1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
|
/*****************************************************************************
Copyright (c) 1996, 2015, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2019, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file read/read0read.cc
Cursor read
Created 2/16/1997 Heikki Tuuri
*******************************************************/
#include "read0read.h"
#include "srv0srv.h"
#include "trx0sys.h"
/*
-------------------------------------------------------------------------------
FACT A: Cursor read view on a secondary index sees only committed versions
-------
of the records in the secondary index or those versions of rows created
by transaction which created a cursor before cursor was created even
if transaction which created the cursor has changed that clustered index page.
PROOF: We must show that read goes always to the clustered index record
to see that record is visible in the cursor read view. Consider e.g.
following table and SQL-clauses:
create table t1(a int not null, b int, primary key(a), index(b));
insert into t1 values (1,1),(2,2);
commit;
Now consider that we have a cursor for a query
select b from t1 where b >= 1;
This query will use secondary key on the table t1. Now after the first fetch
on this cursor if we do a update:
update t1 set b = 5 where b = 2;
Now second fetch of the cursor should not see record (2,5) instead it should
see record (2,2).
We also should show that if we have delete t1 where b = 5; we still
can see record (2,2).
When we access a secondary key record maximum transaction id is fetched
from this record and this trx_id is compared to up_limit_id in the view.
If trx_id in the record is greater or equal than up_limit_id in the view
cluster record is accessed. Because trx_id of the creating
transaction is stored when this view was created to the list of
trx_ids not seen by this read view previous version of the
record is requested to be built. This is build using clustered record.
If the secondary key record is delete-marked, its corresponding
clustered record can be already be purged only if records
trx_id < low_limit_no. Purge can't remove any record deleted by a
transaction which was active when cursor was created. But, we still
may have a deleted secondary key record but no clustered record. But,
this is not a problem because this case is handled in
row_sel_get_clust_rec() function which is called
whenever we note that this read view does not see trx_id in the
record. Thus, we see correct version. Q. E. D.
-------------------------------------------------------------------------------
FACT B: Cursor read view on a clustered index sees only committed versions
-------
of the records in the clustered index or those versions of rows created
by transaction which created a cursor before cursor was created even
if transaction which created the cursor has changed that clustered index page.
PROOF: Consider e.g.following table and SQL-clauses:
create table t1(a int not null, b int, primary key(a));
insert into t1 values (1),(2);
commit;
Now consider that we have a cursor for a query
select a from t1 where a >= 1;
This query will use clustered key on the table t1. Now after the first fetch
on this cursor if we do a update:
update t1 set a = 5 where a = 2;
Now second fetch of the cursor should not see record (5) instead it should
see record (2).
We also should show that if we have execute delete t1 where a = 5; after
the cursor is opened we still can see record (2).
When accessing clustered record we always check if this read view sees
trx_id stored to clustered record. By default we don't see any changes
if record trx_id >= low_limit_id i.e. change was made transaction
which started after transaction which created the cursor. If row
was changed by the future transaction a previous version of the
clustered record is created. Thus we see only committed version in
this case. We see all changes made by committed transactions i.e.
record trx_id < up_limit_id. In this case we don't need to do anything,
we already see correct version of the record. We don't see any changes
made by active transaction except creating transaction. We have stored
trx_id of creating transaction to list of trx_ids when this view was
created. Thus we can easily see if this record was changed by the
creating transaction. Because we already have clustered record we can
access roll_ptr. Using this roll_ptr we can fetch undo record.
We can now check that undo_no of the undo record is less than undo_no of the
trancaction which created a view when cursor was created. We see this
clustered record only in case when record undo_no is less than undo_no
in the view. If this is not true we build based on undo_rec previous
version of the record. This record is found because purge can't remove
records accessed by active transaction. Thus we see correct version. Q. E. D.
-------------------------------------------------------------------------------
FACT C: Purge does not remove any delete-marked row that is visible
-------
in any cursor read view.
PROOF: We know that:
1: Currently active read views in trx_sys_t::view_list are ordered by
ReadView::low_limit_no in descending order, that is,
newest read view first.
2: Purge clones the oldest read view and uses that to determine whether there
are any active transactions that can see the to be purged records.
Therefore any joining or active transaction will not have a view older
than the purge view, according to 1.
When purge needs to remove a delete-marked row from a secondary index,
it will first check that the DB_TRX_ID value of the corresponding
record in the clustered index is older than the purge view. It will
also check if there is a newer version of the row (clustered index
record) that is not delete-marked in the secondary index. If such a
row exists and is collation-equal to the delete-marked secondary index
record then purge will not remove the secondary index record.
Delete-marked clustered index records will be removed by
row_purge_remove_clust_if_poss(), unless the clustered index record
(and its DB_ROLL_PTR) has been updated. Every new version of the
clustered index record will update DB_ROLL_PTR, pointing to a new UNDO
log entry that allows the old version to be reconstructed. The
DB_ROLL_PTR in the oldest remaining version in the old-version chain
may be pointing to garbage (an undo log record discarded by purge),
but it will never be dereferenced, because the purge view is older
than any active transaction.
For details see: row_vers_old_has_index_entry() and row_purge_poss_sec()
Some additional issues:
What if trx_sys->view_list == NULL and some transaction T1 and Purge both
try to open read_view at same time. Only one can acquire trx_sys->mutex.
In which order will the views be opened? Should it matter? If no, why?
The order does not matter. No new transactions can be created and no running
RW transaction can commit or rollback (or free views). AC-NL-RO transactions
will mark their views as closed but not actually free their views.
*/
/** Minimum number of elements to reserve in ReadView::ids_t */
static const ulint MIN_TRX_IDS = 32;
#ifdef UNIV_DEBUG
/** Functor to validate the view list. */
struct ViewCheck {
ViewCheck() : m_prev_view() { }
void operator()(const ReadView* view)
{
ut_a(m_prev_view == NULL
|| view->is_closed()
|| view->le(m_prev_view));
m_prev_view = view;
}
const ReadView* m_prev_view;
};
/**
Validates a read view list. */
bool
MVCC::validate() const
{
ViewCheck check;
ut_ad(mutex_own(&trx_sys->mutex));
ut_list_map(m_views, check);
return(true);
}
#endif /* UNIV_DEBUG */
/**
Try and increase the size of the array. Old elements are
copied across.
@param n Make space for n elements */
void
ReadView::ids_t::reserve(ulint n)
{
if (n <= capacity()) {
return;
}
/** Keep a minimum threshold */
if (n < MIN_TRX_IDS) {
n = MIN_TRX_IDS;
}
value_type* p = m_ptr;
m_ptr = UT_NEW_ARRAY_NOKEY(value_type, n);
m_reserved = n;
ut_ad(size() < capacity());
if (p != NULL) {
::memmove(m_ptr, p, size() * sizeof(value_type));
UT_DELETE_ARRAY(p);
}
}
/**
Copy and overwrite this array contents
@param start Source array
@param end Pointer to end of array */
void
ReadView::ids_t::assign(const value_type* start, const value_type* end)
{
ut_ad(end >= start);
ulint n = end - start;
/* No need to copy the old contents across during reserve(). */
clear();
/* Create extra space if required. */
reserve(n);
resize(n);
ut_ad(size() == n);
::memmove(m_ptr, start, size() * sizeof(value_type));
}
/**
Append a value to the array.
@param value the value to append */
void
ReadView::ids_t::push_back(value_type value)
{
if (capacity() <= size()) {
reserve(size() * 2);
}
m_ptr[m_size++] = value;
ut_ad(size() <= capacity());
}
/**
Insert the value in the correct slot, preserving the order. Doesn't
check for duplicates. */
void
ReadView::ids_t::insert(value_type value)
{
ut_ad(value > 0);
reserve(size() + 1);
if (empty() || back() < value) {
push_back(value);
return;
}
value_type* end = data() + size();
value_type* ub = std::upper_bound(data(), end, value);
if (ub == end) {
push_back(value);
} else {
ut_ad(ub < end);
ulint n_elems = std::distance(ub, end);
ulint n = n_elems * sizeof(value_type);
/* Note: Copying overlapped memory locations. */
::memmove(ub + 1, ub, n);
*ub = value;
resize(size() + 1);
}
}
/**
ReadView constructor */
ReadView::ReadView()
:
m_low_limit_id(),
m_up_limit_id(),
m_creator_trx_id(),
m_ids(),
m_low_limit_no()
{
ut_d(::memset(&m_view_list, 0x0, sizeof(m_view_list)));
}
/**
ReadView destructor */
ReadView::~ReadView()
{
// Do nothing
}
/** Constructor
@param size Number of views to pre-allocate */
MVCC::MVCC(ulint size)
{
UT_LIST_INIT(m_free, &ReadView::m_view_list);
UT_LIST_INIT(m_views, &ReadView::m_view_list);
for (ulint i = 0; i < size; ++i) {
ReadView* view = UT_NEW_NOKEY(ReadView());
UT_LIST_ADD_FIRST(m_free, view);
}
}
MVCC::~MVCC()
{
for (ReadView* view = UT_LIST_GET_FIRST(m_free);
view != NULL;
view = UT_LIST_GET_FIRST(m_free)) {
UT_LIST_REMOVE(m_free, view);
UT_DELETE(view);
}
ut_a(UT_LIST_GET_LEN(m_views) == 0);
}
/**
Copy the transaction ids from the source vector */
void
ReadView::copy_trx_ids(const trx_ids_t& trx_ids)
{
ulint size = trx_ids.size();
if (m_creator_trx_id > 0) {
ut_ad(size > 0);
--size;
}
if (size == 0) {
m_ids.clear();
return;
}
m_ids.reserve(size);
m_ids.resize(size);
ids_t::value_type* p = m_ids.data();
/* Copy all the trx_ids except the creator trx id */
if (m_creator_trx_id > 0) {
/* Note: We go through all this trouble because it is
unclear whether std::vector::resize() will cause an
overhead or not. We should test this extensively and
if the vector to vector copy is fast enough then get
rid of this code and replace it with more readable
and obvious code. The code below does exactly one copy,
and filters out the creator's trx id. */
trx_ids_t::const_iterator it = std::lower_bound(
trx_ids.begin(), trx_ids.end(), m_creator_trx_id);
ut_ad(it != trx_ids.end() && *it == m_creator_trx_id);
ulint i = std::distance(trx_ids.begin(), it);
ulint n = i * sizeof(trx_ids_t::value_type);
::memmove(p, &trx_ids[0], n);
n = (trx_ids.size() - i - 1) * sizeof(trx_ids_t::value_type);
ut_ad(i + (n / sizeof(trx_ids_t::value_type)) == m_ids.size());
if (n > 0) {
::memmove(p + i, &trx_ids[i + 1], n);
}
} else {
ulint n = size * sizeof(trx_ids_t::value_type);
::memmove(p, &trx_ids[0], n);
}
#ifdef UNIV_DEBUG
/* Assert that all transaction ids in list are active. */
for (trx_ids_t::const_iterator it = trx_ids.begin();
it != trx_ids.end(); ++it) {
trx_t* trx = trx_get_rw_trx_by_id(*it);
ut_ad(trx != NULL);
switch (trx->state) {
case TRX_STATE_ACTIVE:
case TRX_STATE_PREPARED:
case TRX_STATE_PREPARED_RECOVERED:
case TRX_STATE_COMMITTED_IN_MEMORY:
continue;
case TRX_STATE_NOT_STARTED:
break;
}
ut_ad(!"invalid state");
}
#endif /* UNIV_DEBUG */
}
/**
Opens a read view where exactly the transactions serialized before this
point in time are seen in the view.
@param id Creator transaction id */
void
ReadView::prepare(trx_id_t id)
{
ut_ad(mutex_own(&trx_sys->mutex));
m_creator_trx_id = id;
m_low_limit_no = m_low_limit_id = trx_sys->max_trx_id;
if (!trx_sys->rw_trx_ids.empty()) {
copy_trx_ids(trx_sys->rw_trx_ids);
} else {
m_ids.clear();
}
if (UT_LIST_GET_LEN(trx_sys->serialisation_list) > 0) {
const trx_t* trx;
trx = UT_LIST_GET_FIRST(trx_sys->serialisation_list);
if (trx->no < m_low_limit_no) {
m_low_limit_no = trx->no;
}
}
}
/**
Complete the read view creation */
void
ReadView::complete()
{
/* The first active transaction has the smallest id. */
m_up_limit_id = !m_ids.empty() ? m_ids.front() : m_low_limit_id;
ut_ad(m_up_limit_id <= m_low_limit_id);
m_closed = false;
}
/**
Find a free view from the active list, if none found then allocate
a new view.
@return a view to use */
ReadView*
MVCC::get_view()
{
ut_ad(mutex_own(&trx_sys->mutex));
ReadView* view;
if (UT_LIST_GET_LEN(m_free) > 0) {
view = UT_LIST_GET_FIRST(m_free);
UT_LIST_REMOVE(m_free, view);
} else {
view = UT_NEW_NOKEY(ReadView());
if (view == NULL) {
ib::error() << "Failed to allocate MVCC view";
}
}
return(view);
}
/**
Release a view that is inactive but not closed. Caller must own
the trx_sys_t::mutex.
@param view View to release */
void
MVCC::view_release(ReadView*& view)
{
ut_ad(!srv_read_only_mode);
ut_ad(trx_sys_mutex_own());
uintptr_t p = reinterpret_cast<uintptr_t>(view);
ut_a(p & 0x1);
view = reinterpret_cast<ReadView*>(p & ~1);
ut_ad(view->m_closed);
/** RW transactions should not free their views here. Their views
should freed using view_close_view() */
ut_ad(view->m_creator_trx_id == 0);
UT_LIST_REMOVE(m_views, view);
UT_LIST_ADD_LAST(m_free, view);
view = NULL;
}
/**
Allocate and create a view.
@param view view owned by this class created for the
caller. Must be freed by calling view_close()
@param trx transaction instance of caller */
void
MVCC::view_open(ReadView*& view, trx_t* trx)
{
ut_ad(!srv_read_only_mode);
/** If no new RW transaction has been started since the last view
was created then reuse the the existing view. */
if (view != NULL) {
uintptr_t p = reinterpret_cast<uintptr_t>(view);
view = reinterpret_cast<ReadView*>(p & ~1);
ut_ad(view->m_closed);
/* NOTE: This can be optimised further, for now we only
resuse the view iff there are no active RW transactions.
There is an inherent race here between purge and this
thread. Purge will skip views that are marked as closed.
Therefore we must set the low limit id after we reset the
closed status after the check. */
if (trx_is_autocommit_non_locking(trx) && view->empty()) {
view->m_closed = false;
if (view->m_low_limit_id == trx_sys_get_max_trx_id()) {
return;
} else {
view->m_closed = true;
}
}
mutex_enter(&trx_sys->mutex);
UT_LIST_REMOVE(m_views, view);
} else {
mutex_enter(&trx_sys->mutex);
view = get_view();
}
if (view != NULL) {
view->prepare(trx->id);
view->complete();
UT_LIST_ADD_FIRST(m_views, view);
ut_ad(!view->is_closed());
ut_ad(validate());
}
trx_sys_mutex_exit();
}
/**
Get the oldest (active) view in the system.
@return oldest view if found or NULL */
ReadView*
MVCC::get_oldest_view() const
{
ReadView* view;
ut_ad(mutex_own(&trx_sys->mutex));
for (view = UT_LIST_GET_LAST(m_views);
view != NULL;
view = UT_LIST_GET_PREV(m_view_list, view)) {
if (!view->is_closed()) {
break;
}
}
return(view);
}
/**
Copy state from another view. Must call copy_complete() to finish.
@param other view to copy from */
void
ReadView::copy_prepare(const ReadView& other)
{
ut_ad(&other != this);
if (!other.m_ids.empty()) {
const ids_t::value_type* p = other.m_ids.data();
m_ids.assign(p, p + other.m_ids.size());
} else {
m_ids.clear();
}
m_up_limit_id = other.m_up_limit_id;
m_low_limit_no = other.m_low_limit_no;
m_low_limit_id = other.m_low_limit_id;
m_creator_trx_id = other.m_creator_trx_id;
}
/**
Complete the copy, insert the creator transaction id into the
m_ids too and adjust the m_up_limit_id, if required */
void
ReadView::copy_complete()
{
ut_ad(!trx_sys_mutex_own());
if (m_creator_trx_id > 0) {
m_ids.insert(m_creator_trx_id);
}
if (!m_ids.empty()) {
/* The last active transaction has the smallest id. */
m_up_limit_id = std::min(m_ids.front(), m_up_limit_id);
}
ut_ad(m_up_limit_id <= m_low_limit_id);
/* We added the creator transaction ID to the m_ids. */
m_creator_trx_id = 0;
}
/** Clones the oldest view and stores it in view. No need to
call view_close(). The caller owns the view that is passed in.
This function is called by Purge to determine whether it should
purge the delete marked record or not.
@param view Preallocated view, owned by the caller */
void
MVCC::clone_oldest_view(ReadView* view)
{
mutex_enter(&trx_sys->mutex);
ReadView* oldest_view = get_oldest_view();
if (oldest_view == NULL) {
view->prepare(0);
trx_sys_mutex_exit();
view->complete();
} else {
view->copy_prepare(*oldest_view);
trx_sys_mutex_exit();
view->copy_complete();
}
}
/**
@return the number of active views */
ulint
MVCC::size() const
{
trx_sys_mutex_enter();
ulint size = 0;
for (const ReadView* view = UT_LIST_GET_FIRST(m_views);
view != NULL;
view = UT_LIST_GET_NEXT(m_view_list, view)) {
if (!view->is_closed()) {
++size;
}
}
trx_sys_mutex_exit();
return(size);
}
/**
Close a view created by the above function.
@para view view allocated by trx_open.
@param own_mutex true if caller owns trx_sys_t::mutex */
void
MVCC::view_close(ReadView*& view, bool own_mutex)
{
uintptr_t p = reinterpret_cast<uintptr_t>(view);
/* Note: The assumption here is that AC-NL-RO transactions will
call this function with own_mutex == false. */
if (!own_mutex) {
/* Sanitise the pointer first. */
ReadView* ptr = reinterpret_cast<ReadView*>(p & ~1);
/* Note this can be called for a read view that
was already closed. */
ptr->m_closed = true;
/* Set the view as closed. */
view = reinterpret_cast<ReadView*>(p | 0x1);
} else {
view = reinterpret_cast<ReadView*>(p & ~1);
view->close();
UT_LIST_REMOVE(m_views, view);
UT_LIST_ADD_LAST(m_free, view);
ut_ad(validate());
view = NULL;
}
}
/**
Set the view creator transaction id. Note: This shouldbe set only
for views created by RW transactions.
@param view Set the creator trx id for this view
@param id Transaction id to set */
void
MVCC::set_view_creator_trx_id(ReadView* view, trx_id_t id)
{
ut_ad(id > 0);
ut_ad(mutex_own(&trx_sys->mutex));
view->creator_trx_id(id);
}
|