summaryrefslogtreecommitdiff
path: root/storage/innobase/ut/crc32_power8/crc32.S
blob: 136abe398368d760a2bc46dcad6bed4022a37c20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
/*
 * Calculate the checksum of data that is 16 byte aligned and a multiple of
 * 16 bytes.
 *
 * The first step is to reduce it to 1024 bits. We do this in 8 parallel
 * chunks in order to mask the latency of the vpmsum instructions. If we
 * have more than 32 kB of data to checksum we repeat this step multiple
 * times, passing in the previous 1024 bits.
 *
 * The next step is to reduce the 1024 bits to 64 bits. This step adds
 * 32 bits of 0s to the end - this matches what a CRC does. We just
 * calculate constants that land the data in this 32 bits.
 *
 * We then use fixed point Barrett reduction to compute a mod n over GF(2)
 * for n = CRC using POWER8 instructions. We use x = 32.
 *
 * http://en.wikipedia.org/wiki/Barrett_reduction
 *
 * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <ppc-asm.h>
#include "ppc-opcode.h"

#undef toc

#ifndef r1
#define r1 1
#endif

#ifndef r2
#define r2 2
#endif

		 .section		 .rodata
.balign 16

.byteswap_constant:
		 /* byte reverse permute constant */
		 .octa 0x0F0E0D0C0B0A09080706050403020100

#define __ASSEMBLY__
#include "crc32_constants.h"

		 .text

#if defined(__BIG_ENDIAN__) && defined(REFLECT)
#define BYTESWAP_DATA
#elif defined(__LITTLE_ENDIAN__) && !defined(REFLECT)
#define BYTESWAP_DATA
#else
#undef BYTESWAP_DATA
#endif

#define off16		 		 r25
#define off32		 		 r26
#define off48		 		 r27
#define off64		 		 r28
#define off80		 		 r29
#define off96		 		 r30
#define off112		 		 r31

#define const1		 		 v25
#define const2		 		 v26

#define byteswap		 v27
#define		 mask_32bit		 v28
#define		 mask_64bit		 v29
#define zeroes		 		 v30
#define ones		 		 v31

#ifdef BYTESWAP_DATA
#define VPERM(A, B, C, D) vperm		 A, B, C, D
#else
#define VPERM(A, B, C, D)
#endif

/* unsigned int __crc32_vpmsum(unsigned int crc, void *p, unsigned long len) */
FUNC_START(__crc32_vpmsum)
		 std		 r31,-8(r1)
		 std		 r30,-16(r1)
		 std		 r29,-24(r1)
		 std		 r28,-32(r1)
		 std		 r27,-40(r1)
		 std		 r26,-48(r1)
		 std		 r25,-56(r1)

		 li		 off16,16
		 li		 off32,32
		 li		 off48,48
		 li		 off64,64
		 li		 off80,80
		 li		 off96,96
		 li		 off112,112
		 li		 r0,0

		 mr		 r10,r3

		 vxor		 zeroes,zeroes,zeroes
		 vspltisw ones,-1

		 vsldoi		 mask_32bit,zeroes,ones,4
		 vsldoi		 mask_64bit,zeroes,ones,8

		 /* Get the initial value into v8 */
		 vxor		 v8,v8,v8
		 MTVRD(v8, r3)
#ifdef REFLECT
		 vsldoi		 v8,zeroes,v8,8		 /* shift into bottom 32 bits */
#else
		 vsldoi		 v8,v8,zeroes,4		 /* shift into top 32 bits */
#endif

#ifdef BYTESWAP_DATA
		 addis		 r3,r2,.byteswap_constant@toc@ha
		 addi		 r3,r3,.byteswap_constant@toc@l

		 lvx		 byteswap,0,r3
		 addi		 r3,r3,16
#endif

		 cmpdi		 r5,256
		 blt		 .Lshort

		 rldicr		 r6,r5,0,56

		 /* Checksum in blocks of MAX_SIZE */
1:		 lis		 r7,MAX_SIZE@h
		 ori		 r7,r7,MAX_SIZE@l
		 mr		 r9,r7
		 cmpd		 r6,r7
		 bgt		 2f
		 mr		 r7,r6
2:		 subf		 r6,r7,r6

		 /* our main loop does 128 bytes at a time */
		 srdi		 r7,r7,7

		 /*
		  * Work out the offset into the constants table to start at. Each
		  * constant is 16 bytes, and it is used against 128 bytes of input
		  * data - 128 / 16 = 8
		  */
		 sldi		 r8,r7,4
		 srdi		 r9,r9,3
		 subf		 r8,r8,r9

		 /* We reduce our final 128 bytes in a separate step */
		 addi		 r7,r7,-1
		 mtctr		 r7

		 addis		 r3,r2,.constants@toc@ha
		 addi		 r3,r3,.constants@toc@l

		 /* Find the start of our constants */
		 add		 r3,r3,r8

		 /* zero v0-v7 which will contain our checksums */
		 vxor		 v0,v0,v0
		 vxor		 v1,v1,v1
		 vxor		 v2,v2,v2
		 vxor		 v3,v3,v3
		 vxor		 v4,v4,v4
		 vxor		 v5,v5,v5
		 vxor		 v6,v6,v6
		 vxor		 v7,v7,v7

		 lvx		 const1,0,r3

		 /*
		  * If we are looping back to consume more data we use the values
		  * already in v16-v23.
		  */
		 cmpdi		 r0,1
		 beq		 2f

		 /* First warm up pass */
		 lvx		 v16,0,r4
		 lvx		 v17,off16,r4
		 VPERM(v16,v16,v16,byteswap)
		 VPERM(v17,v17,v17,byteswap)
		 lvx		 v18,off32,r4
		 lvx		 v19,off48,r4
		 VPERM(v18,v18,v18,byteswap)
		 VPERM(v19,v19,v19,byteswap)
		 lvx		 v20,off64,r4
		 lvx		 v21,off80,r4
		 VPERM(v20,v20,v20,byteswap)
		 VPERM(v21,v21,v21,byteswap)
		 lvx		 v22,off96,r4
		 lvx		 v23,off112,r4
		 VPERM(v22,v22,v22,byteswap)
		 VPERM(v23,v23,v23,byteswap)
		 addi		 r4,r4,8*16

		 /* xor in initial value */
		 vxor		 v16,v16,v8

2:		 bdz		 .Lfirst_warm_up_done

		 addi		 r3,r3,16
		 lvx		 const2,0,r3

		 /* Second warm up pass */
		 VPMSUMD(v8,v16,const1)
		 lvx		 v16,0,r4
		 VPERM(v16,v16,v16,byteswap)
		 ori		 r2,r2,0

		 VPMSUMD(v9,v17,const1)
		 lvx		 v17,off16,r4
		 VPERM(v17,v17,v17,byteswap)
		 ori		 r2,r2,0

		 VPMSUMD(v10,v18,const1)
		 lvx		 v18,off32,r4
		 VPERM(v18,v18,v18,byteswap)
		 ori		 r2,r2,0

		 VPMSUMD(v11,v19,const1)
		 lvx		 v19,off48,r4
		 VPERM(v19,v19,v19,byteswap)
		 ori		 r2,r2,0

		 VPMSUMD(v12,v20,const1)
		 lvx		 v20,off64,r4
		 VPERM(v20,v20,v20,byteswap)
		 ori		 r2,r2,0

		 VPMSUMD(v13,v21,const1)
		 lvx		 v21,off80,r4
		 VPERM(v21,v21,v21,byteswap)
		 ori		 r2,r2,0

		 VPMSUMD(v14,v22,const1)
		 lvx		 v22,off96,r4
		 VPERM(v22,v22,v22,byteswap)
		 ori		 r2,r2,0

		 VPMSUMD(v15,v23,const1)
		 lvx		 v23,off112,r4
		 VPERM(v23,v23,v23,byteswap)

		 addi		 r4,r4,8*16

		 bdz		 .Lfirst_cool_down

		 /*
		  * main loop. We modulo schedule it such that it takes three iterations
		  * to complete - first iteration load, second iteration vpmsum, third
		  * iteration xor.
		  */
		 .balign		 16
4:		 lvx		 const1,0,r3
		 addi		 r3,r3,16
		 ori		 r2,r2,0

		 vxor		 v0,v0,v8
		 VPMSUMD(v8,v16,const2)
		 lvx		 v16,0,r4
		 VPERM(v16,v16,v16,byteswap)
		 ori		 r2,r2,0

		 vxor		 v1,v1,v9
		 VPMSUMD(v9,v17,const2)
		 lvx		 v17,off16,r4
		 VPERM(v17,v17,v17,byteswap)
		 ori		 r2,r2,0

		 vxor		 v2,v2,v10
		 VPMSUMD(v10,v18,const2)
		 lvx		 v18,off32,r4
		 VPERM(v18,v18,v18,byteswap)
		 ori		 r2,r2,0

		 vxor		 v3,v3,v11
		 VPMSUMD(v11,v19,const2)
		 lvx		 v19,off48,r4
		 VPERM(v19,v19,v19,byteswap)
		 lvx		 const2,0,r3
		 ori		 r2,r2,0

		 vxor		 v4,v4,v12
		 VPMSUMD(v12,v20,const1)
		 lvx		 v20,off64,r4
		 VPERM(v20,v20,v20,byteswap)
		 ori		 r2,r2,0

		 vxor		 v5,v5,v13
		 VPMSUMD(v13,v21,const1)
		 lvx		 v21,off80,r4
		 VPERM(v21,v21,v21,byteswap)
		 ori		 r2,r2,0

		 vxor		 v6,v6,v14
		 VPMSUMD(v14,v22,const1)
		 lvx		 v22,off96,r4
		 VPERM(v22,v22,v22,byteswap)
		 ori		 r2,r2,0

		 vxor		 v7,v7,v15
		 VPMSUMD(v15,v23,const1)
		 lvx		 v23,off112,r4
		 VPERM(v23,v23,v23,byteswap)

		 addi		 r4,r4,8*16

		 bdnz		 4b

.Lfirst_cool_down:
		 /* First cool down pass */
		 lvx		 const1,0,r3
		 addi		 r3,r3,16

		 vxor		 v0,v0,v8
		 VPMSUMD(v8,v16,const1)
		 ori		 r2,r2,0

		 vxor		 v1,v1,v9
		 VPMSUMD(v9,v17,const1)
		 ori		 r2,r2,0

		 vxor		 v2,v2,v10
		 VPMSUMD(v10,v18,const1)
		 ori		 r2,r2,0

		 vxor		 v3,v3,v11
		 VPMSUMD(v11,v19,const1)
		 ori		 r2,r2,0

		 vxor		 v4,v4,v12
		 VPMSUMD(v12,v20,const1)
		 ori		 r2,r2,0

		 vxor		 v5,v5,v13
		 VPMSUMD(v13,v21,const1)
		 ori		 r2,r2,0

		 vxor		 v6,v6,v14
		 VPMSUMD(v14,v22,const1)
		 ori		 r2,r2,0

		 vxor		 v7,v7,v15
		 VPMSUMD(v15,v23,const1)
		 ori		 r2,r2,0

.Lsecond_cool_down:
		 /* Second cool down pass */
		 vxor		 v0,v0,v8
		 vxor		 v1,v1,v9
		 vxor		 v2,v2,v10
		 vxor		 v3,v3,v11
		 vxor		 v4,v4,v12
		 vxor		 v5,v5,v13
		 vxor		 v6,v6,v14
		 vxor		 v7,v7,v15

#ifdef REFLECT
		 /*
		  * vpmsumd produces a 96 bit result in the least significant bits
		  * of the register. Since we are bit reflected we have to shift it
		  * left 32 bits so it occupies the least significant bits in the
		  * bit reflected domain.
		  */
		 vsldoi		 v0,v0,zeroes,4
		 vsldoi		 v1,v1,zeroes,4
		 vsldoi		 v2,v2,zeroes,4
		 vsldoi		 v3,v3,zeroes,4
		 vsldoi		 v4,v4,zeroes,4
		 vsldoi		 v5,v5,zeroes,4
		 vsldoi		 v6,v6,zeroes,4
		 vsldoi		 v7,v7,zeroes,4
#endif

		 /* xor with last 1024 bits */
		 lvx		 v8,0,r4
		 lvx		 v9,off16,r4
		 VPERM(v8,v8,v8,byteswap)
		 VPERM(v9,v9,v9,byteswap)
		 lvx		 v10,off32,r4
		 lvx		 v11,off48,r4
		 VPERM(v10,v10,v10,byteswap)
		 VPERM(v11,v11,v11,byteswap)
		 lvx		 v12,off64,r4
		 lvx		 v13,off80,r4
		 VPERM(v12,v12,v12,byteswap)
		 VPERM(v13,v13,v13,byteswap)
		 lvx		 v14,off96,r4
		 lvx		 v15,off112,r4
		 VPERM(v14,v14,v14,byteswap)
		 VPERM(v15,v15,v15,byteswap)

		 addi		 r4,r4,8*16

		 vxor		 v16,v0,v8
		 vxor		 v17,v1,v9
		 vxor		 v18,v2,v10
		 vxor		 v19,v3,v11
		 vxor		 v20,v4,v12
		 vxor		 v21,v5,v13
		 vxor		 v22,v6,v14
		 vxor		 v23,v7,v15

		 li		 r0,1
		 cmpdi		 r6,0
		 addi		 r6,r6,128
		 bne		 1b

		 /* Work out how many bytes we have left */
		 andi.		 r5,r5,127

		 /* Calculate where in the constant table we need to start */
		 subfic		 r6,r5,128
		 add		 r3,r3,r6

		 /* How many 16 byte chunks are in the tail */
		 srdi		 r7,r5,4
		 mtctr		 r7

		 /*
		  * Reduce the previously calculated 1024 bits to 64 bits, shifting
		  * 32 bits to include the trailing 32 bits of zeros
		  */
		 lvx		 v0,0,r3
		 lvx		 v1,off16,r3
		 lvx		 v2,off32,r3
		 lvx		 v3,off48,r3
		 lvx		 v4,off64,r3
		 lvx		 v5,off80,r3
		 lvx		 v6,off96,r3
		 lvx		 v7,off112,r3
		 addi		 r3,r3,8*16

		 VPMSUMW(v0,v16,v0)
		 VPMSUMW(v1,v17,v1)
		 VPMSUMW(v2,v18,v2)
		 VPMSUMW(v3,v19,v3)
		 VPMSUMW(v4,v20,v4)
		 VPMSUMW(v5,v21,v5)
		 VPMSUMW(v6,v22,v6)
		 VPMSUMW(v7,v23,v7)

		 /* Now reduce the tail (0 - 112 bytes) */
		 cmpdi		 r7,0
		 beq		 1f

		 lvx		 v16,0,r4
		 lvx		 v17,0,r3
		 VPERM(v16,v16,v16,byteswap)
		 VPMSUMW(v16,v16,v17)
		 vxor		 v0,v0,v16
		 bdz		 1f

		 lvx		 v16,off16,r4
		 lvx		 v17,off16,r3
		 VPERM(v16,v16,v16,byteswap)
		 VPMSUMW(v16,v16,v17)
		 vxor		 v0,v0,v16
		 bdz		 1f

		 lvx		 v16,off32,r4
		 lvx		 v17,off32,r3
		 VPERM(v16,v16,v16,byteswap)
		 VPMSUMW(v16,v16,v17)
		 vxor		 v0,v0,v16
		 bdz		 1f

		 lvx		 v16,off48,r4
		 lvx		 v17,off48,r3
		 VPERM(v16,v16,v16,byteswap)
		 VPMSUMW(v16,v16,v17)
		 vxor		 v0,v0,v16
		 bdz		 1f

		 lvx		 v16,off64,r4
		 lvx		 v17,off64,r3
		 VPERM(v16,v16,v16,byteswap)
		 VPMSUMW(v16,v16,v17)
		 vxor		 v0,v0,v16
		 bdz		 1f

		 lvx		 v16,off80,r4
		 lvx		 v17,off80,r3
		 VPERM(v16,v16,v16,byteswap)
		 VPMSUMW(v16,v16,v17)
		 vxor		 v0,v0,v16
		 bdz		 1f

		 lvx		 v16,off96,r4
		 lvx		 v17,off96,r3
		 VPERM(v16,v16,v16,byteswap)
		 VPMSUMW(v16,v16,v17)
		 vxor		 v0,v0,v16

		 /* Now xor all the parallel chunks together */
1:		 vxor		 v0,v0,v1
		 vxor		 v2,v2,v3
		 vxor		 v4,v4,v5
		 vxor		 v6,v6,v7

		 vxor		 v0,v0,v2
		 vxor		 v4,v4,v6

		 vxor		 v0,v0,v4

.Lbarrett_reduction:
		 /* Barrett constants */
		 addis		 r3,r2,.barrett_constants@toc@ha
		 addi		 r3,r3,.barrett_constants@toc@l

		 lvx		 const1,0,r3
		 lvx		 const2,off16,r3

		 vsldoi		 v1,v0,v0,8
		 vxor		 v0,v0,v1		 		 /* xor two 64 bit results together */

#ifdef REFLECT
		 /* shift left one bit */
		 vspltisb v1,1
		 vsl		 v0,v0,v1
#endif

		 vand		 v0,v0,mask_64bit

#ifndef REFLECT
		 /*
		  * Now for the Barrett reduction algorithm. The idea is to calculate q,
		  * the multiple of our polynomial that we need to subtract. By
		  * doing the computation 2x bits higher (ie 64 bits) and shifting the
		  * result back down 2x bits, we round down to the nearest multiple.
		  */
		 VPMSUMD(v1,v0,const1)		 /* ma */
		 vsldoi		 v1,zeroes,v1,8		 /* q = floor(ma/(2^64)) */
		 VPMSUMD(v1,v1,const2)		 /* qn */
		 vxor		 v0,v0,v1		 /* a - qn, subtraction is xor in GF(2) */

		 /*
		  * Get the result into r3. We need to shift it left 8 bytes:
		  * V0 [ 0 1 2 X ]
		  * V0 [ 0 X 2 3 ]
		  */
		 vsldoi		 v0,v0,zeroes,8		 /* shift result into top 64 bits */
#else
		 /*
		  * The reflected version of Barrett reduction. Instead of bit
		  * reflecting our data (which is expensive to do), we bit reflect our
		  * constants and our algorithm, which means the intermediate data in
		  * our vector registers goes from 0-63 instead of 63-0. We can reflect
		  * the algorithm because we don't carry in mod 2 arithmetic.
		  */
		 vand		 v1,v0,mask_32bit		 /* bottom 32 bits of a */
		 VPMSUMD(v1,v1,const1)		 		 /* ma */
		 vand		 v1,v1,mask_32bit		 /* bottom 32bits of ma */
		 VPMSUMD(v1,v1,const2)		 		 /* qn */
		 vxor		 v0,v0,v1		 		 /* a - qn, subtraction is xor in GF(2) */

		 /*
		  * Since we are bit reflected, the result (ie the low 32 bits) is in
		  * the high 32 bits. We just need to shift it left 4 bytes
		  * V0 [ 0 1 X 3 ]
		  * V0 [ 0 X 2 3 ]
		  */
		 vsldoi		 v0,v0,zeroes,4		 		 /* shift result into top 64 bits of */
#endif

		 /* Get it into r3 */
		 MFVRD(r3, v0)

		 ld		 r31,-8(r1)
		 ld		 r30,-16(r1)
		 ld		 r29,-24(r1)
		 ld		 r28,-32(r1)
		 ld		 r27,-40(r1)
		 ld		 r26,-48(r1)
		 ld		 r25,-56(r1)

		 blr

.Lfirst_warm_up_done:
		 lvx		 const1,0,r3
		 addi		 r3,r3,16

		 VPMSUMD(v8,v16,const1)
		 VPMSUMD(v9,v17,const1)
		 VPMSUMD(v10,v18,const1)
		 VPMSUMD(v11,v19,const1)
		 VPMSUMD(v12,v20,const1)
		 VPMSUMD(v13,v21,const1)
		 VPMSUMD(v14,v22,const1)
		 VPMSUMD(v15,v23,const1)

		 b		 .Lsecond_cool_down

.Lshort:
		 cmpdi		 r5,0
		 beq		 .Lzero

		 addis		 r3,r2,.short_constants@toc@ha
		 addi		 r3,r3,.short_constants@toc@l

		 /* Calculate where in the constant table we need to start */
		 subfic		 r6,r5,256
		 add		 r3,r3,r6

		 /* How many 16 byte chunks? */
		 srdi		 r7,r5,4
		 mtctr		 r7

		 vxor		 v19,v19,v19
		 vxor		 v20,v20,v20

		 lvx		 v0,0,r4
		 lvx		 v16,0,r3
		 VPERM(v0,v0,v16,byteswap)
		 vxor		 v0,v0,v8		 /* xor in initial value */
		 VPMSUMW(v0,v0,v16)
		 bdz		 .Lv0

		 lvx		 v1,off16,r4
		 lvx		 v17,off16,r3
		 VPERM(v1,v1,v17,byteswap)
		 VPMSUMW(v1,v1,v17)
		 bdz		 .Lv1

		 lvx		 v2,off32,r4
		 lvx		 v16,off32,r3
		 VPERM(v2,v2,v16,byteswap)
		 VPMSUMW(v2,v2,v16)
		 bdz		 .Lv2

		 lvx		 v3,off48,r4
		 lvx		 v17,off48,r3
		 VPERM(v3,v3,v17,byteswap)
		 VPMSUMW(v3,v3,v17)
		 bdz		 .Lv3

		 lvx		 v4,off64,r4
		 lvx		 v16,off64,r3
		 VPERM(v4,v4,v16,byteswap)
		 VPMSUMW(v4,v4,v16)
		 bdz		 .Lv4

		 lvx		 v5,off80,r4
		 lvx		 v17,off80,r3
		 VPERM(v5,v5,v17,byteswap)
		 VPMSUMW(v5,v5,v17)
		 bdz		 .Lv5

		 lvx		 v6,off96,r4
		 lvx		 v16,off96,r3
		 VPERM(v6,v6,v16,byteswap)
		 VPMSUMW(v6,v6,v16)
		 bdz		 .Lv6

		 lvx		 v7,off112,r4
		 lvx		 v17,off112,r3
		 VPERM(v7,v7,v17,byteswap)
		 VPMSUMW(v7,v7,v17)
		 bdz		 .Lv7

		 addi		 r3,r3,128
		 addi		 r4,r4,128

		 lvx		 v8,0,r4
		 lvx		 v16,0,r3
		 VPERM(v8,v8,v16,byteswap)
		 VPMSUMW(v8,v8,v16)
		 bdz		 .Lv8

		 lvx		 v9,off16,r4
		 lvx		 v17,off16,r3
		 VPERM(v9,v9,v17,byteswap)
		 VPMSUMW(v9,v9,v17)
		 bdz		 .Lv9

		 lvx		 v10,off32,r4
		 lvx		 v16,off32,r3
		 VPERM(v10,v10,v16,byteswap)
		 VPMSUMW(v10,v10,v16)
		 bdz		 .Lv10

		 lvx		 v11,off48,r4
		 lvx		 v17,off48,r3
		 VPERM(v11,v11,v17,byteswap)
		 VPMSUMW(v11,v11,v17)
		 bdz		 .Lv11

		 lvx		 v12,off64,r4
		 lvx		 v16,off64,r3
		 VPERM(v12,v12,v16,byteswap)
		 VPMSUMW(v12,v12,v16)
		 bdz		 .Lv12

		 lvx		 v13,off80,r4
		 lvx		 v17,off80,r3
		 VPERM(v13,v13,v17,byteswap)
		 VPMSUMW(v13,v13,v17)
		 bdz		 .Lv13

		 lvx		 v14,off96,r4
		 lvx		 v16,off96,r3
		 VPERM(v14,v14,v16,byteswap)
		 VPMSUMW(v14,v14,v16)
		 bdz		 .Lv14

		 lvx		 v15,off112,r4
		 lvx		 v17,off112,r3
		 VPERM(v15,v15,v17,byteswap)
		 VPMSUMW(v15,v15,v17)

.Lv15:		 vxor		 v19,v19,v15
.Lv14:		 vxor		 v20,v20,v14
.Lv13:		 vxor		 v19,v19,v13
.Lv12:		 vxor		 v20,v20,v12
.Lv11:		 vxor		 v19,v19,v11
.Lv10:		 vxor		 v20,v20,v10
.Lv9:		 vxor		 v19,v19,v9
.Lv8:		 vxor		 v20,v20,v8
.Lv7:		 vxor		 v19,v19,v7
.Lv6:		 vxor		 v20,v20,v6
.Lv5:		 vxor		 v19,v19,v5
.Lv4:		 vxor		 v20,v20,v4
.Lv3:		 vxor		 v19,v19,v3
.Lv2:		 vxor		 v20,v20,v2
.Lv1:		 vxor		 v19,v19,v1
.Lv0:		 vxor		 v20,v20,v0

		 vxor		 v0,v19,v20

		 b		 .Lbarrett_reduction

.Lzero:
		 mr		 r3,r10
		 blr
FUNC_END(__crc32_vpmsum)