summaryrefslogtreecommitdiff
path: root/storage/ndb/src/ndbapi/NdbOperationSearch.cpp
blob: 605c66d9859b4c2800595065ee5b382a3316fffe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
/* Copyright (C) 2003 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */


/******************************************************************************
Name:          NdbOperationSearch.C
Include:
Link:
Author:        UABMNST Mona Natterkvist UAB/B/SD                         
Date:          970829
Version:       0.1
Description:   Interface between TIS and NDB
Documentation:
Adjust:  971022  UABMNST   First version.
	 971206  UABRONM
 *****************************************************************************/
#include "API.hpp"

#include <NdbOperation.hpp>
#include "NdbApiSignal.hpp"
#include <NdbTransaction.hpp>
#include <Ndb.hpp>
#include "NdbImpl.hpp"
#include <NdbOut.hpp>

#include <AttributeHeader.hpp>
#include <signaldata/TcKeyReq.hpp>
#include <signaldata/KeyInfo.hpp>
#include "NdbDictionaryImpl.hpp"
#include <md5_hash.hpp>

/******************************************************************************
CondIdType equal(const char* anAttrName, char* aValue, Uint32 aVarKeylen);

Return Value    Return 0 : Equal was successful.
                Return -1: In all other case. 
Parameters:     anAttrName : Attribute name for search condition..
                aValue : Referense to the search value.
		aVariableKeylen : The length of key in bytes  
Remark:         Defines search condition with equality anAttrName.
******************************************************************************/
int
NdbOperation::equal_impl(const NdbColumnImpl* tAttrInfo, 
                         const char* aValuePassed)
{
  DBUG_ENTER("NdbOperation::equal_impl");
  DBUG_PRINT("enter", ("col: %s  op: %d  val: 0x%lx",
                       tAttrInfo->m_name.c_str(), theOperationType,
                       (long) aValuePassed));
  
  const char* aValue = aValuePassed;
  Uint64 tempData[512];

  if ((theStatus == OperationDefined) &&
      (aValue != NULL) &&
      (tAttrInfo != NULL )) {
/******************************************************************************
 *	Start by checking that the attribute is a tuple key. 
 *      This value is also the word order in the tuple key of this 
 *      tuple key attribute. 
 *      Then check that this tuple key has not already been defined. 
 *      Finally check if all tuple key attributes have been defined. If
 *	this is true then set Operation state to tuple key defined.
 *****************************************************************************/

    /*
     * For each call theTupleKeyDefined stores 3 items:
     *
     * [0] = m_column_no (external column id)
     * [1] = 1-based index of first word of accumulating keyinfo
     * [2] = number of words of keyinfo
     *
     * This is used to re-order keyinfo if not in m_attrId order.
     *
     * Note: No point to "clean up" this code.  The upcoming
     * record-based ndb api makes it obsolete.
     */

    Uint32 tAttrId = tAttrInfo->m_column_no; // not m_attrId;
    Uint32 i = 0;
    if (tAttrInfo->m_pk) {
      Uint32 tKeyDefined = theTupleKeyDefined[0][2];
      Uint32 tKeyAttrId = theTupleKeyDefined[0][0];
      do {
	if (tKeyDefined == false) {
	  goto keyEntryFound;
	} else {
	  if (tKeyAttrId != tAttrId) {
	    /******************************************************************
	     * We read the key defined variable in advance. 
	     * It could potentially read outside its area when 
	     * i = MAXNROFTUPLEKEY - 1, 
	     * it is not a problem as long as the variable 
	     * theTupleKeyDefined is defined
	     * in the middle of the object. 
	     * Reading wrong data and not using it causes no problems.
	     *****************************************************************/
	    i++;
	    tKeyAttrId = theTupleKeyDefined[i][0];
	    tKeyDefined = theTupleKeyDefined[i][2];
	    continue;
	  } else {
	    goto equal_error2;
	  }//if
	}//if
      } while (i < NDB_MAX_NO_OF_ATTRIBUTES_IN_KEY);
      goto equal_error2;
    } else {
      goto equal_error1;
    }
    /*************************************************************************
     *	Now it is time to retrieve the tuple key data from the pointer supplied
     *      by the application. 
     *      We have to retrieve the size of the attribute in words and bits.
     *************************************************************************/
  keyEntryFound:
    Uint32 sizeInBytes;
    if (! tAttrInfo->get_var_length(aValue, sizeInBytes)) {
      setErrorCodeAbort(4209);
      DBUG_RETURN(-1);
    }

    Uint32 tKeyInfoPosition =
      i == 0 ? 1 : theTupleKeyDefined[i-1][1] + theTupleKeyDefined[i-1][2];
    theTupleKeyDefined[i][0] = tAttrId;
    theTupleKeyDefined[i][1] = tKeyInfoPosition; 
    theTupleKeyDefined[i][2] = (sizeInBytes + 3) / 4;

    {
      /************************************************************************
       * Check if the pointer of the value passed is aligned on a 4 byte 
       * boundary. If so only assign the pointer to the internal variable 
       * aValue. If it is not aligned then we start by copying the value to 
       * tempData and use this as aValue instead.
       ***********************************************************************/
      const bool tDistrKey = tAttrInfo->m_distributionKey;
      const int attributeSize = sizeInBytes;
      const int slack = sizeInBytes & 3;
      const int align = UintPtr(aValue) & 7;

      if (((align & 3) != 0) || (slack != 0) || (tDistrKey && (align != 0)))
      {
	((Uint32*)tempData)[attributeSize >> 2] = 0;
	memcpy(&tempData[0], aValue, attributeSize);
	aValue = (char*)&tempData[0];
      }//if
    }

    Uint32 totalSizeInWords = (sizeInBytes + 3)/4; // Inc. bits in last word
    theTupKeyLen += totalSizeInWords;
#if 0
    else {
      /************************************************************************
       * The attribute is a variable array. We need to use the length parameter
       * to know the size of this attribute in the key information and 
       * variable area. A key is however not allowed to be larger than 4 
       * kBytes and this is checked for variable array attributes
       * used as keys.
       ************************************************************************/
      Uint32 tMaxVariableKeyLenInWord = (MAXTUPLEKEYLENOFATTERIBUTEINWORD -
					 tKeyInfoPosition);
      tAttrSizeInBits = aVariableKeyLen << 3;
      tAttrSizeInWords = tAttrSizeInBits >> 5;
      tAttrBitsInLastWord = tAttrSizeInBits - (tAttrSizeInWords << 5);
      tAttrLenInWords = ((tAttrSizeInBits + 31) >> 5);
      if (tAttrLenInWords > tMaxVariableKeyLenInWord) {
	setErrorCodeAbort(4207);
	return -1;
      }//if
      theTupKeyLen = theTupKeyLen + tAttrLenInWords;
    }//if
#endif

    /**************************************************************************
     *	If the operation is an insert request and the attribute is stored then
     *      we also set the value in the stored part through putting the 
     *      information in the ATTRINFO signals.
     *************************************************************************/
    OperationType tOpType = theOperationType;
    if ((tOpType == InsertRequest) ||
	(tOpType == WriteRequest)) {
      Uint32 ahValue;

      if(m_accessTable == m_currentTable) {
	AttributeHeader::init(&ahValue, tAttrInfo->m_attrId, sizeInBytes);
      } else {
	assert(tOpType == WriteRequest && m_accessTable->m_index);
        // use attrId of primary table column
	int column_no_current_table = 
	  m_accessTable->m_index->m_columns[tAttrId]->m_keyInfoPos;
        int attr_id_current_table =
          m_currentTable->m_columns[column_no_current_table]->m_attrId;
	AttributeHeader::init(&ahValue, attr_id_current_table, sizeInBytes);
      }
      
      insertATTRINFO( ahValue );
      insertATTRINFOloop((Uint32*)aValue, totalSizeInWords);
    }//if
    
    /**************************************************************************
     *	Store the Key information in the TCKEYREQ and KEYINFO signals. 
     *************************************************************************/
    if (insertKEYINFO(aValue, tKeyInfoPosition, totalSizeInWords) != -1) {
      /************************************************************************
       * Add one to number of tuple key attributes defined. 
       * If all have been defined then set the operation state to indicate 
       * that tuple key is defined. 
       * Thereby no more search conditions are allowed in this version.
       ***********************************************************************/
      Uint32 tNoKeysDef = theNoOfTupKeyLeft - 1;
      Uint32 tErrorLine = theErrorLine;
      unsigned char tInterpretInd = theInterpretIndicator;
      theNoOfTupKeyLeft = tNoKeysDef;
      tErrorLine++;
      theErrorLine = tErrorLine;
      
      if (tNoKeysDef == 0) {	

        // re-order keyinfo if not entered in order
        if (m_accessTable->m_noOfKeys != 1) {
          for (Uint32 i = 0; i < m_accessTable->m_noOfKeys; i++) {
            Uint32 k = theTupleKeyDefined[i][0]; // column_no
            if (m_accessTable->m_columns[k]->m_keyInfoPos != i) {
              DBUG_PRINT("info", ("key disorder at %d", i));
              reorderKEYINFO();
              break;
            }
          }
        }

	if (tOpType == UpdateRequest) {
	  if (tInterpretInd == 1) {
	    theStatus = GetValue;
	  } else {
	    theStatus = SetValue;
	  }//if
	  DBUG_RETURN(0);
	} else if ((tOpType == ReadRequest) || (tOpType == DeleteRequest) ||
		   (tOpType == ReadExclusive)) {
	  theStatus = GetValue;
          // create blob handles automatically
          if (tOpType == DeleteRequest && m_currentTable->m_noOfBlobs != 0) {
            for (unsigned i = 0; i < m_currentTable->m_columns.size(); i++) {
              NdbColumnImpl* c = m_currentTable->m_columns[i];
              assert(c != 0);
              if (c->getBlobType()) {
                if (getBlobHandle(theNdbCon, c) == NULL)
                  DBUG_RETURN(-1);
              }
            }
          }
	  DBUG_RETURN(0);
	} else if ((tOpType == InsertRequest) || (tOpType == WriteRequest)) {
	  theStatus = SetValue;
	  DBUG_RETURN(0);
	} else {
	  setErrorCodeAbort(4005);
	  DBUG_RETURN(-1);
	}//if
	DBUG_RETURN(0);
      }//if
    } else {
      DBUG_RETURN(-1);
    }//if
    DBUG_RETURN(0);
  }
  
  if (aValue == NULL) {
    // NULL value in primary key
    setErrorCodeAbort(4505);
    DBUG_RETURN(-1);
  }//if
  
  if ( tAttrInfo == NULL ) {      
    // Attribute name not found in table
    setErrorCodeAbort(4004);
    DBUG_RETURN(-1);
  }//if

  if (theStatus == GetValue || theStatus == SetValue){
    // All pk's defined
    setErrorCodeAbort(4225);
    DBUG_RETURN(-1);
  }//if

  ndbout_c("theStatus: %d", theStatus);
  
  // If we come here, set a general errorcode
  // and exit
  setErrorCodeAbort(4200);
  DBUG_RETURN(-1);

 equal_error1:
  setErrorCodeAbort(4205);
  DBUG_RETURN(-1);

 equal_error2:
  setErrorCodeAbort(4206);
  DBUG_RETURN(-1);
}

/******************************************************************************
 * int insertKEYINFO(const char* aValue, aStartPosition, 
 *                   anAttrSizeInWords, Uint32 anAttrBitsInLastWord);
 *
 * Return Value:   Return 0 : insertKEYINFO was succesful.
 *                 Return -1: In all other case.   
 * Parameters:     aValue: the data to insert into KEYINFO.
 *    		   aStartPosition : Start position for Tuplekey in 
 *                                  KEYINFO (TCKEYREQ).
 *                 aKeyLenInByte : Length of tuplekey or part of tuplekey
 *                 anAttrBitsInLastWord : Nr of bits in last word. 
 * Remark:         Puts the the data into either TCKEYREQ signal 
 *                 or KEYINFO signal.
 *****************************************************************************/
int
NdbOperation::insertKEYINFO(const char* aValue,
			    register Uint32 aStartPosition,
			    register Uint32 anAttrSizeInWords)
{
  NdbApiSignal* tSignal;
  NdbApiSignal* tCurrentKEYINFO;
  //register NdbApiSignal* tTCREQ = theTCREQ;
  register Uint32 tAttrPos;
  Uint32 tPosition;
  Uint32 tEndPos;
  Uint32 tPos;
  Uint32 signalCounter;

/*****************************************************************************
 *	Calculate the end position of the attribute in the key information.  *
 *	Since the first attribute starts at position one we need to subtract *
 *	one to get the correct end position.				     *
 *	We must also remember the last word with only partial information.   *
 *****************************************************************************/
  tEndPos = aStartPosition + anAttrSizeInWords - 1;

  if ((tEndPos < 9)) {
    register Uint32 tkeyData = *(Uint32*)aValue;
    //TcKeyReq* tcKeyReq = CAST_PTR(TcKeyReq, tTCREQ->getDataPtrSend());
    register Uint32* tDataPtr = (Uint32*)aValue;
    tAttrPos = 1;
    register Uint32* tkeyDataPtr = theKEYINFOptr + aStartPosition - 1;
    // (Uint32*)&tcKeyReq->keyInfo[aStartPosition - 1];
    do {
      tDataPtr++;
      *tkeyDataPtr = tkeyData;
      if (tAttrPos < anAttrSizeInWords) {
        ;
      } else {
        return 0;
      }//if
      tkeyData = *tDataPtr;
      tkeyDataPtr++;
      tAttrPos++;
    } while (1);
    return 0;
  }//if
/*****************************************************************************
 *	Allocate all the KEYINFO signals needed for this key before starting *
 *	to fill the signals with data. This simplifies error handling and    *
 *      avoids duplication of code.					     *
 *****************************************************************************/
  tAttrPos = 0;
  signalCounter = 1;
  while(tEndPos > theTotalNrOfKeyWordInSignal)
  {
    tSignal = theNdb->getSignal();
    if (tSignal == NULL)
    {
      setErrorCodeAbort(4000);
      return -1;
    }
    if (tSignal->setSignal(m_keyInfoGSN) == -1)
    {
      setErrorCodeAbort(4001);
      return -1;
    }
    if (theTCREQ->next() != NULL)
       theLastKEYINFO->next(tSignal);
    else
      theTCREQ->next(tSignal);

    theLastKEYINFO = tSignal;
    theLastKEYINFO->next(NULL);
    theTotalNrOfKeyWordInSignal += 20;
  }

/*****************************************************************************
 *	Change to variable tPosition for more appropriate naming of rest of  *
 *	the code. We must set up current KEYINFO already here if the last    *
 *	word is a word which is set at LastWordLabel and at the same time    *
 *	this is the first word in a KEYINFO signal.			     *
 *****************************************************************************/
  tPosition = aStartPosition;
  tCurrentKEYINFO = theTCREQ->next();
 
/*****************************************************************************
 *	Start by filling up Key information in the 8 words allocated in the  *
 *	TC[KEY/INDX]REQ signal.						     *
 *****************************************************************************/
  while (tPosition < 9)
  {
    theKEYINFOptr[tPosition-1] = * (Uint32*)(aValue + (tAttrPos << 2));
    tAttrPos++;
    if (anAttrSizeInWords == tAttrPos)
      goto LastWordLabel;
    tPosition++;
  }

/*****************************************************************************
 *	We must set up the start position of the writing of Key information  *
 *	before we start the writing of KEYINFO signals. If the start is not  *
 *	the first word of the first KEYINFO signals then we must step forward*
 *	to the proper KEYINFO signal and set the signalCounter properly.     *
 *	signalCounter is set to the actual position in the signal ( = 4 for  *
 *	first key word in KEYINFO signal.				     *
 *****************************************************************************/
  tPos = 8;
  while ((tPosition - tPos) > 20)
  {
    tCurrentKEYINFO = tCurrentKEYINFO->next();
    tPos += 20;
  }
  signalCounter = tPosition - tPos + 3;    

/*****************************************************************************
 *	The loop that actually fills in the Key information into the KEYINFO *
 *	signals. Can be optimised by writing larger chunks than 4 bytes at a *
 *	time.								     *
 *****************************************************************************/
  do
  {
    if (signalCounter > 23)
    {
      tCurrentKEYINFO = tCurrentKEYINFO->next();
      signalCounter = 4;
    }
    tCurrentKEYINFO->setData(*(Uint32*)(aValue + (tAttrPos << 2)), 
			     signalCounter);
    tAttrPos++;
    if (anAttrSizeInWords == tAttrPos)
      goto LastWordLabel;
    tPosition++;
    signalCounter++;
  } while (1);

LastWordLabel:
  return 0;
}

void
NdbOperation::reorderKEYINFO()
{
  Uint32 data[4000];
  Uint32 size = 4000;
  getKeyFromTCREQ(data, size);
  Uint32 pos = 1;
  Uint32 k;
  for (k = 0; k < m_accessTable->m_noOfKeys; k++) {
    Uint32 i;
    for (i = 0; i < m_accessTable->m_columns.size(); i++) {
      NdbColumnImpl* col = m_accessTable->m_columns[i];
      if (col->m_pk && col->m_keyInfoPos == k) {
        Uint32 j;
        for (j = 0; j < m_accessTable->m_noOfKeys; j++) {
          if (theTupleKeyDefined[j][0] == i) {
            Uint32 off = theTupleKeyDefined[j][1] - 1;
            Uint32 len = theTupleKeyDefined[j][2];
            assert(off < 4000 && off + len <= 4000);
            int ret = insertKEYINFO((char*)&data[off], pos, len);
            assert(ret == 0);
            pos += len;
            break;
          }
        }
        assert(j < m_accessTable->m_columns.size());
        break;
      }
    }
    assert(i < m_accessTable->m_columns.size());
  }
}

int
NdbOperation::getKeyFromTCREQ(Uint32* data, Uint32 & size)
{
  assert(size >= theTupKeyLen && theTupKeyLen > 0);
  size = theTupKeyLen;
  unsigned pos = 0;
  while (pos < 8 && pos < size) {
    data[pos] = theKEYINFOptr[pos];
    pos++;
  }
  NdbApiSignal* tSignal = theTCREQ->next();
  unsigned n = 0;
  while (pos < size) {
    if (n == 20) {
      tSignal = tSignal->next();
      n = 0;
    }
    data[pos++] = tSignal->getDataPtrSend()[3 + n++];
  }
  return 0;
}

int
NdbOperation::handle_distribution_key(const Uint64* value, Uint32 len)
{
  if(theDistrKeyIndicator_ == 1 || 
     (theNoOfTupKeyLeft > 0 && m_accessTable->m_noOfDistributionKeys > 1))
  {
    return 0;
  }
  
  if(m_accessTable->m_noOfDistributionKeys == 1)
  {
    setPartitionHash(value, len);
  }
  else if(theTCREQ->readSignalNumber() == GSN_TCKEYREQ)
  {
    // No support for combined distribution key and scan

    /**
     * Copy distribution key to linear memory
     */
    NdbColumnImpl* const * cols = m_accessTable->m_columns.getBase();
    Uint64 tmp[1000];

    Uint32 chunk = 8;
    Uint32* dst = (Uint32*)tmp;
    NdbApiSignal* tSignal = theTCREQ;
    Uint32* src = ((TcKeyReq*)tSignal->getDataPtrSend())->keyInfo;
    if(tSignal->readSignalNumber() == GSN_SCAN_TABREQ)
    {
      tSignal = tSignal->next();
      src = ((KeyInfo*)tSignal->getDataPtrSend())->keyData;
      chunk = KeyInfo::DataLength;
    }

    for(unsigned i = m_accessTable->m_columns.size(); i>0; cols++, i--)
    {
      if (!(* cols)->getPrimaryKey())
	continue;
      
      NdbColumnImpl* tAttrInfo = * cols;
      Uint32 sizeInBytes;
      switch(tAttrInfo->m_arrayType){
      default:
      case NDB_ARRAYTYPE_FIXED:
	sizeInBytes = tAttrInfo->m_attrSize * tAttrInfo->m_arraySize;
	break;
      case NDB_ARRAYTYPE_SHORT_VAR:
	sizeInBytes = 1 + *(char*)src;
	break;
      case NDB_ARRAYTYPE_MEDIUM_VAR:
	sizeInBytes = 2 + uint2korr((char*)src);
	break;
      }
      
      Uint32 currLen = (sizeInBytes + 3) >> 2;
      if (tAttrInfo->getDistributionKey())
      {
	while (currLen >= chunk)
	{
	  memcpy(dst, src, 4*chunk);
	  dst += chunk;
	  tSignal = tSignal->next();
	  src = ((KeyInfo*)tSignal->getDataPtrSend())->keyData;
	  currLen -= chunk;
	  chunk = KeyInfo::DataLength;
	}

	memcpy(dst, src, 4*currLen);
	dst += currLen;
	src += currLen;
	chunk -= currLen;
      }
      else
      {
	while (currLen >= chunk)
	{
	  tSignal = tSignal->next();
	  src = ((KeyInfo*)tSignal->getDataPtrSend())->keyData;
	  currLen -= chunk;
	  chunk = KeyInfo::DataLength;
	}
	
	src += currLen;
	chunk -= currLen;
      }
    }
    setPartitionHash(tmp, dst - (Uint32*)tmp);
  }
  return 0;
}

void
NdbOperation::setPartitionHash(Uint32 value)
{
  union {
    Uint32 tmp32;
    Uint64 tmp64;
  };

  tmp32 = value;
  setPartitionHash(&tmp64, 1);
}

void
NdbOperation::setPartitionHash(const Uint64* value, Uint32 len)
{
  Uint32 buf[4];
  md5_hash(buf, value, len);
  setPartitionId(buf[1]);
}

void
NdbOperation::setPartitionId(Uint32 value)
{
  theDistributionKey = value;
  theDistrKeyIndicator_ = 1;
  DBUG_PRINT("info", ("NdbOperation::setPartitionId: %u",
                       theDistributionKey));
}

Uint32
NdbOperation::getPartitionId() const 
{
  DBUG_PRINT("info", ("NdbOperation::getPartitionId: %u ind=%d",
                      theDistributionKey, theDistrKeyIndicator_));
  return theDistributionKey;
}