1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
|
/* QQ: TODO - allocate everything from dynarrays !!! (benchmark) */
/* QQ: TODO instant duration locks */
/* QQ: #warning automatically place S instead of LS if possible */
/* Copyright (C) 2006 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
/*
Generic Lock Manager
Lock manager handles locks on "resources", a resource must be uniquely
identified by a 64-bit number. Lock manager itself does not imply
anything about the nature of a resource - it can be a row, a table, a
database, or just anything.
Locks belong to "lock owners". A Lock owner is uniquely identified by a
16-bit number. A function loid2lo must be provided by the application
that takes such a number as an argument and returns a LOCK_OWNER
structure.
Lock levels are completely defined by three tables. Lock compatibility
matrix specifies which locks can be held at the same time on a resource.
Lock combining matrix specifies what lock level has the same behaviour as
a pair of two locks of given levels. getlock_result matrix simplifies
intention locking and lock escalation for an application, basically it
defines which locks are intention locks and which locks are "loose"
locks. It is only used to provide better diagnostics for the
application, lock manager itself does not differentiate between normal,
intention, and loose locks.
Internally lock manager is based on a lock-free hash, see lf_hash.c for
details. All locks are stored in a hash, with a resource id as a search
key, so all locks for the same resource will be considered collisions and
will be put in a one (lock-free) linked list. The main lock-handling
logic is in the inner loop that searches for a lock in such a linked
list - lockfind().
This works as follows. Locks generally are added to the end of the list
(with one exception, see below). When scanning the list it is always
possible to determine what locks are granted (active) and what locks are
waiting - first lock is obviously active, the second is active if it's
compatible with the first, and so on, a lock is active if it's compatible
with all previous locks and all locks before it are also active.
To calculate the "compatible with all previous locks" all locks are
accumulated in prev_lock variable using lock_combining_matrix.
Lock upgrades: when a thread that has a lock on a given resource,
requests a new lock on the same resource and the old lock is not enough
to satisfy new lock requirements (which is defined by
lock_combining_matrix[old_lock][new_lock] != old_lock), a new lock is
placed in the list. Depending on other locks it is immediately active or
it will wait for other locks. Here's an exception to "locks are added
to the end" rule - upgraded locks are added after the last active lock
but before all waiting locks. Old lock (the one we upgraded from) is
not removed from the list, indeed it may be needed if the new lock was
in a savepoint that gets rolled back. So old lock is marked as "ignored"
(IGNORE_ME flag). New lock gets an UPGRADED flag.
Loose locks add an important exception to the above. Loose locks do not
always commute with other locks. In the list IX-LS both locks are active,
while in the LS-IX list only the first lock is active. This creates a
problem in lock upgrades. If the list was IX-LS and the owner of the
first lock wants to place LS lock (which can be immediately granted), the
IX lock is upgraded to LSIX and the list becomes IX-LS-LSIX, which,
according to the lock compatibility matrix means that the last lock is
waiting - of course it all happened because IX and LS were swapped and
they don't commute. To work around this there's ACTIVE flag which is set
in every lock that never waited (was placed active), and this flag
overrides "compatible with all previous locks" rule.
When a lock is placed to the end of the list it's either compatible with
all locks and all locks are active - new lock becomes active at once, or
it conflicts with some of the locks, in this case in the 'blocker'
variable a conflicting lock is returned and the calling thread waits on a
pthread condition in the LOCK_OWNER structure of the owner of the
conflicting lock. Or a new lock is compatible with all locks, but some
existing locks are not compatible with each other (example: request IS,
when the list is S-IX) - that is not all locks are active. In this case a
first waiting lock is returned in the 'blocker' variable, lockman_getlock()
notices that a "blocker" does not conflict with the requested lock, and
"dereferences" it, to find the lock that it's waiting on. The calling
thread than begins to wait on the same lock.
To better support table-row relations where one needs to lock the table
with an intention lock before locking the row, extended diagnostics is
provided. When an intention lock (presumably on a table) is granted,
lockman_getlock() returns one of GOT_THE_LOCK (no need to lock the row,
perhaps the thread already has a normal lock on this table),
GOT_THE_LOCK_NEED_TO_LOCK_A_SUBRESOURCE (need to lock the row, as usual),
GOT_THE_LOCK_NEED_TO_INSTANT_LOCK_A_SUBRESOURCE (only need to check
whether it's possible to lock the row, but no need to lock it - perhaps
the thread has a loose lock on this table). This is defined by
getlock_result[] table.
*/
#include <my_global.h>
#include <my_sys.h>
#include <my_bit.h>
#include <lf.h>
#include "lockman.h"
/*
Lock compatibility matrix.
It's asymmetric. Read it as "Somebody has the lock <value in the row
label>, can I set the lock <value in the column label> ?"
') Though you can take LS lock while somebody has S lock, it makes no
sense - it's simpler to take S lock too.
1 - compatible
0 - incompatible
-1 - "impossible", so that we can assert the impossibility.
*/
static int lock_compatibility_matrix[10][10]=
{ /* N S X IS IX SIX LS LX SLX LSIX */
{ -1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, /* N */
{ -1, 1, 0, 1, 0, 0, 1, 0, 0, 0 }, /* S */
{ -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* X */
{ -1, 1, 0, 1, 1, 1, 1, 1, 1, 1 }, /* IS */
{ -1, 0, 0, 1, 1, 0, 1, 1, 0, 1 }, /* IX */
{ -1, 0, 0, 1, 0, 0, 1, 0, 0, 0 }, /* SIX */
{ -1, 1, 0, 1, 0, 0, 1, 0, 0, 0 }, /* LS */
{ -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* LX */
{ -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* SLX */
{ -1, 0, 0, 1, 0, 0, 1, 0, 0, 0 } /* LSIX */
};
/*
Lock combining matrix.
It's symmetric. Read it as "what lock level L is identical to the
set of two locks A and B"
One should never get N from it, we assert the impossibility
*/
static enum lockman_lock_type lock_combining_matrix[10][10]=
{/* N S X IS IX SIX LS LX SLX LSIX */
{ N, S, X, IS, IX, SIX, S, SLX, SLX, SIX}, /* N */
{ S, S, X, S, SIX, SIX, S, SLX, SLX, SIX}, /* S */
{ X, X, X, X, X, X, X, X, X, X}, /* X */
{ IS, S, X, IS, IX, SIX, LS, LX, SLX, LSIX}, /* IS */
{ IX, SIX, X, IX, IX, SIX, LSIX, LX, SLX, LSIX}, /* IX */
{ SIX, SIX, X, SIX, SIX, SIX, SIX, SLX, SLX, SIX}, /* SIX */
{ LS, S, X, LS, LSIX, SIX, LS, LX, SLX, LSIX}, /* LS */
{ LX, SLX, X, LX, LX, SLX, LX, LX, SLX, LX}, /* LX */
{ SLX, SLX, X, SLX, SLX, SLX, SLX, SLX, SLX, SLX}, /* SLX */
{ LSIX, SIX, X, LSIX, LSIX, SIX, LSIX, LX, SLX, LSIX} /* LSIX */
};
#define REPEAT_ONCE_MORE 0
#define OK_TO_PLACE_THE_LOCK 1
#define OK_TO_PLACE_THE_REQUEST 2
#define ALREADY_HAVE_THE_LOCK 4
#define ALREADY_HAVE_THE_REQUEST 8
#define PLACE_NEW_DISABLE_OLD 16
#define REQUEST_NEW_DISABLE_OLD 32
#define RESOURCE_WAS_UNLOCKED 64
#define NEED_TO_WAIT (OK_TO_PLACE_THE_REQUEST | ALREADY_HAVE_THE_REQUEST |\
REQUEST_NEW_DISABLE_OLD)
#define ALREADY_HAVE (ALREADY_HAVE_THE_LOCK | ALREADY_HAVE_THE_REQUEST)
#define LOCK_UPGRADE (PLACE_NEW_DISABLE_OLD | REQUEST_NEW_DISABLE_OLD)
/*
the return codes for lockman_getlock
It's asymmetric. Read it as "I have the lock <value in the row label>,
what value should be returned for <value in the column label> ?"
0 means impossible combination (assert!)
Defines below help to preserve the table structure.
I/L/A values are self explanatory
x means the combination is possible (assert should not crash)
but it cannot happen in row locks, only in table locks (S,X),
or lock escalations (LS,LX)
*/
#define I GOT_THE_LOCK_NEED_TO_LOCK_A_SUBRESOURCE
#define L GOT_THE_LOCK_NEED_TO_INSTANT_LOCK_A_SUBRESOURCE
#define A GOT_THE_LOCK
#define x GOT_THE_LOCK
static enum lockman_getlock_result getlock_result[10][10]=
{/* N S X IS IX SIX LS LX SLX LSIX */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, /* N */
{ 0, x, 0, A, 0, 0, x, 0, 0, 0}, /* S */
{ 0, x, x, A, A, 0, x, x, 0, 0}, /* X */
{ 0, 0, 0, I, 0, 0, 0, 0, 0, 0}, /* IS */
{ 0, 0, 0, I, I, 0, 0, 0, 0, 0}, /* IX */
{ 0, x, 0, A, I, 0, x, 0, 0, 0}, /* SIX */
{ 0, 0, 0, L, 0, 0, x, 0, 0, 0}, /* LS */
{ 0, 0, 0, L, L, 0, x, x, 0, 0}, /* LX */
{ 0, x, 0, A, L, 0, x, x, 0, 0}, /* SLX */
{ 0, 0, 0, L, I, 0, x, 0, 0, 0} /* LSIX */
};
#undef I
#undef L
#undef A
#undef x
LF_REQUIRE_PINS(4)
typedef struct lockman_lock {
uint64 resource;
struct lockman_lock *lonext;
intptr volatile link;
uint32 hashnr;
/* QQ: TODO - remove hashnr from LOCK */
uint16 loid;
uchar lock; /* sizeof(uchar) <= sizeof(enum) */
uchar flags;
} LOCK;
#define IGNORE_ME 1
#define UPGRADED 2
#define ACTIVE 4
typedef struct {
intptr volatile *prev;
LOCK *curr, *next;
LOCK *blocker, *upgrade_from;
} CURSOR;
#define PTR(V) (LOCK *)((V) & (~(intptr)1))
#define DELETED(V) ((V) & 1)
/*
NOTE
cursor is positioned in either case
pins[0..3] are used, they are NOT removed on return
*/
static int lockfind(LOCK * volatile *head, LOCK *node,
CURSOR *cursor, LF_PINS *pins)
{
uint32 hashnr, cur_hashnr;
uint64 resource, cur_resource;
intptr cur_link;
my_bool cur_active, compatible, upgrading, prev_active;
enum lockman_lock_type lock, prev_lock, cur_lock;
uint16 loid, cur_loid;
int cur_flags, flags;
hashnr= node->hashnr;
resource= node->resource;
lock= node->lock;
loid= node->loid;
flags= node->flags;
retry:
cursor->prev= (intptr *)head;
prev_lock= N;
cur_active= TRUE;
compatible= TRUE;
upgrading= FALSE;
cursor->blocker= cursor->upgrade_from= 0;
_lf_unpin(pins, 3);
do {
cursor->curr= PTR(*cursor->prev);
_lf_pin(pins, 1, cursor->curr);
} while(*cursor->prev != (intptr)cursor->curr && LF_BACKOFF);
for (;;)
{
if (!cursor->curr)
break;
do {
cur_link= cursor->curr->link;
cursor->next= PTR(cur_link);
_lf_pin(pins, 0, cursor->next);
} while (cur_link != cursor->curr->link && LF_BACKOFF);
cur_hashnr= cursor->curr->hashnr;
cur_resource= cursor->curr->resource;
cur_lock= cursor->curr->lock;
cur_loid= cursor->curr->loid;
cur_flags= cursor->curr->flags;
if (*cursor->prev != (intptr)cursor->curr)
{
(void)LF_BACKOFF;
goto retry;
}
if (!DELETED(cur_link))
{
if (cur_hashnr > hashnr ||
(cur_hashnr == hashnr && cur_resource >= resource))
{
if (cur_hashnr > hashnr || cur_resource > resource)
break;
/* ok, we have a lock for this resource */
DBUG_ASSERT(lock_compatibility_matrix[prev_lock][cur_lock] >= 0);
DBUG_ASSERT(lock_compatibility_matrix[cur_lock][lock] >= 0);
if ((cur_flags & IGNORE_ME) && ! (flags & IGNORE_ME))
{
DBUG_ASSERT(cur_active);
if (cur_loid == loid)
cursor->upgrade_from= cursor->curr;
}
else
{
prev_active= cur_active;
if (cur_flags & ACTIVE)
DBUG_ASSERT(prev_active == TRUE);
else
cur_active&= lock_compatibility_matrix[prev_lock][cur_lock];
if (upgrading && !cur_active /*&& !(cur_flags & UPGRADED)*/)
break;
if (prev_active && !cur_active)
{
cursor->blocker= cursor->curr;
_lf_pin(pins, 3, cursor->curr);
}
if (cur_loid == loid)
{
/* we already have a lock on this resource */
DBUG_ASSERT(lock_combining_matrix[cur_lock][lock] != N);
DBUG_ASSERT(!upgrading || (flags & IGNORE_ME));
if (lock_combining_matrix[cur_lock][lock] == cur_lock)
{
/* new lock is compatible */
if (cur_active)
{
cursor->blocker= cursor->curr; /* loose-locks! */
_lf_unpin(pins, 3); /* loose-locks! */
return ALREADY_HAVE_THE_LOCK;
}
else
return ALREADY_HAVE_THE_REQUEST;
}
/* not compatible, upgrading */
upgrading= TRUE;
cursor->upgrade_from= cursor->curr;
}
else
{
if (!lock_compatibility_matrix[cur_lock][lock])
{
compatible= FALSE;
cursor->blocker= cursor->curr;
_lf_pin(pins, 3, cursor->curr);
}
}
prev_lock= lock_combining_matrix[prev_lock][cur_lock];
DBUG_ASSERT(prev_lock != N);
}
}
cursor->prev= &(cursor->curr->link);
_lf_pin(pins, 2, cursor->curr);
}
else
{
if (my_atomic_casptr((void **)cursor->prev,
(void **)(char*) &cursor->curr, cursor->next))
_lf_alloc_free(pins, cursor->curr);
else
{
(void)LF_BACKOFF;
goto retry;
}
}
cursor->curr= cursor->next;
_lf_pin(pins, 1, cursor->curr);
}
/*
either the end of lock list - no more locks for this resource,
or upgrading and the end of active lock list
*/
if (upgrading)
{
if (compatible /*&& prev_active*/)
return PLACE_NEW_DISABLE_OLD;
else
return REQUEST_NEW_DISABLE_OLD;
}
if (cur_active && compatible)
{
/*
either no locks for this resource or all are compatible.
ok to place the lock in any case.
*/
return prev_lock == N ? RESOURCE_WAS_UNLOCKED
: OK_TO_PLACE_THE_LOCK;
}
/* we have a lock conflict. ok to place a lock request. And wait */
return OK_TO_PLACE_THE_REQUEST;
}
/*
NOTE
it uses pins[0..3], on return pins 0..2 are removed, pin 3 (blocker) stays
*/
static int lockinsert(LOCK * volatile *head, LOCK *node, LF_PINS *pins,
LOCK **blocker)
{
CURSOR cursor;
int res;
do
{
res= lockfind(head, node, &cursor, pins);
DBUG_ASSERT(res != ALREADY_HAVE_THE_REQUEST);
if (!(res & ALREADY_HAVE))
{
if (res & LOCK_UPGRADE)
{
node->flags|= UPGRADED;
node->lock= lock_combining_matrix[cursor.upgrade_from->lock][node->lock];
}
if (!(res & NEED_TO_WAIT))
node->flags|= ACTIVE;
node->link= (intptr)cursor.curr;
DBUG_ASSERT(node->link != (intptr)node);
DBUG_ASSERT(cursor.prev != &node->link);
if (!my_atomic_casptr((void **)cursor.prev,
(void **)(char*) &cursor.curr, node))
{
res= REPEAT_ONCE_MORE;
node->flags&= ~ACTIVE;
}
if (res & LOCK_UPGRADE)
cursor.upgrade_from->flags|= IGNORE_ME;
/*
QQ: is this OK ? if a reader has already read upgrade_from,
it may find it conflicting with node :(
- see the last test from test_lockman_simple()
*/
}
} while (res == REPEAT_ONCE_MORE);
_lf_unpin(pins, 0);
_lf_unpin(pins, 1);
_lf_unpin(pins, 2);
/*
note that blocker is not necessarily pinned here (when it's == curr).
this is ok as in such a case it's either a dummy node for
initialize_bucket() and dummy nodes don't need pinning,
or it's a lock of the same transaction for lockman_getlock,
and it cannot be removed by another thread
*/
*blocker= cursor.blocker;
return res;
}
/*
NOTE
it uses pins[0..3], on return pins 0..2 are removed, pin 3 (blocker) stays
*/
static int lockpeek(LOCK * volatile *head, LOCK *node, LF_PINS *pins,
LOCK **blocker)
{
CURSOR cursor;
int res;
res= lockfind(head, node, &cursor, pins);
_lf_unpin(pins, 0);
_lf_unpin(pins, 1);
_lf_unpin(pins, 2);
if (blocker)
*blocker= cursor.blocker;
return res;
}
/*
NOTE
it uses pins[0..3], on return all pins are removed.
One _must_ have the lock (or request) to call this
*/
static int lockdelete(LOCK * volatile *head, LOCK *node, LF_PINS *pins)
{
CURSOR cursor;
int res;
do
{
res= lockfind(head, node, &cursor, pins);
DBUG_ASSERT(res & ALREADY_HAVE);
if (cursor.upgrade_from)
cursor.upgrade_from->flags&= ~IGNORE_ME;
/*
XXX this does not work with savepoints, as old lock is left ignored.
It cannot be unignored, as would basically mean moving the lock back
in the lock chain (from upgraded). And the latter is not allowed -
because it breaks list scanning. So old ignored lock must be deleted,
new - same - lock must be installed right after the lock we're deleting,
then we can delete. Good news is - this is only required when rolling
back a savepoint.
*/
if (my_atomic_casptr((void **)(char*)&(cursor.curr->link),
(void **)(char*)&cursor.next, 1+(char *)cursor.next))
{
if (my_atomic_casptr((void **)cursor.prev,
(void **)(char*)&cursor.curr, cursor.next))
_lf_alloc_free(pins, cursor.curr);
else
lockfind(head, node, &cursor, pins);
}
else
{
res= REPEAT_ONCE_MORE;
if (cursor.upgrade_from)
cursor.upgrade_from->flags|= IGNORE_ME;
}
} while (res == REPEAT_ONCE_MORE);
_lf_unpin(pins, 0);
_lf_unpin(pins, 1);
_lf_unpin(pins, 2);
_lf_unpin(pins, 3);
return res;
}
void lockman_init(LOCKMAN *lm, loid_to_lo_func *func, uint timeout)
{
lf_alloc_init(&lm->alloc, sizeof(LOCK), offsetof(LOCK, lonext));
lf_dynarray_init(&lm->array, sizeof(LOCK **));
lm->size= 1;
lm->count= 0;
lm->loid_to_lo= func;
lm->lock_timeout= timeout;
}
void lockman_destroy(LOCKMAN *lm)
{
LOCK *el= *(LOCK **)_lf_dynarray_lvalue(&lm->array, 0);
while (el)
{
intptr next= el->link;
if (el->hashnr & 1)
lf_alloc_direct_free(&lm->alloc, el);
else
my_free((void *)el);
el= (LOCK *)next;
}
lf_alloc_destroy(&lm->alloc);
lf_dynarray_destroy(&lm->array);
}
/* TODO: optimize it */
#define MAX_LOAD 1
static void initialize_bucket(LOCKMAN *lm, LOCK * volatile *node,
uint bucket, LF_PINS *pins)
{
int res;
uint parent= my_clear_highest_bit(bucket);
LOCK *dummy= (LOCK *)my_malloc(sizeof(LOCK), MYF(MY_WME));
LOCK **tmp= 0, *cur;
LOCK * volatile *el= _lf_dynarray_lvalue(&lm->array, parent);
if (*el == NULL && bucket)
initialize_bucket(lm, el, parent, pins);
dummy->hashnr= my_reverse_bits(bucket);
dummy->loid= 0;
dummy->lock= X; /* doesn't matter, in fact */
dummy->resource= 0;
dummy->flags= 0;
res= lockinsert(el, dummy, pins, &cur);
DBUG_ASSERT(res & (ALREADY_HAVE_THE_LOCK | RESOURCE_WAS_UNLOCKED));
if (res & ALREADY_HAVE_THE_LOCK)
{
my_free((void *)dummy);
dummy= cur;
}
my_atomic_casptr((void **)node, (void **)(char*) &tmp, dummy);
}
static inline uint calc_hash(uint64 resource)
{
const uchar *pos= (uchar *)&resource;
ulong nr1= 1, nr2= 4, i;
for (i= 0; i < sizeof(resource) ; i++, pos++)
{
nr1^= (ulong) ((((uint) nr1 & 63)+nr2) * ((uint)*pos)) + (nr1 << 8);
nr2+= 3;
}
return nr1 & INT_MAX32;
}
/*
RETURN
see enum lockman_getlock_result
NOTE
uses pins[0..3], they're removed on return
*/
enum lockman_getlock_result lockman_getlock(LOCKMAN *lm, LOCK_OWNER *lo,
uint64 resource,
enum lockman_lock_type lock)
{
int res;
uint csize, bucket, hashnr;
LOCK *node, * volatile *el, *blocker;
LF_PINS *pins= lo->pins;
enum lockman_lock_type old_lock;
DBUG_ASSERT(lo->loid);
lf_rwlock_by_pins(pins);
node= (LOCK *)_lf_alloc_new(pins);
node->flags= 0;
node->lock= lock;
node->loid= lo->loid;
node->resource= resource;
hashnr= calc_hash(resource);
bucket= hashnr % lm->size;
el= _lf_dynarray_lvalue(&lm->array, bucket);
if (*el == NULL)
initialize_bucket(lm, el, bucket, pins);
node->hashnr= my_reverse_bits(hashnr) | 1;
res= lockinsert(el, node, pins, &blocker);
if (res & ALREADY_HAVE)
{
int r;
old_lock= blocker->lock;
_lf_alloc_free(pins, node);
lf_rwunlock_by_pins(pins);
r= getlock_result[old_lock][lock];
DBUG_ASSERT(r);
return r;
}
/* a new value was added to the hash */
csize= lm->size;
if ((my_atomic_add32(&lm->count, 1)+1.0) / csize > MAX_LOAD)
my_atomic_cas32(&lm->size, (int*) &csize, csize*2);
node->lonext= lo->all_locks;
lo->all_locks= node;
for ( ; res & NEED_TO_WAIT; res= lockpeek(el, node, pins, &blocker))
{
LOCK_OWNER *wait_for_lo;
ulonglong deadline;
struct timespec timeout;
_lf_assert_pin(pins, 3); /* blocker must be pinned here */
wait_for_lo= lm->loid_to_lo(blocker->loid);
/*
now, this is tricky. blocker is not necessarily a LOCK
we're waiting for. If it's compatible with what we want,
then we're waiting for a lock that blocker is waiting for
(see two places where blocker is set in lockfind)
In the latter case, let's "dereference" it
*/
if (lock_compatibility_matrix[blocker->lock][lock])
{
blocker= wait_for_lo->all_locks;
_lf_pin(pins, 3, blocker);
if (blocker != wait_for_lo->all_locks)
continue;
wait_for_lo= wait_for_lo->waiting_for;
}
/*
note that the blocker transaction may have ended by now,
its LOCK_OWNER and short id were reused, so 'wait_for_lo' may point
to an unrelated - albeit valid - LOCK_OWNER
*/
if (!wait_for_lo)
continue;
lo->waiting_for= wait_for_lo;
lf_rwunlock_by_pins(pins);
/*
We lock a mutex - it may belong to a wrong LOCK_OWNER, but it must
belong to _some_ LOCK_OWNER. It means, we can never free() a LOCK_OWNER,
if there're other active LOCK_OWNERs.
*/
/* QQ: race condition here */
pthread_mutex_lock(wait_for_lo->mutex);
if (DELETED(blocker->link))
{
/*
blocker transaction was ended, or a savepoint that owned
the lock was rolled back. Either way - the lock was removed
*/
pthread_mutex_unlock(wait_for_lo->mutex);
lf_rwlock_by_pins(pins);
continue;
}
/* yuck. waiting */
deadline= my_hrtime().val*1000 + lm->lock_timeout * 1000000;
set_timespec_time_nsec(timeout, deadline);
do
{
pthread_cond_timedwait(wait_for_lo->cond, wait_for_lo->mutex, &timeout);
} while (!DELETED(blocker->link) && my_hrtime().val < deadline/1000);
pthread_mutex_unlock(wait_for_lo->mutex);
lf_rwlock_by_pins(pins);
if (!DELETED(blocker->link))
{
/*
timeout.
note that we _don't_ release the lock request here.
Instead we're relying on the caller to abort the transaction,
and release all locks at once - see lockman_release_locks()
*/
_lf_unpin(pins, 3);
lf_rwunlock_by_pins(pins);
return DIDNT_GET_THE_LOCK;
}
}
lo->waiting_for= 0;
_lf_assert_unpin(pins, 3); /* unpin should not be needed */
lf_rwunlock_by_pins(pins);
return getlock_result[lock][lock];
}
/*
RETURN
0 - deleted
1 - didn't (not found)
NOTE
see lockdelete() for pin usage notes
*/
int lockman_release_locks(LOCKMAN *lm, LOCK_OWNER *lo)
{
LOCK * volatile *el, *node, *next;
uint bucket;
LF_PINS *pins= lo->pins;
pthread_mutex_lock(lo->mutex);
lf_rwlock_by_pins(pins);
for (node= lo->all_locks; node; node= next)
{
next= node->lonext;
bucket= calc_hash(node->resource) % lm->size;
el= _lf_dynarray_lvalue(&lm->array, bucket);
if (*el == NULL)
initialize_bucket(lm, el, bucket, pins);
lockdelete(el, node, pins);
my_atomic_add32(&lm->count, -1);
}
lf_rwunlock_by_pins(pins);
lo->all_locks= 0;
/* now signal all waiters */
pthread_cond_broadcast(lo->cond);
pthread_mutex_unlock(lo->mutex);
return 0;
}
#ifdef MY_LF_EXTRA_DEBUG
static const char *lock2str[]=
{ "N", "S", "X", "IS", "IX", "SIX", "LS", "LX", "SLX", "LSIX" };
/*
NOTE
the function below is NOT thread-safe !!!
*/
void print_lockhash(LOCKMAN *lm)
{
LOCK *el= *(LOCK **)_lf_dynarray_lvalue(&lm->array, 0);
printf("hash: size %u count %u\n", lm->size, lm->count);
while (el)
{
intptr next= el->link;
if (el->hashnr & 1)
{
printf("0x%08lx { resource %lu, loid %u, lock %s",
(long) el->hashnr, (ulong) el->resource, el->loid,
lock2str[el->lock]);
if (el->flags & IGNORE_ME) printf(" IGNORE_ME");
if (el->flags & UPGRADED) printf(" UPGRADED");
if (el->flags & ACTIVE) printf(" ACTIVE");
if (DELETED(next)) printf(" ***DELETED***");
printf("}\n");
}
else
{
/*printf("0x%08x { dummy }\n", el->hashnr);*/
DBUG_ASSERT(el->resource == 0 && el->loid == 0 && el->lock == X);
}
el= PTR(next);
}
}
#endif
|