could say.
  If defaults were used we will generate default data structures for all
  partitions.
  SYNOPSIS
    check_partition_info()
    part_info           The reference to all partition information
    db_type             Default storage engine if no engine specified per
                        partition.
    file                A reference to a handler of the table
    max_rows            Maximum number of rows stored in the table
  RETURN VALUE
    TRUE                 Error, something went wrong
    FALSE                Ok, full partition data structures are now generated
  DESCRIPTION
    This code is used early in the CREATE TABLE and ALTER TABLE process.
*/

bool check_partition_info(partition_info *part_info,enum db_type eng_type,
                          handler *file, ulonglong max_rows)
{
  u_char *engine_array= NULL;
  uint part_count= 0, i, no_parts, tot_partitions;
  bool result= TRUE;
  List_iterator<partition_element> part_it(part_info->partitions);
  DBUG_ENTER("check_partition_info");

  if (unlikely(is_sub_partitioned(part_info) &&
              (!(part_info->part_type == RANGE_PARTITION ||
                 part_info->part_type == LIST_PARTITION))))
  {
    /* Only RANGE and LIST partitioning can be subpartitioned */
    my_error(ER_SUBPARTITION_ERROR, MYF(0));
    goto end;
  }
  if (unlikely(set_up_defaults_for_partitioning(part_info, file,
                                                max_rows, (uint)0)))
    goto end;
  tot_partitions= get_tot_partitions(part_info);
  if (unlikely(tot_partitions > MAX_PARTITIONS))
  {
    my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
    goto end;
  }
  if (unlikely(is_partitions_in_table(part_info, part_info)))
  {
    my_error(ER_SAME_NAME_PARTITION, MYF(0));
    goto end;
  }
  engine_array= (u_char*)my_malloc(tot_partitions, MYF(MY_WME));
  if (unlikely(!engine_array))
    goto end;
  i= 0;
  no_parts= part_info->no_parts;
  do
  {
    partition_element *part_elem= part_it++;
    if (!is_sub_partitioned(part_info))
    {
      if (part_elem->engine_type == DB_TYPE_UNKNOWN)
        part_elem->engine_type= eng_type;
      DBUG_PRINT("info", ("engine = %u",(uint)part_elem->engine_type));
      engine_array[part_count++]= (u_char)part_elem->engine_type;
    }
    else
    {
      uint j= 0, no_subparts= part_info->no_subparts;;
      List_iterator<partition_element> sub_it(part_elem->subpartitions);
      do
      {
        part_elem= sub_it++;
        if (part_elem->engine_type == DB_TYPE_UNKNOWN)
          part_elem->engine_type= eng_type;
        DBUG_PRINT("info", ("engine = %u",(uint)part_elem->engine_type));
        engine_array[part_count++]= (u_char)part_elem->engine_type;
      } while (++j < no_subparts);
    }
  } while (++i < part_info->no_parts);
  if (unlikely(check_engine_mix(engine_array, part_count)))
  {
    my_error(ER_MIX_HANDLER_ERROR, MYF(0));
    goto end;
  }

  /*
    We need to check all constant expressions that they are of the correct
    type and that they are increasing for ranges and not overlapping for
    list constants.
  */

  if (unlikely((part_info->part_type == RANGE_PARTITION &&
                check_range_constants(part_info)) ||
               (part_info->part_type == LIST_PARTITION &&
                check_list_constants(part_info))))
    goto end;
  result= FALSE;
end:
  my_free((char*)engine_array,MYF(MY_ALLOW_ZERO_PTR));
  DBUG_RETURN(result);
}


/*
  A great number of functions below here is part of the fix_partition_func
  method. It is used to set up the partition structures for execution from
  openfrm. It is called at the end of the openfrm when the table struct has
  been set-up apart from the partition information.
  It involves:
  1) Setting arrays of fields for the partition functions.
  2) Setting up binary search array for LIST partitioning
  3) Setting up array for binary search for RANGE partitioning
  4) Setting up key_map's to assist in quick evaluation whether one
     can deduce anything from a given index of what partition to use
  5) Checking whether a set of partitions can be derived from a range on
     a field in the partition function.
  As part of doing this there is also a great number of error controls.
  This is actually the place where most of the things are checked for
  partition information when creating a table.
  Things that are checked includes
  1) No NULLable fields in partition function
  2) All fields of partition function in Primary keys and unique indexes
     (if not supported)
  3) No fields in partition function that are BLOB's or VARCHAR with a
     collation other than the binary collation.



  Create an array of partition fields (NULL terminated). Before this method
  is called fix_fields or find_table_in_sef has been called to set
  GET_FIXED_FIELDS_FLAG on all fields that are part of the partition
  function.
  SYNOPSIS
    set_up_field_array()
    table                TABLE object for which partition fields are set-up
    sub_part             Is the table subpartitioned as well
  RETURN VALUE
    TRUE                 Error, some field didn't meet requirements
    FALSE                Ok, partition field array set-up
  DESCRIPTION
    This method is used to set-up both partition and subpartitioning
    field array and used for all types of partitioning.
    It is part of the logic around fix_partition_func.
*/
static bool set_up_field_array(TABLE *table,
                              bool sub_part)
{
  Field **ptr, *field, **field_array;
  uint no_fields= 0, size_field_array, i= 0;
  partition_info *part_info= table->part_info;
  int result= FALSE;
  DBUG_ENTER("set_up_field_array");

  ptr= table->field;
  while ((field= *(ptr++))) 
  {
    if (field->flags & GET_FIXED_FIELDS_FLAG)
      no_fields++;
  }
  size_field_array= (no_fields+1)*sizeof(Field*);
  field_array= (Field**)sql_alloc(size_field_array);
  if (unlikely(!field_array))
  {
    my_error(ER_OUTOFMEMORY, MYF(0), size_field_array);
    result= TRUE;
  }
  ptr= table->field;
  while ((field= *(ptr++))) 
  {
    if (field->flags & GET_FIXED_FIELDS_FLAG)
    {
      field->flags&= ~GET_FIXED_FIELDS_FLAG;
      field->flags|= FIELD_IN_PART_FUNC_FLAG;
      if (likely(!result))
      {
        field_array[i++]= field;

        /*
          We check that the fields are proper. It is required for each
          field in a partition function to:
          1) Not be a BLOB of any type
            A BLOB takes too long time to evaluate so we don't want it for
            performance reasons.
          2) Not be a VARCHAR other than VARCHAR with a binary collation
            A VARCHAR with character sets can have several values being
            equal with different number of spaces or NULL's. This is not a
            good ground for a safe and exact partition function. Thus it is
            not allowed in partition functions.
        */

        if (unlikely(field->flags & BLOB_FLAG))
        {
          my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0));
          result= TRUE;
        }
        else if (unlikely((!field->flags & BINARY_FLAG) &&
                          field->real_type() == MYSQL_TYPE_VARCHAR))
        {
          my_error(ER_CHAR_SET_IN_PART_FIELD_ERROR, MYF(0));
          result= TRUE;
        }
      }
    }
  }
  field_array[no_fields]= 0;
  if (!sub_part)
  {
    part_info->part_field_array= field_array;
    part_info->no_part_fields= no_fields;
  }
  else
  {
    part_info->subpart_field_array= field_array;
    part_info->no_subpart_fields= no_fields;
  }
  DBUG_RETURN(result);
}


/*
  Create a field array including all fields of both the partitioning and the
  subpartitioning functions.
  SYNOPSIS
    create_full_part_field_array()
    table                TABLE object for which partition fields are set-up
    part_info            Reference to partitioning data structure
  RETURN VALUE
    TRUE                 Memory allocation of field array failed
    FALSE                Ok
  DESCRIPTION
    If there is no subpartitioning then the same array is used as for the
    partitioning. Otherwise a new array is built up using the flag
    FIELD_IN_PART_FUNC in the field object.
    This function is called from fix_partition_func
*/

static bool create_full_part_field_array(TABLE *table,
                                         partition_info *part_info)
{
  bool result= FALSE;
  DBUG_ENTER("create_full_part_field_array");

  if (!is_sub_partitioned(part_info))
  {
    part_info->full_part_field_array= part_info->part_field_array;
    part_info->no_full_part_fields= part_info->no_part_fields;
  }
  else
  {
    Field **ptr, *field, **field_array;
    uint no_part_fields=0, size_field_array;
    ptr= table->field;
    while ((field= *(ptr++)))
    {
      if (field->flags & FIELD_IN_PART_FUNC_FLAG)
        no_part_fields++;
    }
    size_field_array= (no_part_fields+1)*sizeof(Field*);
    field_array= (Field**)sql_alloc(size_field_array);
    if (unlikely(!field_array))
    {
      my_error(ER_OUTOFMEMORY, MYF(0), size_field_array);
      result= TRUE;
      goto end;
    }
    no_part_fields= 0;
    ptr= table->field;
    while ((field= *(ptr++)))
    {
      if (field->flags & FIELD_IN_PART_FUNC_FLAG)
        field_array[no_part_fields++]= field;
    }
    field_array[no_part_fields]=0;
    part_info->full_part_field_array= field_array;
    part_info->no_full_part_fields= no_part_fields;
  }
end:
  DBUG_RETURN(result);
}


/*
  These support routines is used to set/reset an indicator of all fields
  in a certain key. It is used in conjunction with another support routine
  that traverse all fields in the PF to find if all or some fields in the
  PF is part of the key. This is used to check primary keys and unique
  keys involve all fields in PF (unless supported) and to derive the
  key_map's used to quickly decide whether the index can be used to
  derive which partitions are needed to scan.



  Clear flag GET_FIXED_FIELDS_FLAG in all fields of a key previously set by
  set_indicator_in_key_fields (always used in pairs).
  SYNOPSIS
    clear_indicator_in_key_fields()
    key_info                  Reference to find the key fields
*/

static void clear_indicator_in_key_fields(KEY *key_info)
{
  KEY_PART_INFO *key_part;
  uint key_parts= key_info->key_parts, i;
  for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
    key_part->field->flags&= (~GET_FIXED_FIELDS_FLAG);
}


/*
  Set flag GET_FIXED_FIELDS_FLAG in all fields of a key.
  SYNOPSIS
    set_indicator_in_key_fields
    key_info                  Reference to find the key fields
*/

static void set_indicator_in_key_fields(KEY *key_info)
{
  KEY_PART_INFO *key_part;
  uint key_parts= key_info->key_parts, i;
  for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
    key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
}


/*
  Check if all or some fields in partition field array is part of a key
  previously used to tag key fields.
  SYNOPSIS
    check_fields_in_PF()
    ptr                  Partition field array
    all_fields           Is all fields of partition field array used in key
    some_fields          Is some fields of partition field array used in key
  RETURN VALUE
    all_fields, some_fields
*/

static void check_fields_in_PF(Field **ptr, bool *all_fields,
                               bool *some_fields)
{
  DBUG_ENTER("check_fields_in_PF");
  *all_fields= TRUE;
  *some_fields= FALSE;
  do
  {
  /* Check if the field of the PF is part of the current key investigated */
    if ((*ptr)->flags & GET_FIXED_FIELDS_FLAG)
      *some_fields= TRUE; 
    else
      *all_fields= FALSE;
  } while (*(++ptr));
  DBUG_VOID_RETURN;
}


/*
  Clear flag GET_FIXED_FIELDS_FLAG in all fields of the table.
  This routine is used for error handling purposes.
  SYNOPSIS
    clear_field_flag()
    table                TABLE object for which partition fields are set-up
*/

static void clear_field_flag(TABLE *table)
{
  Field **ptr;
  DBUG_ENTER("clear_field_flag");

  for (ptr= table->field; *ptr; ptr++)
    (*ptr)->flags&= (~GET_FIXED_FIELDS_FLAG);
  DBUG_VOID_RETURN;
}


/*
  This routine sets-up the partition field array for KEY partitioning, it
  also verifies that all fields in the list of fields is actually a part of
  the table.
  SYNOPSIS
    handle_list_of_fields()
    it                   A list of field names for the partition function
    table                TABLE object for which partition fields are set-up
    part_info            Reference to partitioning data structure
    sub_part             Is the table subpartitioned as well
  RETURN VALUE
    TRUE                 Fields in list of fields not part of table
    FALSE                All fields ok and array created
  DESCRIPTION
    find_field_in_table_sef finds the field given its name. All fields get
    GET_FIXED_FIELDS_FLAG set.
*/

static bool handle_list_of_fields(List_iterator<char> it,
                                  TABLE *table,
                                  partition_info *part_info,
                                  bool sub_part)
{
  Field *field;
  bool result;
  char *field_name;
  DBUG_ENTER("handle_list_of_fields");

  while ((field_name= it++))
  {
    field= find_field_in_table_sef(table, field_name);
    if (likely(field != 0))
      field->flags|= GET_FIXED_FIELDS_FLAG;
    else
    {
      my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
      clear_field_flag(table);
      result= TRUE;
      goto end;
    }
  }
  result= set_up_field_array(table, sub_part);
end:
  DBUG_RETURN(result);
}


/*
  This function is used to build an array of partition fields for the
  partitioning function and subpartitioning function. The partitioning
  function is an item tree that must reference at least one field in the
  table. This is checked first in the parser that the function doesn't
  contain non-cacheable parts (like a random function) and by checking
  here that the function isn't a constant function.
  SYNOPSIS
    fix_fields_part_func()
    thd                  The thread object
    tables               A list of one table, the partitioned table
    func_expr            The item tree reference of the partition function
    part_info            Reference to partitioning data structure
    sub_part             Is the table subpartitioned as well
  RETURN VALUE
    TRUE                 An error occurred, something was wrong with the
                         partition function.
    FALSE                Ok, a partition field array was created
  DESCRIPTION
    The function uses a new feature in fix_fields where the flag 
    GET_FIXED_FIELDS_FLAG is set for all fields in the item tree.
    This field must always be reset before returning from the function
    since it is used for other purposes as well.
*/

static bool fix_fields_part_func(THD *thd, TABLE_LIST *tables,
                                 Item* func_expr, partition_info *part_info,
                                 bool sub_part)
{
  /*
    Calculate the number of fields in the partition function.
    Use it allocate memory for array of Field pointers.
    Initialise array of field pointers. Use information set when
    calling fix_fields and reset it immediately after.
    The get_fields_in_item_tree activates setting of bit in flags
    on the field object.
  */

  bool result= TRUE;
  TABLE *table= tables->table;
  TABLE_LIST *save_table_list, *save_first_table, *save_last_table;
  int error;
  Name_resolution_context *context;
  DBUG_ENTER("fix_fields_part_func");

  context= thd->lex->current_context();
  table->map= 1; //To ensure correct calculation of const item
  table->get_fields_in_item_tree= TRUE;
  save_table_list= context->table_list;
  save_first_table= context->first_name_resolution_table;
  save_last_table= context->last_name_resolution_table;
  context->table_list= tables;
  context->first_name_resolution_table= tables;
  context->last_name_resolution_table= NULL;
  func_expr->walk(&Item::change_context_processor, (byte*) context);
  thd->where= "partition function";
  error= func_expr->fix_fields(thd, (Item**)0);
  context->table_list= save_table_list;
  context->first_name_resolution_table= save_first_table;
  context->last_name_resolution_table= save_last_table;
  if (unlikely(error))
  {
    DBUG_PRINT("info", ("Field in partition function not part of table"));
    clear_field_flag(table);
    goto end;
  }
  if (unlikely(func_expr->const_item()))
  {
    my_error(ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0));
    clear_field_flag(table);
    goto end;
  }
  result= set_up_field_array(table, sub_part);
end:
  table->get_fields_in_item_tree= FALSE;
  table->map= 0; //Restore old value
  DBUG_RETURN(result);
}


/*
  This function verifies that if there is a primary key that it contains
  all the fields of the partition function.
  This is a temporary limitation that will hopefully be removed after a
  while.
  SYNOPSIS
    check_primary_key()
    table                TABLE object for which partition fields are set-up
  RETURN VALUES
    TRUE                 Not all fields in partitioning function was part
                         of primary key
    FALSE                Ok, all fields of partitioning function were part
                         of primary key
*/

static bool check_primary_key(TABLE *table)
{
  uint primary_key= table->s->primary_key;
  bool all_fields, some_fields, result= FALSE;
  DBUG_ENTER("check_primary_key");

  if (primary_key < MAX_KEY)
  {
    set_indicator_in_key_fields(table->key_info+primary_key);
    check_fields_in_PF(table->part_info->full_part_field_array,
                        &all_fields, &some_fields);
    clear_indicator_in_key_fields(table->key_info+primary_key);
    if (unlikely(!all_fields))
    {
      my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"PRIMARY KEY");
      result= TRUE;
    }
  }
  DBUG_RETURN(result);
}


/*
  This function verifies that if there is a unique index that it contains
  all the fields of the partition function.
  This is a temporary limitation that will hopefully be removed after a
  while.
  SYNOPSIS
    check_unique_keys()
    table                TABLE object for which partition fields are set-up
  RETURN VALUES
    TRUE                 Not all fields in partitioning function was part
                         of all unique keys
    FALSE                Ok, all fields of partitioning function were part
                         of unique keys
*/

static bool check_unique_keys(TABLE *table)
{
  bool all_fields, some_fields, result= FALSE;
  uint keys= table->s->keys, i;
  DBUG_ENTER("check_unique_keys");
  for (i= 0; i < keys; i++)
  {
    if (table->key_info[i].flags & HA_NOSAME) //Unique index
    {
      set_indicator_in_key_fields(table->key_info+i);
      check_fields_in_PF(table->part_info->full_part_field_array,
                         &all_fields, &some_fields);
      clear_indicator_in_key_fields(table->key_info+i);
      if (unlikely(!all_fields))
      {
        my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"UNIQUE INDEX");
        result= TRUE;
        break;
      }
    }
  }
  DBUG_RETURN(result);
}


/*
  An important optimisation is whether a range on a field can select a subset
  of the partitions.
  A prerequisite for this to happen is that the PF is a growing function OR
  a shrinking function.
  This can never happen for a multi-dimensional PF. Thus this can only happen
  with PF with at most one field involved in the PF.
  The idea is that if the function is a growing function and you know that
  the field of the PF is 4 <= A <= 6 then we can convert this to a range
  in the PF instead by setting the range to PF(4) <= PF(A) <= PF(6). In the
  case of RANGE PARTITIONING and LIST PARTITIONING this can be used to
  calculate a set of partitions rather than scanning all of them.
  Thus the following prerequisites are there to check if sets of partitions
  can be found.
  1) Only possible for RANGE and LIST partitioning (not for subpartitioning)
  2) Only possible if PF only contains 1 field
  3) Possible if PF is a growing function of the field
  4) Possible if PF is a shrinking function of the field
  OBSERVATION:
  1) IF f1(A) is a growing function AND f2(A) is a growing function THEN
     f1(A) + f2(A) is a growing function
     f1(A) * f2(A) is a growing function if f1(A) >= 0 and f2(A) >= 0
  2) IF f1(A) is a growing function and f2(A) is a shrinking function THEN
     f1(A) / f2(A) is a growing function if f1(A) >= 0 and f2(A) > 0
  3) IF A is a growing function then a function f(A) that removes the
     least significant portion of A is a growing function
     E.g. DATE(datetime) is a growing function
     MONTH(datetime) is not a growing/shrinking function
  4) IF f1(A) is a growing function and f2(A) is a growing function THEN
     f1(f2(A)) and f2(f1(A)) are also growing functions
  5) IF f1(A) is a shrinking function and f2(A) is a growing function THEN
     f1(f2(A)) is a shrinking function and f2(f1(A)) is a shrinking function
  6) f1(A) = A is a growing function
  7) f1(A) = A*a + b (where a and b are constants) is a growing function

  By analysing the item tree of the PF we can use these deducements and
  derive whether the PF is a growing function or a shrinking function or
  neither of it.

  If the PF is range capable then a flag is set on the table object
  indicating this to notify that we can use also ranges on the field
  of the PF to deduce a set of partitions if the fields of the PF were
  not all fully bound.
  SYNOPSIS
    check_range_capable_PF()
    table                TABLE object for which partition fields are set-up
  DESCRIPTION
    Support for this is not implemented yet.
*/

void check_range_capable_PF(TABLE *table)
{
  DBUG_ENTER("check_range_capable_PF");
  DBUG_VOID_RETURN;
}


/*
  Set up partition key maps
  SYNOPSIS
    set_up_partition_key_maps()
    table                TABLE object for which partition fields are set-up
    part_info            Reference to partitioning data structure
  RETURN VALUES
    None
  DESCRIPTION
  This function sets up a couple of key maps to be able to quickly check
  if an index ever can be used to deduce the partition fields or even
  a part of the fields of the  partition function.
  We set up the following key_map's.
  PF = Partition Function
  1) All fields of the PF is set even by equal on the first fields in the
     key
  2) All fields of the PF is set if all fields of the key is set
  3) At least one field in the PF is set if all fields is set
  4) At least one field in the PF is part of the key
*/

static void set_up_partition_key_maps(TABLE *table,
                                      partition_info *part_info)
{
  uint keys= table->s->keys, i;
  bool all_fields, some_fields;
  DBUG_ENTER("set_up_partition_key_maps");

  part_info->all_fields_in_PF.clear_all();
  part_info->all_fields_in_PPF.clear_all();
  part_info->all_fields_in_SPF.clear_all();
  part_info->some_fields_in_PF.clear_all();
  for (i= 0; i < keys; i++)
  {
    set_indicator_in_key_fields(table->key_info+i);
    check_fields_in_PF(part_info->full_part_field_array,
                       &all_fields, &some_fields);
    if (all_fields)
      part_info->all_fields_in_PF.set_bit(i);
    if (some_fields)
      part_info->some_fields_in_PF.set_bit(i);
    if (is_sub_partitioned(part_info))
    {
      check_fields_in_PF(part_info->part_field_array,
                         &all_fields, &some_fields);
      if (all_fields)
        part_info->all_fields_in_PPF.set_bit(i);
      check_fields_in_PF(part_info->subpart_field_array,
                         &all_fields, &some_fields);
      if (all_fields)
        part_info->all_fields_in_SPF.set_bit(i);
    }
    clear_indicator_in_key_fields(table->key_info+i);
  }
  DBUG_VOID_RETURN;
}


/*
  Set-up all function pointers for calculation of partition id,
  subpartition id and the upper part in subpartitioning. This is to speed up
  execution of get_partition_id which is executed once every record to be
  written and deleted and twice for updates.
  SYNOPSIS
    set_up_partition_function_pointers()
    part_info            Reference to partitioning data structure
*/

static void set_up_partition_func_pointers(partition_info *part_info)
{
  if (is_sub_partitioned(part_info))
  {
    if (part_info->part_type == RANGE_PARTITION)
    {
      part_info->get_part_partition_id= get_partition_id_range;
      if (part_info->list_of_subpart_fields)
      {
        if (part_info->linear_hash_ind)
        {
          part_info->get_partition_id= get_partition_id_range_sub_linear_key;
          part_info->get_subpartition_id= get_partition_id_linear_key_sub;
        }
        else
        {
          part_info->get_partition_id= get_partition_id_range_sub_key;
          part_info->get_subpartition_id= get_partition_id_key_sub;
        }
      }
      else
      {
        if (part_info->linear_hash_ind)
        {
          part_info->get_partition_id= get_partition_id_range_sub_linear_hash;
          part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
        }
        else
        {
          part_info->get_partition_id= get_partition_id_range_sub_hash;
          part_info->get_subpartition_id= get_partition_id_hash_sub;
        }
      }
    }
    else //LIST Partitioning
    {
      part_info->get_part_partition_id= get_partition_id_list;
      if (part_info->list_of_subpart_fields)
      {
        if (part_info->linear_hash_ind)
        {
          part_info->get_partition_id= get_partition_id_list_sub_linear_key;
          part_info->get_subpartition_id= get_partition_id_linear_key_sub;
        }
        else
        {
          part_info->get_partition_id= get_partition_id_list_sub_key;
          part_info->get_subpartition_id= get_partition_id_key_sub;
        }
      }
      else
      {
        if (part_info->linear_hash_ind)
        {
          part_info->get_partition_id= get_partition_id_list_sub_linear_hash;
          part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
        }
        else
        {
          part_info->get_partition_id= get_partition_id_list_sub_hash;
          part_info->get_subpartition_id= get_partition_id_hash_sub;
        }
      }
    }
  }
  else //No subpartitioning
  {
    part_info->get_part_partition_id= NULL;
    part_info->get_subpartition_id= NULL;
    if (part_info->part_type == RANGE_PARTITION)
      part_info->get_partition_id= get_partition_id_range;
    else if (part_info->part_type == LIST_PARTITION)
      part_info->get_partition_id= get_partition_id_list;
    else //HASH partitioning
    {
      if (part_info->list_of_part_fields)
      {
        if (part_info->linear_hash_ind)
          part_info->get_partition_id= get_partition_id_linear_key_nosub;
        else
          part_info->get_partition_id= get_partition_id_key_nosub;
      }
      else
      {
        if (part_info->linear_hash_ind)
          part_info->get_partition_id= get_partition_id_linear_hash_nosub;
        else
          part_info->get_partition_id= get_partition_id_hash_nosub;
      }
    }
  }
}
          
        
/*
  For linear hashing we need a mask which is on the form 2**n - 1 where
  2**n >= no_parts. Thus if no_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7.
  SYNOPSIS
    set_linear_hash_mask()
    part_info            Reference to partitioning data structure
    no_parts             Number of parts in linear hash partitioning
*/

static void set_linear_hash_mask(partition_info *part_info, uint no_parts)
{
  uint mask;
  for (mask= 1; mask < no_parts; mask<<=1)
    ;
  part_info->linear_hash_mask= mask - 1;
}


/*
  This function calculates the partition id provided the result of the hash
  function using linear hashing parameters, mask and number of partitions.
  SYNOPSIS
    get_part_id_from_linear_hash()
    hash_value          Hash value calculated by HASH function or KEY function
    mask                Mask calculated previously by set_linear_hash_mask
    no_parts            Number of partitions in HASH partitioned part
  RETURN VALUE
    part_id             The calculated partition identity (starting at 0)
  DESCRIPTION
    The partition is calculated according to the theory of linear hashing.
    See e.g. Linear hashing: a new tool for file and table addressing,
    Reprinted from VLDB-80 in Readings Database Systems, 2nd ed, M. Stonebraker
    (ed.), Morgan Kaufmann 1994.
*/

static uint32 get_part_id_from_linear_hash(longlong hash_value, uint mask,
                                           uint no_parts)
{
  uint32 part_id= (uint32)(hash_value & mask);
  if (part_id >= no_parts)
  {
    uint new_mask= ((mask + 1) >> 1) - 1;
    part_id= hash_value & new_mask;
  }
  return part_id;
}

/*
  fix partition functions

  SYNOPSIS
    fix_partition_func()
    thd                  The thread object
    name                 The name of the partitioned table
    table                TABLE object for which partition fields are set-up

  RETURN VALUE
    TRUE
    FALSE

  DESCRIPTION
    The name parameter contains the full table name and is used to get the
    database name of the table which is used to set-up a correct
    TABLE_LIST object for use in fix_fields.

NOTES
    This function is called as part of opening the table by opening the .frm
    file. It is a part of CREATE TABLE to do this so it is quite permissible
    that errors due to erroneus syntax isn't found until we come here.
    If the user has used a non-existing field in the table is one such example
    of an error that is not discovered until here.
*/

bool fix_partition_func(THD *thd, const char *name, TABLE *table)
{
  bool result= TRUE;
  uint dir_length, home_dir_length;
  TABLE_LIST tables;
  TABLE_SHARE *share= table->s;
  char db_name_string[FN_REFLEN];
  char* db_name;
  partition_info *part_info= table->part_info;
  ulong save_set_query_id= thd->set_query_id;
  DBUG_ENTER("fix_partition_func");

  thd->set_query_id= 0;
  /*
    Set-up the TABLE_LIST object to be a list with a single table
    Set the object to zero to create NULL pointers and set alias
    and real name to table name and get database name from file name.
  */

  bzero((void*)&tables, sizeof(TABLE_LIST));
  tables.alias= tables.table_name= (char*) share->table_name.str;
  tables.table= table;
  tables.next_local= 0;
  tables.next_name_resolution_table= 0;
  strmov(db_name_string, name);
  dir_length= dirname_length(db_name_string);
  db_name_string[dir_length - 1]= 0;
  home_dir_length= dirname_length(db_name_string);
  db_name= &db_name_string[home_dir_length];
  tables.db= db_name;

  if (is_sub_partitioned(part_info))
  {
    DBUG_ASSERT(part_info->subpart_type == HASH_PARTITION);
    /*
      Subpartition is defined. We need to verify that subpartitioning
      function is correct.
    */
    if (part_info->linear_hash_ind)
      set_linear_hash_mask(part_info, part_info->no_subparts);
    if (part_info->list_of_subpart_fields)
    {
      List_iterator<char> it(part_info->subpart_field_list);
      if (unlikely(handle_list_of_fields(it, table, part_info, TRUE)))
        goto end;
    }
    else
    {
      if (unlikely(fix_fields_part_func(thd, &tables,
                                        part_info->subpart_expr, part_info,
                                        TRUE)))
        goto end;
      if (unlikely(part_info->subpart_expr->result_type() != INT_RESULT))
      {
        my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0),
                 "SUBPARTITION");
        goto end;
      }
    }
  }
  DBUG_ASSERT(part_info->part_type != NOT_A_PARTITION);
  /*
    Partition is defined. We need to verify that partitioning
    function is correct.
  */
  if (part_info->part_type == HASH_PARTITION)
  {
    if (part_info->linear_hash_ind)
      set_linear_hash_mask(part_info, part_info->no_parts);
    if (part_info->list_of_part_fields)
    {
      List_iterator<char> it(part_info->part_field_list);
      if (unlikely(handle_list_of_fields(it, table, part_info, FALSE)))
        goto end;
    }
    else
    {
      if (unlikely(fix_fields_part_func(thd, &tables, part_info->part_expr,
                                        part_info, FALSE)))
        goto end;
      if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
      {
        my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
        goto end;
      }
      part_info->part_result_type= INT_RESULT;
    }
  }
  else
  {
    const char *error_str;
    if (part_info->part_type == RANGE_PARTITION)
    {
      error_str= range_str; 
      if (unlikely(check_range_constants(part_info)))
        goto end;
    }
    else if (part_info->part_type == LIST_PARTITION)
    {
      error_str= list_str; 
      if (unlikely(check_list_constants(part_info)))
        goto end;
    }
    else
    {
      DBUG_ASSERT(0);
      my_error(ER_INCONSISTENT_PARTITION_INFO_ERROR, MYF(0));
      goto end;
    }
    if (unlikely(part_info->no_parts < 1))
    {
      my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_str);
      goto end;
    }
    if (unlikely(fix_fields_part_func(thd, &tables, part_info->part_expr,
                                      part_info, FALSE)))
      goto end;
    if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
    {
      my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
      goto end;
    }
  }
  if (unlikely(create_full_part_field_array(table, part_info)))
    goto end;
  if (unlikely(check_primary_key(table)))
    goto end;
  if (unlikely((!table->file->partition_flags() & HA_CAN_PARTITION_UNIQUE) &&
               check_unique_keys(table)))
    goto end;
  check_range_capable_PF(table);
  set_up_partition_key_maps(table, part_info);
  set_up_partition_func_pointers(part_info);
  result= FALSE;
end:
  thd->set_query_id= save_set_query_id;
  DBUG_RETURN(result);
}


/*
  The code below is support routines for the reverse parsing of the 
  partitioning syntax. This feature is very useful to generate syntax for
  all default values to avoid all default checking when opening the frm
  file. It is also used when altering the partitioning by use of various
  ALTER TABLE commands. Finally it is used for SHOW CREATE TABLES.
*/

static int add_write(File fptr, const char *buf, uint len)
{
  uint len_written= my_write(fptr, (const byte*)buf, len, MYF(0));
  if (likely(len == len_written))
    return 0;
  else
    return 1;
}

static int add_string(File fptr, const char *string)
{
  return add_write(fptr, string, strlen(string));
}

static int add_string_len(File fptr, const char *string, uint len)
{
  return add_write(fptr, string, len);
}

static int add_space(File fptr)
{
  return add_string(fptr, space_str);
}

static int add_comma(File fptr)
{
  return add_string(fptr, comma_str);
}

static int add_equal(File fptr)
{
  return add_string(fptr, equal_str);
}

static int add_end_parenthesis(File fptr)
{
  return add_string(fptr, end_paren_str);
}

static int add_begin_parenthesis(File fptr)
{
  return add_string(fptr, begin_paren_str);
}

static int add_part_key_word(File fptr, const char *key_string)
{
  int err= add_string(fptr, key_string);
  err+= add_space(fptr);
  return err + add_begin_parenthesis(fptr);
}

static int add_hash(File fptr)
{
  return add_part_key_word(fptr, hash_str);
}

static int add_partition(File fptr)
{
  strxmov(buff, part_str, space_str, NullS);
  return add_string(fptr, buff);
}

static int add_subpartition(File fptr)
{
  int err= add_string(fptr, sub_str);
  return err + add_partition(fptr);
}

static int add_partition_by(File fptr)
{
  strxmov(buff, part_str, space_str, by_str, space_str, NullS);
  return add_string(fptr, buff);
}

static int add_subpartition_by(File fptr)
{
  int err= add_string(fptr, sub_str);
  return err + add_partition_by(fptr);
}

static int add_key_partition(File fptr, List<char> field_list)
{
  uint i, no_fields;
  int err;
  List_iterator<char> part_it(field_list);
  err= add_part_key_word(fptr, key_str);
  no_fields= field_list.elements;
  i= 0;
  do
  {
    const char *field_str= part_it++;
    err+= add_string(fptr, field_str);
    if (i != (no_fields-1))
      err+= add_comma(fptr);
  } while (++i < no_fields);
  return err;
}

static int add_int(File fptr, longlong number)
{
  llstr(number, buff);
  return add_string(fptr, buff);
}

static int add_keyword_string(File fptr, const char *keyword,
                              const char *keystr)
{
  int err= add_string(fptr, keyword);
  err+= add_space(fptr);
  err+= add_equal(fptr);
  err+= add_space(fptr);
  err+= add_string(fptr, keystr);
  return err + add_space(fptr);
}

static int add_keyword_int(File fptr, const char *keyword, longlong num)
{
  int err= add_string(fptr, keyword);
  err+= add_space(fptr);
  err+= add_equal(fptr);
  err+= add_space(fptr);
  err+= add_int(fptr, num);
  return err + add_space(fptr);
}

static int add_engine(File fptr, enum db_type engine_type)
{
  const char *engine_str= ha_get_storage_engine(engine_type);
  int err= add_string(fptr, "ENGINE = ");
  return err + add_string(fptr, engine_str);
  return err;
}

static int add_partition_options(File fptr, partition_element *p_elem)
{
  int err= 0;
  if (p_elem->tablespace_name)
    err+= add_keyword_string(fptr,"TABLESPACE",p_elem->tablespace_name);
  if (p_elem->nodegroup_id != UNDEF_NODEGROUP)
    err+= add_keyword_int(fptr,"NODEGROUP",(longlong)p_elem->nodegroup_id);
  if (p_elem->part_max_rows)
    err+= add_keyword_int(fptr,"MAX_ROWS",(longlong)p_elem->part_max_rows);
  if (p_elem->part_min_rows)
    err+= add_keyword_int(fptr,"MIN_ROWS",(longlong)p_elem->part_min_rows);
  if (p_elem->data_file_name)
    err+= add_keyword_string(fptr,"DATA DIRECTORY",p_elem->data_file_name);
  if (p_elem->index_file_name)
    err+= add_keyword_string(fptr,"INDEX DIRECTORY",p_elem->index_file_name);
  if (p_elem->part_comment)
    err+= add_keyword_string(fptr, "COMMENT",p_elem->part_comment);
  return err + add_engine(fptr,p_elem->engine_type);
}

static int add_partition_values(File fptr, partition_info *part_info,
                         partition_element *p_elem)
{
  int err= 0;
  if (part_info->part_type == RANGE_PARTITION)
  {
    err+= add_string(fptr, "VALUES LESS THAN ");
    if (p_elem->range_value != LONGLONG_MAX)
    {
      err+= add_begin_parenthesis(fptr);
      err+= add_int(fptr, p_elem->range_value);
      err+= add_end_parenthesis(fptr);
    }
    else
      err+= add_string(fptr, "MAXVALUE");
  }
  else if (part_info->part_type == LIST_PARTITION)
  {
    uint i;
    List_iterator<longlong> list_val_it(p_elem->list_val_list);
    err+= add_string(fptr, "VALUES IN ");
    uint no_items= p_elem->list_val_list.elements;
    err+= add_begin_parenthesis(fptr);
    i= 0;
    do
    {
      longlong *list_value= list_val_it++;
      err+= add_int(fptr, *list_value);
      if (i != (no_items-1))
        err+= add_comma(fptr);
    } while (++i < no_items);
    err+= add_end_parenthesis(fptr);
  }
  return err + add_space(fptr);
}

/*
  Generate the partition syntax from the partition data structure.
  Useful for support of generating defaults, SHOW CREATE TABLES
  and easy partition management.
  SYNOPSIS
    generate_partition_syntax()
    part_info                  The partitioning data structure
    buf_length                 A pointer to the returned buffer length
    use_sql_alloc              Allocate buffer from sql_alloc if true
                               otherwise use my_malloc
    add_default_info           Add info generated by default
  RETURN VALUES
    NULL error
    buf, buf_length            Buffer and its length
  DESCRIPTION
  Here we will generate the full syntax for the given command where all
  defaults have been expanded. By so doing the it is also possible to
  make lots of checks of correctness while at it.
  This could will also be reused for SHOW CREATE TABLES and also for all
  type ALTER TABLE commands focusing on changing the PARTITION structure
  in any fashion.

  The implementation writes the syntax to a temporary file (essentially
  an abstraction of a dynamic array) and if all writes goes well it
  allocates a buffer and writes the syntax into this one and returns it.

  As a security precaution the file is deleted before writing into it. This
  means that no other processes on the machine can open and read the file
  while this processing is ongoing.

  The code is optimised for minimal code size since it is not used in any
  common queries.
*/

char *generate_partition_syntax(partition_info *part_info,
                                uint *buf_length,
                                bool use_sql_alloc,
				bool add_default_info)
{
  uint i,j, no_parts, no_subparts;
  partition_element *part_elem;
  ulonglong buffer_length;
  char path[FN_REFLEN];
  int err= 0;
  DBUG_ENTER("generate_partition_syntax");
  File fptr;
  char *buf= NULL; //Return buffer
  const char *file_name;

  sprintf(path, "%s_%lx_%lx", "part_syntax", current_pid,
          current_thd->thread_id);
  fn_format(path,path,mysql_tmpdir,".psy", MY_REPLACE_EXT);
  file_name= &path[0];
  DBUG_PRINT("info", ("File name = %s", file_name));
  if (unlikely(((fptr= my_open(file_name,O_CREAT|O_RDWR, MYF(MY_WME))) == -1)))
    DBUG_RETURN(NULL);
#if defined(MSDOS) || defined(__WIN__) || defined(__EMX__) || defined(OS2)
#else
  my_delete(file_name, MYF(0));
#endif
  err+= add_space(fptr);
  err+= add_partition_by(fptr);
  switch (part_info->part_type)
  {
    case RANGE_PARTITION:
      add_default_info= TRUE;
      err+= add_part_key_word(fptr, range_str);
      break;
    case LIST_PARTITION:
      add_default_info= TRUE;
      err+= add_part_key_word(fptr, list_str);
      break;
    case HASH_PARTITION:
      if (part_info->linear_hash_ind)
        err+= add_string(fptr, "LINEAR ");
      if (part_info->list_of_part_fields)
        err+= add_key_partition(fptr, part_info->part_field_list);
      else
        err+= add_hash(fptr);
      break;
    default:
      DBUG_ASSERT(0);
      /* We really shouldn't get here, no use in continuing from here */
      current_thd->fatal_error();
      DBUG_RETURN(NULL);
  }
  if (part_info->part_expr)
    err+= add_string_len(fptr, part_info->part_func_string,
                         part_info->part_func_len);
  err+= add_end_parenthesis(fptr);
  err+= add_space(fptr);
  if (is_sub_partitioned(part_info))
  {
    err+= add_subpartition_by(fptr);
    /* Must be hash partitioning for subpartitioning */
    if (part_info->list_of_subpart_fields)
      err+= add_key_partition(fptr, part_info->subpart_field_list);
    else
      err+= add_hash(fptr);
    if (part_info->subpart_expr)
      err+= add_string_len(fptr, part_info->subpart_func_string,
                           part_info->subpart_func_len);
    err+= add_end_parenthesis(fptr);
    err+= add_space(fptr);
  }
  if (add_default_info)
  {
  err+= add_begin_parenthesis(fptr);
  List_iterator<partition_element> part_it(part_info->partitions);
  no_parts= part_info->no_parts;
  no_subparts= part_info->no_subparts;
  i= 0;
  do
  {
    part_elem= part_it++;
    err+= add_partition(fptr);
    err+= add_string(fptr, part_elem->partition_name);
    err+= add_space(fptr);
    err+= add_partition_values(fptr, part_info, part_elem);
    if (!is_sub_partitioned(part_info))
      err+= add_partition_options(fptr, part_elem);
    if (is_sub_partitioned(part_info))
    {
      err+= add_space(fptr);
      err+= add_begin_parenthesis(fptr);
      List_iterator<partition_element> sub_it(part_elem->subpartitions);
      j= 0;
      do
      {
        part_elem= sub_it++;
        err+= add_subpartition(fptr);
        err+= add_string(fptr, part_elem->partition_name);
        err+= add_space(fptr);
        err+= add_partition_options(fptr, part_elem);
        if (j != (no_subparts-1))
        {
          err+= add_comma(fptr);
          err+= add_space(fptr);
        }
        else
          err+= add_end_parenthesis(fptr);
      } while (++j < no_subparts);
    }
    if (i != (no_parts-1))
    {
      err+= add_comma(fptr);
      err+= add_space(fptr);
    }
    else
      err+= add_end_parenthesis(fptr);
  } while (++i < no_parts);
  }
  if (err)
    goto close_file;
  buffer_length= my_seek(fptr, 0L,MY_SEEK_END,MYF(0));
  if (unlikely(buffer_length == MY_FILEPOS_ERROR))
    goto close_file;
  if (unlikely(my_seek(fptr, 0L, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR))
    goto close_file;
  *buf_length= (uint)buffer_length;
  if (use_sql_alloc)
    buf= sql_alloc(*buf_length+1);
  else
    buf= my_malloc(*buf_length+1, MYF(MY_WME));
  if (!buf)
    goto close_file;

  if (unlikely(my_read(fptr, (byte*)buf, *buf_length, MYF(MY_FNABP))))
  {
    if (!use_sql_alloc)
      my_free(buf, MYF(0));
    else
      buf= NULL;
  }
  else
    buf[*buf_length]= 0;

close_file:
  /*
    Delete the file before closing to ensure the file doesn't get synched
    to disk unnecessary. We only used the file system as a dynamic array
    implementation so we are not really interested in getting the file
    present on disk.
    This is not possible on Windows so here it has to be done after closing
    the file. Also on Unix we delete immediately after opening to ensure no
    other process can read the information written into the file.
  */
  my_close(fptr, MYF(0));
#if defined(MSDOS) || defined(__WIN__) || defined(__EMX__) || defined(OS2)
  my_delete(file_name, MYF(0));
#endif
  DBUG_RETURN(buf);
}


/*
  Check if partition key fields are modified and if it can be handled by the
  underlying storage engine.
  SYNOPSIS
    partition_key_modified
    table                TABLE object for which partition fields are set-up
    fields               A list of the to be modifed
  RETURN VALUES
    TRUE                 Need special handling of UPDATE
    FALSE                Normal UPDATE handling is ok
*/

bool partition_key_modified(TABLE *table, List<Item> &fields)
{
  List_iterator_fast<Item> f(fields);
  partition_info *part_info= table->part_info;
  Item_field *item_field;
  DBUG_ENTER("partition_key_modified");
  if (!part_info)
    DBUG_RETURN(FALSE);
  if (table->file->partition_flags() & HA_CAN_UPDATE_PARTITION_KEY)
    DBUG_RETURN(FALSE);
  f.rewind();
  while ((item_field=(Item_field*) f++))
    if (item_field->field->flags & FIELD_IN_PART_FUNC_FLAG)
      DBUG_RETURN(TRUE);
  DBUG_RETURN(FALSE);
}


/*
  The next set of functions are used to calculate the partition identity.
  A handler sets up a variable that corresponds to one of these functions
  to be able to quickly call it whenever the partition id needs to calculated
  based on the record in table->record[0] (or set up to fake that).
  There are 4 functions for hash partitioning and 2 for RANGE/LIST partitions.
  In addition there are 4 variants for RANGE subpartitioning and 4 variants
  for LIST subpartitioning thus in total there are 14 variants of this
  function.

  We have a set of support functions for these 14 variants. There are 4
  variants of hash functions and there is a function for each. The KEY
  partitioning uses the function calculate_key_value to calculate the hash
  value based on an array of fields. The linear hash variants uses the
  method get_part_id_from_linear_hash to get the partition id using the
  hash value and some parameters calculated from the number of partitions.
*/

/*
  Calculate hash value for KEY partitioning using an array of fields.
  SYNOPSIS
    calculate_key_value()
    field_array             An array of the fields in KEY partitioning
  RETURN VALUE
    hash_value calculated
  DESCRIPTION
    Uses the hash function on the character set of the field. Integer and
    floating point fields use the binary character set by default.
*/

static uint32 calculate_key_value(Field **field_array)
{
  uint32 hashnr= 0;
  ulong nr2= 4;
  do
  {
    Field *field= *field_array;
    if (field->is_null())
    {
      hashnr^= (hashnr << 1) | 1;
    }
    else
    {
      uint len= field->pack_length();
      ulong nr1= 1;
      CHARSET_INFO *cs= field->charset();
      cs->coll->hash_sort(cs, (uchar*)field->ptr, len, &nr1, &nr2);
      hashnr^= (uint32)nr1;
    }
  } while (*(++field_array));
  return hashnr;
}


/*
  A simple support function to calculate part_id given local part and
  sub part.
  SYNOPSIS
    get_part_id_for_sub()
    loc_part_id             Local partition id
    sub_part_id             Subpartition id
    no_subparts             Number of subparts
*/

inline
static uint32 get_part_id_for_sub(uint32 loc_part_id, uint32 sub_part_id,
                                  uint no_subparts)
{
  return (uint32)((loc_part_id * no_subparts) + sub_part_id);
}


/*
  Calculate part_id for (SUB)PARTITION BY HASH
  SYNOPSIS
    get_part_id_hash()
    no_parts                 Number of hash partitions
    part_expr                Item tree of hash function
  RETURN VALUE
    Calculated partition id
*/

inline
static uint32 get_part_id_hash(uint no_parts,
                               Item *part_expr)
{
  DBUG_ENTER("get_part_id_hash");
  DBUG_RETURN((uint32)(part_expr->val_int() % no_parts));
}


/*
  Calculate part_id for (SUB)PARTITION BY LINEAR HASH
  SYNOPSIS
    get_part_id_linear_hash()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
    no_parts            Number of hash partitions
    part_expr           Item tree of hash function
  RETURN VALUE
    Calculated partition id
*/

inline
static uint32 get_part_id_linear_hash(partition_info *part_info,
                                      uint no_parts,
                                      Item *part_expr)
{
  DBUG_ENTER("get_part_id_linear_hash");
  DBUG_RETURN(get_part_id_from_linear_hash(part_expr->val_int(),
                                           part_info->linear_hash_mask,
                                           no_parts));
}


/*
  Calculate part_id for (SUB)PARTITION BY KEY
  SYNOPSIS
    get_part_id_key()
    field_array         Array of fields for PARTTION KEY
    no_parts            Number of KEY partitions
  RETURN VALUE
    Calculated partition id
*/

inline
static uint32 get_part_id_key(Field **field_array,
                              uint no_parts)
{
  DBUG_ENTER("get_part_id_key");
  DBUG_RETURN(calculate_key_value(field_array) % no_parts);
}


/*
  Calculate part_id for (SUB)PARTITION BY LINEAR KEY
  SYNOPSIS
    get_part_id_linear_key()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
    field_array         Array of fields for PARTTION KEY
    no_parts            Number of KEY partitions
  RETURN VALUE
    Calculated partition id
*/

inline
static uint32 get_part_id_linear_key(partition_info *part_info,
                                     Field **field_array,
                                     uint no_parts)
{
  DBUG_ENTER("get_partition_id_linear_key");
  DBUG_RETURN(get_part_id_from_linear_hash(calculate_key_value(field_array),
                                           part_info->linear_hash_mask,
                                           no_parts));
}

/*
  This function is used to calculate the partition id where all partition
  fields have been prepared to point to a record where the partition field
  values are bound.
  SYNOPSIS
    get_partition_id()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
    part_id             The partition id is returned through this pointer
  RETURN VALUE
    part_id
    return TRUE means that the fields of the partition function didn't fit
    into any partition and thus the values of the PF-fields are not allowed.
  DESCRIPTION
    A routine used from write_row, update_row and delete_row from any
    handler supporting partitioning. It is also a support routine for
    get_partition_set used to find the set of partitions needed to scan
    for a certain index scan or full table scan.
    
    It is actually 14 different variants of this function which are called
    through a function pointer.

    get_partition_id_list
    get_partition_id_range
    get_partition_id_hash_nosub
    get_partition_id_key_nosub
    get_partition_id_linear_hash_nosub
    get_partition_id_linear_key_nosub
    get_partition_id_range_sub_hash
    get_partition_id_range_sub_key
    get_partition_id_range_sub_linear_hash
    get_partition_id_range_sub_linear_key
    get_partition_id_list_sub_hash
    get_partition_id_list_sub_key
    get_partition_id_list_sub_linear_hash
    get_partition_id_list_sub_linear_key
*/

/*
  This function is used to calculate the main partition to use in the case of
  subpartitioning and we don't know enough to get the partition identity in
  total.
  SYNOPSIS
    get_part_partition_id()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
    part_id             The partition id is returned through this pointer
  RETURN VALUE
    part_id
    return TRUE means that the fields of the partition function didn't fit
    into any partition and thus the values of the PF-fields are not allowed.
  DESCRIPTION
    
    It is actually 6 different variants of this function which are called
    through a function pointer.

    get_partition_id_list
    get_partition_id_range
    get_partition_id_hash_nosub
    get_partition_id_key_nosub
    get_partition_id_linear_hash_nosub
    get_partition_id_linear_key_nosub
*/


bool get_partition_id_list(partition_info *part_info,
                           uint32 *part_id)
{
  DBUG_ENTER("get_partition_id_list");
  LIST_PART_ENTRY *list_array= part_info->list_array;
  uint list_index;
  longlong list_value;
  uint min_list_index= 0, max_list_index= part_info->no_list_values - 1;
  longlong part_func_value= part_info->part_expr->val_int();
  while (max_list_index >= min_list_index)
  {
    list_index= (max_list_index + min_list_index) >> 1;
    list_value= list_array[list_index].list_value;
    if (list_value < part_func_value)
      min_list_index= list_index + 1;
    else if (list_value > part_func_value)
      max_list_index= list_index - 1;
    else {
      *part_id= (uint32)list_array[list_index].partition_id;
      DBUG_RETURN(FALSE);
    }
  }
  *part_id= 0;
  DBUG_RETURN(TRUE);
}


bool get_partition_id_range(partition_info *part_info,
                            uint32 *part_id)
{
  DBUG_ENTER("get_partition_id_int_range");
  longlong *range_array= part_info->range_int_array;
  uint max_partition= part_info->no_parts - 1;
  uint min_part_id= 0, max_part_id= max_partition, loc_part_id;
  longlong part_func_value= part_info->part_expr->val_int();
  while (max_part_id > min_part_id)
  {
    loc_part_id= (max_part_id + min_part_id + 1) >> 1;
    if (range_array[loc_part_id] < part_func_value)
      min_part_id= loc_part_id + 1;
    else
      max_part_id= loc_part_id - 1;
  }
  loc_part_id= max_part_id;
  if (part_func_value >= range_array[loc_part_id])
    if (loc_part_id != max_partition)
      loc_part_id++;
  *part_id= (uint32)loc_part_id;
  if (loc_part_id == max_partition)
    if (range_array[loc_part_id] != LONGLONG_MAX)
      if (part_func_value >= range_array[loc_part_id])
        DBUG_RETURN(TRUE);
  DBUG_RETURN(FALSE);
}

bool get_partition_id_hash_nosub(partition_info *part_info,
                                 uint32 *part_id)
{
  *part_id= get_part_id_hash(part_info->no_parts, part_info->part_expr);
  return FALSE;
}


bool get_partition_id_linear_hash_nosub(partition_info *part_info,
                                        uint32 *part_id)
{
  *part_id= get_part_id_linear_hash(part_info, part_info->no_parts,
                                    part_info->part_expr);
  return FALSE;
}


bool get_partition_id_key_nosub(partition_info *part_info,
                                uint32 *part_id)
{
  *part_id= get_part_id_key(part_info->part_field_array, part_info->no_parts);
  return FALSE;
}


bool get_partition_id_linear_key_nosub(partition_info *part_info,
                                       uint32 *part_id)
{
  *part_id= get_part_id_linear_key(part_info,
                                   part_info->part_field_array,
                                   part_info->no_parts);
  return FALSE;
}


bool get_partition_id_range_sub_hash(partition_info *part_info,
                                     uint32 *part_id)
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
  DBUG_ENTER("get_partition_id_range_sub_hash");
  if (unlikely(get_partition_id_range(part_info, &loc_part_id)))
  {
    DBUG_RETURN(TRUE);
  }
  no_subparts= part_info->no_subparts;
  sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr);
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
  DBUG_RETURN(FALSE);
}


bool get_partition_id_range_sub_linear_hash(partition_info *part_info,
                                            uint32 *part_id)
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
  DBUG_ENTER("get_partition_id_range_sub_linear_hash");
  if (unlikely(get_partition_id_range(part_info, &loc_part_id)))
  {
    DBUG_RETURN(TRUE);
  }
  no_subparts= part_info->no_subparts;
  sub_part_id= get_part_id_linear_hash(part_info, no_subparts,
                                       part_info->subpart_expr);
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
  DBUG_RETURN(FALSE);
}


bool get_partition_id_range_sub_key(partition_info *part_info,
                                    uint32 *part_id)
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
  DBUG_ENTER("get_partition_id_range_sub_key");
  if (unlikely(get_partition_id_range(part_info, &loc_part_id)))
  {
    DBUG_RETURN(TRUE);
  }
  no_subparts= part_info->no_subparts;
  sub_part_id= get_part_id_key(part_info->subpart_field_array, no_subparts);
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
  DBUG_RETURN(FALSE);
}


bool get_partition_id_range_sub_linear_key(partition_info *part_info,
                                           uint32 *part_id)
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
  DBUG_ENTER("get_partition_id_range_sub_linear_key");
  if (unlikely(get_partition_id_range(part_info, &loc_part_id)))
  {
    DBUG_RETURN(TRUE);
  }
  no_subparts= part_info->no_subparts;
  sub_part_id= get_part_id_linear_key(part_info,
                                      part_info->subpart_field_array,
                                      no_subparts);
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
  DBUG_RETURN(FALSE);
}


bool get_partition_id_list_sub_hash(partition_info *part_info,
                                    uint32 *part_id)
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
  DBUG_ENTER("get_partition_id_list_sub_hash");
  if (unlikely(get_partition_id_list(part_info, &loc_part_id)))
  {
    DBUG_RETURN(TRUE);
  }
  no_subparts= part_info->no_subparts;
  sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr);
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
  DBUG_RETURN(FALSE);
}


bool get_partition_id_list_sub_linear_hash(partition_info *part_info,
                                           uint32 *part_id)
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
  DBUG_ENTER("get_partition_id_list_sub_linear_hash");
  if (unlikely(get_partition_id_list(part_info, &loc_part_id)))
  {
    DBUG_RETURN(TRUE);
  }
  no_subparts= part_info->no_subparts;
  sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr);
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
  DBUG_RETURN(FALSE);
}


bool get_partition_id_list_sub_key(partition_info *part_info,
                                   uint32 *part_id)
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
  DBUG_ENTER("get_partition_id_range_sub_key");
  if (unlikely(get_partition_id_list(part_info, &loc_part_id)))
  {
    DBUG_RETURN(TRUE);
  }
  no_subparts= part_info->no_subparts;
  sub_part_id= get_part_id_key(part_info->subpart_field_array, no_subparts);
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
  DBUG_RETURN(FALSE);
}


bool get_partition_id_list_sub_linear_key(partition_info *part_info,
                                          uint32 *part_id)
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
  DBUG_ENTER("get_partition_id_list_sub_linear_key");
  if (unlikely(get_partition_id_list(part_info, &loc_part_id)))
  {
    DBUG_RETURN(TRUE);
  }
  no_subparts= part_info->no_subparts;
  sub_part_id= get_part_id_linear_key(part_info,
                                      part_info->subpart_field_array,
                                      no_subparts);
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
  DBUG_RETURN(FALSE);
}


/*
  This function is used to calculate the subpartition id
  SYNOPSIS
    get_subpartition_id()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
  RETURN VALUE
    part_id
    The subpartition identity
  DESCRIPTION
    A routine used in some SELECT's when only partial knowledge of the
    partitions is known.
    
    It is actually 4 different variants of this function which are called
    through a function pointer.

    get_partition_id_hash_sub
    get_partition_id_key_sub
    get_partition_id_linear_hash_sub
    get_partition_id_linear_key_sub
*/

uint32 get_partition_id_hash_sub(partition_info *part_info)
{
  return get_part_id_hash(part_info->no_subparts, part_info->subpart_expr);
}


uint32 get_partition_id_linear_hash_sub(partition_info *part_info)
{
  return get_part_id_linear_hash(part_info, part_info->no_subparts,
                                 part_info->subpart_expr);
}


uint32 get_partition_id_key_sub(partition_info *part_info)
{
  return get_part_id_key(part_info->subpart_field_array,
                         part_info->no_subparts);
}


uint32 get_partition_id_linear_key_sub(partition_info *part_info)
{
  return get_part_id_linear_key(part_info,
                                part_info->subpart_field_array,
                                part_info->no_subparts);
}


/*
  Set an indicator on all partition fields that are set by the key 
  SYNOPSIS
    set_PF_fields_in_key()
    key_info                   Information about the index
    key_length                 Length of key
  RETURN VALUE
    TRUE                       Found partition field set by key
    FALSE                      No partition field set by key
*/

static bool set_PF_fields_in_key(KEY *key_info, uint key_length)
{
  KEY_PART_INFO *key_part;
  bool found_part_field= FALSE;
  DBUG_ENTER("set_PF_fields_in_key");

  for (key_part= key_info->key_part; (int)key_length > 0; key_part++)
  {
    if (key_part->null_bit)
      key_length--;
    if (key_part->type == HA_KEYTYPE_BIT)
    {
      if (((Field_bit*)key_part->field)->bit_len)
        key_length--;
    }
    if (key_part->key_part_flag & (HA_BLOB_PART + HA_VAR_LENGTH_PART))
    {
      key_length-= HA_KEY_BLOB_LENGTH;
    }
    if (key_length < key_part->length)
      break;
    key_length-= key_part->length;
    if (key_part->field->flags & FIELD_IN_PART_FUNC_FLAG)
    {
      found_part_field= TRUE;
      key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
    }
  }
  DBUG_RETURN(found_part_field);
}


/*
  We have found that at least one partition field was set by a key, now
  check if a partition function has all its fields bound or not.
  SYNOPSIS
    check_part_func_bound()
    ptr                     Array of fields NULL terminated (partition fields)
  RETURN VALUE
    TRUE                    All fields in partition function are set
    FALSE                   Not all fields in partition function are set
*/

static bool check_part_func_bound(Field **ptr)
{
  bool result= TRUE;
  DBUG_ENTER("check_part_func_bound");

  for (; *ptr; ptr++)
  {
    if (!((*ptr)->flags & GET_FIXED_FIELDS_FLAG))
    {
      result= FALSE;
      break;
    }
  }
  DBUG_RETURN(result);
}


/*
  Get the id of the subpartitioning part by using the key buffer of the
  index scan.
  SYNOPSIS
    get_sub_part_id_from_key()
    table         The table object
    buf           A buffer that can be used to evaluate the partition function
    key_info      The index object
    key_spec      A key_range containing key and key length
  RETURN VALUES
    part_id       Subpartition id to use
  DESCRIPTION
    Use key buffer to set-up record in buf, move field pointers and
    get the partition identity and restore field pointers afterwards.
*/

static uint32 get_sub_part_id_from_key(const TABLE *table,byte *buf,
                                       KEY *key_info,
                                       const key_range *key_spec)
{
  byte *rec0= table->record[0];
  partition_info *part_info= table->part_info;
  uint32 part_id;
  DBUG_ENTER("get_sub_part_id_from_key");

  key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
  if (likely(rec0 == buf))
    part_id= part_info->get_subpartition_id(part_info);
  else
  {
    Field **part_field_array= part_info->subpart_field_array;
    set_field_ptr(part_field_array, buf, rec0);
    part_id= part_info->get_subpartition_id(part_info);
    set_field_ptr(part_field_array, rec0, buf);
  }
  DBUG_RETURN(part_id);
}

/*
  Get the id of the partitioning part by using the key buffer of the
  index scan.
  SYNOPSIS
    get_part_id_from_key()
    table         The table object
    buf           A buffer that can be used to evaluate the partition function
    key_info      The index object
    key_spec      A key_range containing key and key length
    part_id       Partition to use
  RETURN VALUES
    TRUE          Partition to use not found
    FALSE         Ok, part_id indicates partition to use
  DESCRIPTION
    Use key buffer to set-up record in buf, move field pointers and
    get the partition identity and restore field pointers afterwards.
*/
bool get_part_id_from_key(const TABLE *table, byte *buf, KEY *key_info,
                          const key_range *key_spec, uint32 *part_id)
{
  bool result;
  byte *rec0= table->record[0];
  partition_info *part_info= table->part_info;
  DBUG_ENTER("get_part_id_from_key");

  key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
  if (likely(rec0 == buf))
    result= part_info->get_part_partition_id(part_info, part_id);
  else
  {
    Field **part_field_array= part_info->part_field_array;
    set_field_ptr(part_field_array, buf, rec0);
    result= part_info->get_part_partition_id(part_info, part_id);
    set_field_ptr(part_field_array, rec0, buf);
  }
  DBUG_RETURN(result);
}

/*
  Get the partitioning id of the full PF by using the key buffer of the
  index scan.
  SYNOPSIS
    get_full_part_id_from_key()
    table         The table object
    buf           A buffer that is used to evaluate the partition function
    key_info      The index object
    key_spec      A key_range containing key and key length
    part_spec     A partition id containing start part and end part
  RETURN VALUES
    part_spec
    No partitions to scan is indicated by end_part > start_part when returning
  DESCRIPTION
    Use key buffer to set-up record in buf, move field pointers if needed and
    get the partition identity and restore field pointers afterwards.
*/

void get_full_part_id_from_key(const TABLE *table, byte *buf,
                               KEY *key_info,
                               const key_range *key_spec,
                               part_id_range *part_spec)
{
  bool result;
  partition_info *part_info= table->part_info;
  byte *rec0= table->record[0];
  DBUG_ENTER("get_full_part_id_from_key");

  key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
  if (likely(rec0 == buf))
    result= part_info->get_partition_id(part_info, &part_spec->start_part);
  else
  {
    Field **part_field_array= part_info->full_part_field_array;
    set_field_ptr(part_field_array, buf, rec0);
    result= part_info->get_partition_id(part_info, &part_spec->start_part);
    set_field_ptr(part_field_array, rec0, buf);
  }
  part_spec->end_part= part_spec->start_part;
  if (unlikely(result))
    part_spec->start_part++;
  DBUG_VOID_RETURN;
}
    
/*
  Get the set of partitions to use in query.
  SYNOPSIS
    get_partition_set()
    table         The table object
    buf           A buffer that can be used to evaluate the partition function
    index         The index of the key used, if MAX_KEY no index used
    key_spec      A key_range containing key and key length
    part_spec     Contains start part, end part and indicator if bitmap is
                  used for which partitions to scan
  DESCRIPTION
    This function is called to discover which partitions to use in an index
    scan or a full table scan.
    It returns a range of partitions to scan. If there are holes in this
    range with partitions that are not needed to scan a bit array is used
    to signal which partitions to use and which not to use.
    If start_part > end_part at return it means no partition needs to be
    scanned. If start_part == end_part it always means a single partition
    needs to be scanned.
  RETURN VALUE
    part_spec
*/
void get_partition_set(const TABLE *table, byte *buf, const uint index,
                       const key_range *key_spec, part_id_range *part_spec)
{
  partition_info *part_info= table->part_info;
  uint no_parts= get_tot_partitions(part_info), i, part_id;
  uint sub_part= no_parts;
  uint32 part_part= no_parts;
  KEY *key_info= NULL;
  bool found_part_field= FALSE;
  DBUG_ENTER("get_partition_set");

  part_spec->use_bit_array= FALSE;
  part_spec->start_part= 0;
  part_spec->end_part= no_parts - 1;
  if ((index < MAX_KEY) && 
       key_spec->flag == (uint)HA_READ_KEY_EXACT &&
       part_info->some_fields_in_PF.is_set(index))
  {
    key_info= table->key_info+index;
    /*
      The index can potentially provide at least one PF-field (field in the
      partition function). Thus it is interesting to continue our probe.
    */
    if (key_spec->length == key_info->key_length)
    {
      /*
        The entire key is set so we can check whether we can immediately
        derive either the complete PF or if we can derive either
        the top PF or the subpartitioning PF. This can be established by
        checking precalculated bits on each index.
      */
      if (part_info->all_fields_in_PF.is_set(index))
      {
        /*
          We can derive the exact partition to use, no more than this one
          is needed.
        */
        get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
        DBUG_VOID_RETURN;
      }
      else if (is_sub_partitioned(part_info))
      {
        if (part_info->all_fields_in_SPF.is_set(index))
          sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
        else if (part_info->all_fields_in_PPF.is_set(index))
        {
          if (get_part_id_from_key(table,buf,key_info,key_spec,(uint32*)&part_part))
          {
            /*
              The value of the RANGE or LIST partitioning was outside of
              allowed values. Thus it is certain that the result of this
              scan will be empty.
            */
            part_spec->start_part= no_parts;
            DBUG_VOID_RETURN;
          }
        }
      }
    }
    else
    {
      /*
        Set an indicator on all partition fields that are bound.
        If at least one PF-field was bound it pays off to check whether
        the PF or PPF or SPF has been bound.
        (PF = Partition Function, SPF = Subpartition Function and
         PPF = Partition Function part of subpartitioning)
      */
      if ((found_part_field= set_PF_fields_in_key(key_info,
                                                  key_spec->length)))
      {
        if (check_part_func_bound(part_info->full_part_field_array))
        {
          /*
            We were able to bind all fields in the partition function even
            by using only a part of the key. Calculate the partition to use.
          */
          get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
          clear_indicator_in_key_fields(key_info);
          DBUG_VOID_RETURN; 
        }
        else if (check_part_func_bound(part_info->part_field_array))
          sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
        else if (check_part_func_bound(part_info->subpart_field_array))
        {
          if (get_part_id_from_key(table,buf,key_info,key_spec,(uint32*)&part_part))
          {
            part_spec->start_part= no_parts;
            clear_indicator_in_key_fields(key_info);
            DBUG_VOID_RETURN;
          }
        }
      }
    }
  }
  {
    /*
      The next step is to analyse the table condition to see whether any
      information about which partitions to scan can be derived from there.
      Currently not implemented.
    */
  }
  /*
    If we come here we have found a range of sorts we have either discovered
    nothing or we have discovered a range of partitions with possible holes
    in it. We need a bitvector to further the work here.
  */
  if (!(part_part == no_parts && sub_part == no_parts))
  {
    /*
      We can only arrive here if we are using subpartitioning.
    */
    if (part_part != no_parts)
    {
      /*
        We know the top partition and need to scan all underlying
        subpartitions. This is a range without holes.
      */
      DBUG_ASSERT(sub_part == no_parts);
      part_spec->start_part= part_part * part_info->no_parts;
      part_spec->end_part= part_spec->start_part+part_info->no_subparts - 1;
    }
    else
    {
      DBUG_ASSERT(sub_part != no_parts);
      part_spec->use_bit_array= TRUE;
      part_spec->start_part= sub_part;
      part_spec->end_part=sub_part+
                           (part_info->no_subparts*(part_info->no_parts-1));
      for (i= 0, part_id= sub_part; i < part_info->no_parts;
           i++, part_id+= part_info->no_subparts)
        ; //Set bit part_id in bit array
    }
  }
  if (found_part_field)
    clear_indicator_in_key_fields(key_info);
  DBUG_VOID_RETURN;
}


/*
   If the table is partitioned we will read the partition info into the
   .frm file here.
   -------------------------------
   |  Fileinfo     64 bytes      |
   -------------------------------
   | Formnames     7 bytes       |
   -------------------------------
   | Not used    4021 bytes      |
   -------------------------------
   | Keyinfo + record            |
   -------------------------------
   | Padded to next multiple     |
   | of IO_SIZE                  |
   -------------------------------
   | Forminfo     288 bytes      |
   -------------------------------
   | Screen buffer, to make      |
   | field names readable        |
   -------------------------------
   | Packed field info           |
   | 17 + 1 + strlen(field_name) |
   | + 1 end of file character   |
   -------------------------------
   | Partition info              |
   -------------------------------
   We provide the length of partition length in Fileinfo[55-58].

   Read the partition syntax from the frm file and parse it to get the
   data structures of the partitioning.
   SYNOPSIS
     mysql_unpack_partition()
     file                          File reference of frm file
     thd                           Thread object
     part_info_len                 Length of partition syntax
     table                         Table object of partitioned table
   RETURN VALUE
     TRUE                          Error
     FALSE                         Sucess
   DESCRIPTION
     Read the partition syntax from the current position in the frm file.
     Initiate a LEX object, save the list of item tree objects to free after
     the query is done. Set-up partition info object such that parser knows
     it is called from internally. Call parser to create data structures
     (best possible recreation of item trees and so forth since there is no
     serialisation of these objects other than in parseable text format).
     We need to save the text of the partition functions since it is not
     possible to retrace this given an item tree.
*/

bool mysql_unpack_partition(THD *thd, const uchar *part_buf,
                            uint part_info_len, TABLE* table,
                            enum db_type default_db_type)
{
  Item *thd_free_list= thd->free_list;
  bool result= TRUE;
  partition_info *part_info;
  LEX *old_lex= thd->lex, lex;
  DBUG_ENTER("mysql_unpack_partition");

  thd->lex= &lex;
  lex_start(thd, part_buf, part_info_len);
  /*
    We need to use the current SELECT_LEX since I need to keep the
    Name_resolution_context object which is referenced from the
    Item_field objects.
    This is not a nice solution since if the parser uses current_select
    for anything else it will corrupt the current LEX object.
  */
  thd->lex->current_select= old_lex->current_select; 
  /*
    All Items created is put into a free list on the THD object. This list
    is used to free all Item objects after completing a query. We don't
    want that to happen with the Item tree created as part of the partition
    info. This should be attached to the table object and remain so until
    the table object is released.
    Thus we move away the current list temporarily and start a new list that
    we then save in the partition info structure.
  */
  thd->free_list= NULL;
  lex.part_info= (partition_info*)1; //Indicate yyparse from this place
  if (yyparse((void*)thd) || thd->is_fatal_error)
  {
    free_items(thd->free_list);
    goto end;
  }
  part_info= lex.part_info;
  table->part_info= part_info;
  table->file->set_part_info(part_info);
  if (part_info->default_engine_type == DB_TYPE_UNKNOWN)
    part_info->default_engine_type= default_db_type;
  else
  {
    DBUG_ASSERT(part_info->default_engine_type == default_db_type);
  }
  part_info->item_free_list= thd->free_list;

  {
  /*
    This code part allocates memory for the serialised item information for
    the partition functions. In most cases this is not needed but if the
    table is used for SHOW CREATE TABLES or ALTER TABLE that modifies
    partition information it is needed and the info is lost if we don't
    save it here so unfortunately we have to do it here even if in most
    cases it is not needed. This is a consequence of that item trees are
    not serialisable.
  */
    uint part_func_len= part_info->part_func_len;
    uint subpart_func_len= part_info->subpart_func_len; 
    char *part_func_string, *subpart_func_string= NULL;
    if (!((part_func_string= thd->alloc(part_func_len))) ||
        (subpart_func_len &&
        !((subpart_func_string= thd->alloc(subpart_func_len)))))
    {
      my_error(ER_OUTOFMEMORY, MYF(0), part_func_len);
      free_items(thd->free_list);
      part_info->item_free_list= 0;
      goto end;
    }
    memcpy(part_func_string, part_info->part_func_string, part_func_len);
    if (subpart_func_len)
      memcpy(subpart_func_string, part_info->subpart_func_string,
             subpart_func_len);
    part_info->part_func_string= part_func_string;
    part_info->subpart_func_string= subpart_func_string;
  }

  result= FALSE;
end:
  thd->free_list= thd_free_list;
  thd->lex= old_lex;
  DBUG_RETURN(result);
}
#endif

/*
  Prepare for calling val_int on partition function by setting fields to
  point to the record where the values of the PF-fields are stored.
  SYNOPSIS
    set_field_ptr()
    ptr                 Array of fields to change ptr
    new_buf             New record pointer
    old_buf             Old record pointer
  DESCRIPTION
    Set ptr in field objects of field array to refer to new_buf record
    instead of previously old_buf. Used before calling val_int and after
    it is used to restore pointers to table->record[0].
    This routine is placed outside of partition code since it can be useful
    also for other programs.
*/

void set_field_ptr(Field **ptr, const byte *new_buf,
                            const byte *old_buf)
{
  my_ptrdiff_t diff= (new_buf - old_buf);
  DBUG_ENTER("set_nullable_field_ptr");

  do
  {
    (*ptr)->move_field_offset(diff);
  } while (*(++ptr));
  DBUG_VOID_RETURN;
}


/*
  Prepare for calling val_int on partition function by setting fields to
  point to the record where the values of the PF-fields are stored.
  This variant works on a key_part reference.
  It is not required that all fields are NOT NULL fields.
  SYNOPSIS
    set_key_field_ptr()
    key_part            key part with a set of fields to change ptr
    new_buf             New record pointer
    old_buf             Old record pointer
  DESCRIPTION
    Set ptr in field objects of field array to refer to new_buf record
    instead of previously old_buf. Used before calling val_int and after
    it is used to restore pointers to table->record[0].
    This routine is placed outside of partition code since it can be useful
    also for other programs.
*/

void set_key_field_ptr(KEY *key_info, const byte *new_buf,
                       const byte *old_buf)
{
  KEY_PART_INFO *key_part= key_info->key_part;
  uint key_parts= key_info->key_parts, i= 0;
  my_ptrdiff_t diff= (new_buf - old_buf);
  DBUG_ENTER("set_key_field_ptr");

  do
  {
    key_part->field->move_field_offset(diff);
    key_part++;
  } while (++i < key_parts);
  DBUG_VOID_RETURN;
}