1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
|
/*****************************************************************************
Copyright (c) 2005, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2012, Facebook Inc.
Copyright (c) 2017, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file include/page0zip.ic
Compressed page interface
Created June 2005 by Marko Makela
*******************************************************/
#ifdef UNIV_MATERIALIZE
# undef UNIV_INLINE
# define UNIV_INLINE
#endif
#include "page0zip.h"
#include "mtr0log.h"
#include "page0page.h"
#include "srv0srv.h"
/* The format of compressed pages is as follows.
The header and trailer of the uncompressed pages, excluding the page
directory in the trailer, are copied as is to the header and trailer
of the compressed page.
At the end of the compressed page, there is a dense page directory
pointing to every user record contained on the page, including deleted
records on the free list. The dense directory is indexed in the
collation order, i.e., in the order in which the record list is
linked on the uncompressed page. The infimum and supremum records are
excluded. The two most significant bits of the entries are allocated
for the delete-mark and an n_owned flag indicating the last record in
a chain of records pointed to from the sparse page directory on the
uncompressed page.
The data between PAGE_ZIP_START and the last page directory entry will
be written in compressed format, starting at offset PAGE_DATA.
Infimum and supremum records are not stored. We exclude the
REC_N_NEW_EXTRA_BYTES in every record header. These can be recovered
from the dense page directory stored at the end of the compressed
page.
The fields node_ptr (in non-leaf B-tree nodes; level>0), trx_id and
roll_ptr (in leaf B-tree nodes; level=0), and BLOB pointers of
externally stored columns are stored separately, in ascending order of
heap_no and column index, starting backwards from the dense page
directory.
The compressed data stream may be followed by a modification log
covering the compressed portion of the page, as follows.
MODIFICATION LOG ENTRY FORMAT
- write record:
- (heap_no - 1) << 1 (1..2 bytes)
- extra bytes backwards
- data bytes
- clear record:
- (heap_no - 1) << 1 | 1 (1..2 bytes)
The integer values are stored in a variable-length format:
- 0xxxxxxx: 0..127
- 1xxxxxxx xxxxxxxx: 0..32767
The end of the modification log is marked by a 0 byte.
In summary, the compressed page looks like this:
(1) Uncompressed page header (PAGE_DATA bytes)
(2) Compressed index information
(3) Compressed page data
(4) Page modification log (page_zip->m_start..page_zip->m_end)
(5) Empty zero-filled space
(6) BLOB pointers (on leaf pages)
- BTR_EXTERN_FIELD_REF_SIZE for each externally stored column
- in descending collation order
(7) Uncompressed columns of user records, n_dense * uncompressed_size bytes,
- indexed by heap_no
- DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN for leaf pages of clustered indexes
- REC_NODE_PTR_SIZE for non-leaf pages
- 0 otherwise
(8) dense page directory, stored backwards
- n_dense = n_heap - 2
- existing records in ascending collation order
- deleted records (free list) in link order
*/
/**********************************************************************//**
Determine the size of a compressed page in bytes.
@return size in bytes */
UNIV_INLINE
ulint
page_zip_get_size(
/*==============*/
const page_zip_des_t* page_zip) /*!< in: compressed page */
{
ulint size;
if (!page_zip->ssize) {
return(0);
}
size = (UNIV_ZIP_SIZE_MIN >> 1) << page_zip->ssize;
ut_ad(size >= UNIV_ZIP_SIZE_MIN);
ut_ad(size <= UNIV_PAGE_SIZE);
return(size);
}
/**********************************************************************//**
Set the size of a compressed page in bytes. */
UNIV_INLINE
void
page_zip_set_size(
/*==============*/
page_zip_des_t* page_zip, /*!< in/out: compressed page */
ulint size) /*!< in: size in bytes */
{
if (size) {
unsigned ssize;
ut_ad(ut_is_2pow(size));
for (ssize = 1; size > (512U << ssize); ssize++) {
}
page_zip->ssize = ssize;
} else {
page_zip->ssize = 0;
}
ut_ad(page_zip_get_size(page_zip) == size);
}
/** Determine if a record is so big that it needs to be stored externally.
@param[in] rec_size length of the record in bytes
@param[in] comp nonzero=compact format
@param[in] n_fields number of fields in the record; ignored if
tablespace is not compressed
@param[in] page_size page size
@return FALSE if the entire record can be stored locally on the page */
UNIV_INLINE
ibool
page_zip_rec_needs_ext(
ulint rec_size,
ulint comp,
ulint n_fields,
const page_size_t& page_size)
{
ut_ad(rec_size
> ulint(comp ? REC_N_NEW_EXTRA_BYTES : REC_N_OLD_EXTRA_BYTES));
ut_ad(comp || !page_size.is_compressed());
#if UNIV_PAGE_SIZE_MAX > REC_MAX_DATA_SIZE
if (rec_size >= REC_MAX_DATA_SIZE) {
return(TRUE);
}
#endif
if (page_size.is_compressed()) {
ut_ad(comp);
/* On a compressed page, there is a two-byte entry in
the dense page directory for every record. But there
is no record header. There should be enough room for
one record on an empty leaf page. Subtract 1 byte for
the encoded heap number. Check also the available space
on the uncompressed page. */
return(rec_size - (REC_N_NEW_EXTRA_BYTES - 2 - 1)
>= page_zip_empty_size(n_fields, page_size.physical())
|| rec_size >= page_get_free_space_of_empty(TRUE) / 2);
}
return(rec_size >= page_get_free_space_of_empty(comp) / 2);
}
#ifdef UNIV_DEBUG
/**********************************************************************//**
Validate a compressed page descriptor.
@return TRUE if ok */
UNIV_INLINE
ibool
page_zip_simple_validate(
/*=====================*/
const page_zip_des_t* page_zip)/*!< in: compressed page descriptor */
{
ut_ad(page_zip);
ut_ad(page_zip->data);
ut_ad(page_zip->ssize <= PAGE_ZIP_SSIZE_MAX);
ut_ad(page_zip_get_size(page_zip)
> PAGE_DATA + PAGE_ZIP_DIR_SLOT_SIZE);
ut_ad(page_zip->m_start <= page_zip->m_end);
ut_ad(page_zip->m_end < page_zip_get_size(page_zip));
ut_ad(page_zip->n_blobs
< page_zip_get_size(page_zip) / BTR_EXTERN_FIELD_REF_SIZE);
return(TRUE);
}
#endif /* UNIV_DEBUG */
/**********************************************************************//**
Determine if the length of the page trailer.
@return length of the page trailer, in bytes, not including the
terminating zero byte of the modification log */
UNIV_INLINE
ibool
page_zip_get_trailer_len(
/*=====================*/
const page_zip_des_t* page_zip,/*!< in: compressed page */
ibool is_clust)/*!< in: TRUE if clustered index */
{
ulint uncompressed_size;
ut_ad(page_zip_simple_validate(page_zip));
UNIV_MEM_ASSERT_RW(page_zip->data, page_zip_get_size(page_zip));
if (!page_is_leaf(page_zip->data)) {
uncompressed_size = PAGE_ZIP_DIR_SLOT_SIZE
+ REC_NODE_PTR_SIZE;
ut_ad(!page_zip->n_blobs);
} else if (is_clust) {
uncompressed_size = PAGE_ZIP_DIR_SLOT_SIZE
+ DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN;
} else {
uncompressed_size = PAGE_ZIP_DIR_SLOT_SIZE;
ut_ad(!page_zip->n_blobs);
}
return((page_dir_get_n_heap(page_zip->data) - 2)
* uncompressed_size
+ page_zip->n_blobs * BTR_EXTERN_FIELD_REF_SIZE);
}
/**********************************************************************//**
Determine how big record can be inserted without recompressing the page.
@return a positive number indicating the maximum size of a record
whose insertion is guaranteed to succeed, or zero or negative */
UNIV_INLINE
lint
page_zip_max_ins_size(
/*==================*/
const page_zip_des_t* page_zip,/*!< in: compressed page */
ibool is_clust)/*!< in: TRUE if clustered index */
{
ulint trailer_len;
trailer_len = page_zip_get_trailer_len(page_zip, is_clust);
/* When a record is created, a pointer may be added to
the dense directory.
Likewise, space for the columns that will not be
compressed will be allocated from the page trailer.
Also the BLOB pointers will be allocated from there, but
we may as well count them in the length of the record. */
trailer_len += PAGE_ZIP_DIR_SLOT_SIZE;
return(lint(page_zip_get_size(page_zip)
- trailer_len - page_zip->m_end
- (REC_N_NEW_EXTRA_BYTES - 2)));
}
/**********************************************************************//**
Determine if enough space is available in the modification log.
@return TRUE if enough space is available */
UNIV_INLINE
ibool
page_zip_available(
/*===============*/
const page_zip_des_t* page_zip,/*!< in: compressed page */
ibool is_clust,/*!< in: TRUE if clustered index */
ulint length, /*!< in: combined size of the record */
ulint create) /*!< in: nonzero=add the record to
the heap */
{
ulint trailer_len;
ut_ad(length > REC_N_NEW_EXTRA_BYTES);
trailer_len = page_zip_get_trailer_len(page_zip, is_clust);
/* Subtract the fixed extra bytes and add the maximum
space needed for identifying the record (encoded heap_no). */
length -= REC_N_NEW_EXTRA_BYTES - 2;
if (create > 0) {
/* When a record is created, a pointer may be added to
the dense directory.
Likewise, space for the columns that will not be
compressed will be allocated from the page trailer.
Also the BLOB pointers will be allocated from there, but
we may as well count them in the length of the record. */
trailer_len += PAGE_ZIP_DIR_SLOT_SIZE;
}
return(length + trailer_len + page_zip->m_end
< page_zip_get_size(page_zip));
}
/**********************************************************************//**
Initialize a compressed page descriptor. */
UNIV_INLINE
void
page_zip_des_init(
/*==============*/
page_zip_des_t* page_zip) /*!< in/out: compressed page
descriptor */
{
memset(page_zip, 0, sizeof *page_zip);
}
/**********************************************************************//**
Write a log record of writing to the uncompressed header portion of a page. */
void
page_zip_write_header_log(
/*======================*/
const byte* data,/*!< in: data on the uncompressed page */
ulint length, /*!< in: length of the data */
mtr_t* mtr); /*!< in: mini-transaction */
/**********************************************************************//**
Write data to the uncompressed header portion of a page. The data must
already have been written to the uncompressed page.
However, the data portion of the uncompressed page may differ from
the compressed page when a record is being inserted in
page_cur_insert_rec_zip(). */
UNIV_INLINE
void
page_zip_write_header(
/*==================*/
page_zip_des_t* page_zip,/*!< in/out: compressed page */
const byte* str, /*!< in: address on the uncompressed page */
ulint length, /*!< in: length of the data */
mtr_t* mtr) /*!< in: mini-transaction, or NULL */
{
ulint pos;
ut_ad(page_zip_simple_validate(page_zip));
UNIV_MEM_ASSERT_RW(page_zip->data, page_zip_get_size(page_zip));
pos = page_offset(str);
ut_ad(pos < PAGE_DATA);
memcpy(page_zip->data + pos, str, length);
/* The following would fail in page_cur_insert_rec_zip(). */
/* ut_ad(page_zip_validate(page_zip, str - pos)); */
if (mtr) {
page_zip_write_header_log(str, length, mtr);
}
}
/**********************************************************************//**
Write a log record of compressing an index page without the data on the page. */
UNIV_INLINE
void
page_zip_compress_write_log_no_data(
/*================================*/
ulint level, /*!< in: compression level */
const page_t* page, /*!< in: page that is compressed */
dict_index_t* index, /*!< in: index */
mtr_t* mtr) /*!< in: mtr */
{
byte* log_ptr = mlog_open_and_write_index(
mtr, page, index, MLOG_ZIP_PAGE_COMPRESS_NO_DATA, 1);
if (log_ptr) {
mach_write_to_1(log_ptr, level);
mlog_close(mtr, log_ptr + 1);
}
}
/**********************************************************************//**
Parses a log record of compressing an index page without the data.
@return end of log record or NULL */
UNIV_INLINE
byte*
page_zip_parse_compress_no_data(
/*============================*/
byte* ptr, /*!< in: buffer */
byte* end_ptr, /*!< in: buffer end */
page_t* page, /*!< in: uncompressed page */
page_zip_des_t* page_zip, /*!< out: compressed page */
dict_index_t* index) /*!< in: index */
{
ulint level;
if (end_ptr == ptr) {
return(NULL);
}
level = mach_read_from_1(ptr);
/* If page compression fails then there must be something wrong
because a compress log record is logged only if the compression
was successful. Crash in this case. */
if (page
&& !page_zip_compress(page_zip, page, index, level, NULL, NULL)) {
ut_error;
}
return(ptr + 1);
}
/**********************************************************************//**
Reset the counters used for filling
INFORMATION_SCHEMA.innodb_cmp_per_index. */
UNIV_INLINE
void
page_zip_reset_stat_per_index()
/*===========================*/
{
mutex_enter(&page_zip_stat_per_index_mutex);
page_zip_stat_per_index.erase(
page_zip_stat_per_index.begin(),
page_zip_stat_per_index.end());
mutex_exit(&page_zip_stat_per_index_mutex);
}
#ifdef UNIV_MATERIALIZE
# undef UNIV_INLINE
# define UNIV_INLINE UNIV_INLINE_ORIGINAL
#endif
|