1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
|
/* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA */
/**
@file storage/perfschema/pfs.cc
The performance schema implementation of all instruments.
*/
#include "my_global.h"
#include "pfs.h"
#include "pfs_instr_class.h"
#include "pfs_instr.h"
#include "pfs_global.h"
#include "pfs_column_values.h"
#include "pfs_timer.h"
#include "pfs_events_waits.h"
/* Pending WL#4895 PERFORMANCE_SCHEMA Instrumenting Table IO */
#undef HAVE_TABLE_WAIT
/**
@page PAGE_PERFORMANCE_SCHEMA The Performance Schema main page
MySQL PERFORMANCE_SCHEMA implementation.
@section INTRO Introduction
The PERFORMANCE_SCHEMA is a way to introspect the internal execution of
the server at runtime.
The performance schema focuses primarily on performance data,
as opposed to the INFORMATION_SCHEMA whose purpose is to inspect metadata.
From a user point of view, the performance schema consists of:
- a dedicated database schema, named PERFORMANCE_SCHEMA,
- SQL tables, used to query the server internal state or change
configuration settings.
From an implementation point of view, the performance schema is a dedicated
Storage Engine which exposes data collected by 'Instrumentation Points'
placed in the server code.
@section INTERFACES Multiple interfaces
The performance schema exposes many different interfaces,
for different components, and for different purposes.
@subsection INT_INSTRUMENTING Instrumenting interface
All the data representing the server internal state exposed
in the performance schema must be first collected:
this is the role of the instrumenting interface.
The instrumenting interface is a coding interface provided
by implementors (of the performance schema) to implementors
(of the server or server components).
This interface is available to:
- C implementations
- C++ implementations
- the core SQL layer (/sql)
- the mysys library (/mysys)
- MySQL plugins, including storage engines,
- third party plugins, including third party storage engines.
For details, see the @ref PAGE_INSTRUMENTATION_INTERFACE
"instrumentation interface page".
@subsection INT_COMPILING Compiling interface
The implementation of the performance schema can be enabled or disabled at
build time, when building MySQL from the source code.
When building with the performance schema code, some compilation flags
are available to change the default values used in the code, if required.
For more details, see:
@verbatim ./configure --help @endverbatim
To compile with the performance schema:
@verbatim ./configure --with-perfschema @endverbatim
The implementation of all the compiling options is located in
@verbatim ./storage/perfschema/plug.in @endverbatim
@subsection INT_STARTUP Server startup interface
The server startup interface consists of the "./mysqld ..."
command line used to start the server.
When the performance schema is compiled in the server binary,
extra command line options are available.
These extra start options allow the DBA to:
- enable or disable the performance schema
- specify some sizing parameters.
To see help for the performance schema startup options, see:
@verbatim ./sql/mysqld --verbose --help @endverbatim
The implementation of all the startup options is located in
@verbatim ./sql/mysqld.cc, my_long_options[] @endverbatim
@subsection INT_BOOTSTRAP Server bootstrap interface
The bootstrap interface is a private interface exposed by
the performance schema, and used by the SQL layer.
Its role is to advertise all the SQL tables natively
supported by the performance schema to the SQL server.
The code consists of creating MySQL tables for the
performance schema itself, and is used in './mysql --bootstrap'
mode when a server is installed.
The implementation of the database creation script is located in
@verbatim ./scripts/mysql_system_tables.sql @endverbatim
@subsection INT_CONFIG Runtime configuration interface
When the performance schema is used at runtime, various configuration
parameters can be used to specify what kind of data is collected,
what kind of aggregations are computed, what kind of timers are used,
what events are timed, etc.
For all these capabilities, not a single statement or special syntax
was introduced in the parser.
Instead of new SQL statements, the interface consists of DML
(SELECT, INSERT, UPDATE, DELETE) against special "SETUP" tables.
For example:
@verbatim mysql> update performance_schema.SETUP_INSTRUMENTS
set ENABLED='YES', TIMED='YES';
Query OK, 234 rows affected (0.00 sec)
Rows matched: 234 Changed: 234 Warnings: 0 @endverbatim
@subsection INT_STATUS Internal audit interface
The internal audit interface is provided to the DBA to inspect if the
performance schema code itself is functioning properly.
This interface is necessary because a failure caused while
instrumenting code in the server should not cause failures in the
MySQL server itself, so that the performance schema implementation
never raises errors during runtime execution.
This auditing interface consists of:
@verbatim SHOW ENGINE PERFORMANCE_SCHEMA STATUS; @endverbatim
It displays data related to the memory usage of the performance schema,
as well as statistics about lost events, if any.
The SHOW STATUS command is implemented in
@verbatim ./storage/perfschema/pfs_engine_table.cc @endverbatim
@subsection INT_QUERY Query interface
The query interface is used to query the internal state of a running server.
It is provided as SQL tables.
For example:
@verbatim mysql> select * from performance_schema.EVENTS_WAITS_CURRENT;
@endverbatim
@section DESIGN_PRINCIPLES Design principles
@subsection PRINCIPLE_BEHAVIOR No behavior changes
The primary goal of the performance schema is to measure (instrument) the
execution of the server. A good measure should not cause any change
in behavior.
To achieve this, the overall design of the performance schema complies
with the following very severe design constraints:
The parser is unchanged. There are no new keywords, no new statements.
This guarantees that existing applications will run the same way with or
without the performance schema.
All the instrumentation points return "void", there are no error codes.
Even if the performance schema internally fails, execution of the server
code will proceed.
None of the instrumentation points allocate memory.
All the memory used by the performance schema is pre-allocated at startup,
and is considered "static" during the server life time.
None of the instrumentation points use any pthread_mutex, pthread_rwlock,
or pthread_cond (or platform equivalents).
Executing the instrumentation point should not cause thread scheduling to
change in the server.
In other words, the implementation of the instrumentation points,
including all the code called by the instrumentation points, is:
- malloc free
- mutex free
- rwlock free
TODO: All the code located in storage/perfschema is malloc free,
but unfortunately the usage of LF_HASH introduces some memory allocation.
This should be revised if possible, to use a lock-free,
malloc-free hash code table.
@subsection PRINCIPLE_PERFORMANCE No performance hit
The instrumentation of the server should be as fast as possible.
In cases when there are choices between:
- doing some processing when recording the performance data
in the instrumentation,
- doing some processing when retrieving the performance data,
priority is given in the design to make the instrumentation faster,
pushing some complexity to data retrieval.
As a result, some parts of the design, related to:
- the setup code path,
- the query code path,
might appear to be sub-optimal.
The criterion used here is to optimize primarily the critical path (data
collection), possibly at the expense of non-critical code paths.
@subsection PRINCIPLE_NOT_INTRUSIVE Unintrusive instrumentation
For the performance schema in general to be successful, the barrier
of entry for a developer should be low, so it's easy to instrument code.
In particular, the instrumentation interface:
- is available for C and C++ code (so it's a C interface),
- does not require parameters that the calling code can't easily provide,
- supports partial instrumentation (for example, instrumenting mutexes does
not require that every mutex is instrumented)
@subsection PRINCIPLE_EXTENDABLE Extendable instrumentation
As the content of the performance schema improves,
with more tables exposed and more data collected,
the instrumentation interface will also be augmented
to support instrumenting new concepts.
Existing instrumentations should not be affected when additional
instrumentation is made available, and making a new instrumentation
available should not require existing instrumented code to support it.
@subsection PRINCIPLE_VERSIONED Versioned instrumentation
Given that the instrumentation offered by the performance schema will
be augmented with time, when more features are implemented,
the interface itself should be versioned, to keep compatibility
with previous instrumented code.
For example, after both plugin-A and plugin-B have been instrumented for
mutexes, read write locks and conditions, using the instrumentation
interface, we can anticipate that the instrumentation interface
is expanded to support file based operations.
Plugin-A, a file based storage engine, will most likely use the expanded
interface and instrument its file usage, using the version 2
interface, while Plugin-B, a network based storage engine, will not change
its code and not release a new binary.
When later the instrumentation interface is expanded to support network
based operations (which will define interface version 3), the Plugin-B code
can then be changed to make use of it.
Note, this is just an example to illustrate the design concept here.
Both mutexes and file instrumentation are already available
since version 1 of the instrumentation interface.
@subsection PRINCIPLE_DEPLOYMENT Easy deployment
Internally, we might want every plugin implementation to upgrade the
instrumented code to the latest available, but this will cause additional
work and this is not practical if the code change is monolithic.
Externally, for third party plugin implementors, asking implementors to
always stay aligned to the latest instrumentation and make new releases,
even when the change does not provide new functionality for them,
is a bad idea.
For example, requiring a network based engine to re-release because the
instrumentation interface changed for file based operations, will create
too many deployment issues.
So, the performance schema implementation must support concurrently,
in the same deployment, multiple versions of the instrumentation
interface, and ensure binary compatibility with each version.
In addition to this, the performance schema can be included or excluded
from the server binary, using build time configuration options.
Regardless, the following types of deployment are valid:
- a server supporting the performance schema + a storage engine
that is not instrumented
- a server not supporting the performance schema + a storage engine
that is instrumented
*/
/**
@page PAGE_INSTRUMENTATION_INTERFACE
Performance schema: instrumentation interface page.
MySQL performance schema instrumentation interface.
@section INTRO Introduction
The instrumentation interface consist of two layers:
- a raw ABI (Application Binary Interface) layer, that exposes the primitive
instrumentation functions exported by the performance schema instrumentation
- an API (Application Programing Interface) layer,
that provides many helpers for a developer instrumenting some code,
to make the instrumentation as easy as possible.
The ABI layer consists of:
@code
#include "mysql/psi/psi.h"
@endcode
The API layer consists of:
@code
#include "mysql/psi/mutex_mutex.h"
#include "mysql/psi/mutex_file.h"
@endcode
The first helper is for mutexes, rwlocks and conditions,
the second for file io.
The API layer exposes C macros and typedefs which will expand:
- either to non-instrumented code, when compiled without the performance
schema instrumentation
- or to instrumented code, that will issue the raw calls to the ABI layer
so that the implementation can collect data.
Note that all the names introduced (for example, @c mysql_mutex_lock) do not
collide with any other namespace.
In particular, the macro @c mysql_mutex_lock is on purpose not named
@c pthread_mutex_lock.
This is to:
- avoid overloading @c pthread_mutex_lock with yet another macro,
which is dangerous as it can affect user code and pollute
the end-user namespace.
- allow the developer instrumenting code to selectively instrument
some code but not all.
@section PRINCIPLES Design principles
The ABI part is designed as a facade, that exposes basic primitives.
The expectation is that each primitive will be very stable over time,
but the list will constantly grow when more instruments are supported.
To support binary compatibility with plugins compiled with a different
version of the instrumentation, the ABI itself is versioned
(see @c PSI_v1, @c PSI_v2).
For a given instrumentation point in the API, the basic coding pattern
used is:
- (a) If the performance schema is not initialized, do nothing
- (b) If the object acted upon is not instrumented, do nothing
- (c) otherwise, notify the performance schema of the operation
about to be performed.
The implementation of the instrumentation interface can:
- decide that it is not interested by the event, and return NULL.
In this context, 'interested' means whether the instrumentation for
this object + event is turned on in the performance schema configuration
(the SETUP_ tables).
- decide that this event is to be instrumented.
In this case, the instrumentation returns an opaque pointer,
that acts as a listener.
If a listener is returned, the instrumentation point then:
- (d) invokes the "start" event method
- (e) executes the instrumented code.
- (f) invokes the "end" event method.
If no listener is returned, only the instrumented code (e) is invoked.
The following code fragment is annotated to show how in detail this pattern
in implemented, when the instrumentation is compiled in:
@verbatim
static inline int mysql_mutex_lock(
mysql_mutex_t *that, myf flags, const char *src_file, uint src_line)
{
int result;
struct PSI_mutex_locker *locker= NULL;
...... (a) .......... (b)
if (PSI_server && that->m_psi)
.......................... (c)
if ((locker= PSI_server->get_thread_mutex_locker(that->m_psi,
PSI_MUTEX_LOCK)))
............... (d)
PSI_server->start_mutex_wait(locker, src_file, src_line);
........ (e)
result= pthread_mutex_lock(&that->m_mutex);
if (locker)
............. (f)
PSI_server->end_mutex_wait(locker, result);
return result;
}
@endverbatim
When the performance schema instrumentation is not compiled in,
the code becomes simply a wrapper, expanded in line by the compiler:
@verbatim
static inline int mysql_mutex_lock(...)
{
int result;
........ (e)
result= pthread_mutex_lock(&that->m_mutex);
return result;
}
@endverbatim
*/
/**
@page PAGE_AGGREGATES Performance schema: the aggregates page.
Performance schema aggregates.
@section INTRO Introduction
Aggregates tables are tables that can be formally defined as
SELECT ... from EVENTS_WAITS_HISTORY_INFINITE ... group by 'group clause'.
Each group clause defines a different kind of aggregate, and corresponds to
a different table exposed by the performance schema.
Aggregates can be either:
- computed on the fly,
- computed on demand, based on other available data.
'EVENTS_WAITS_HISTORY_INFINITE' is a table that does not exist,
the best approximation is EVENTS_WAITS_HISTORY_LONG.
Aggregates computed on the fly in fact are based on EVENTS_WAITS_CURRENT,
while aggregates computed on demand are based on other
EVENTS_WAITS_SUMMARY_BY_xxx tables.
To better understand the implementation itself, a bit of math is
required first, to understand the model behind the code:
the code is deceptively simple, the real complexity resides
in the flyweight of pointers between various performance schema buffers.
@section DIMENSION Concept of dimension
An event measured by the instrumentation has many attributes.
An event is represented as a data point P(x1, x2, ..., xN),
where each x_i coordinate represents a given attribute value.
Examples of attributes are:
- the time waited
- the object waited on
- the instrument waited on
- the thread that waited
- the operation performed
- per object or per operation additional attributes, such as spins,
number of bytes, etc.
Computing an aggregate per thread is fundamentally different from
computing an aggregate by instrument, so the "_BY_THREAD" and
"_BY_EVENT_NAME" aggregates are different dimensions,
operating on different x_i and x_j coordinates.
These aggregates are "orthogonal".
@section PROJECTION Concept of projection
A given x_i attribute value can convey either just one basic information,
such as a number of bytes, or can convey implied information,
such as an object fully qualified name.
For example, from the value "test.t1", the name of the object schema
"test" can be separated from the object name "t1", so that now aggregates
by object schema can be implemented.
In math terms, that corresponds to defining a function:
F_i (x): x --> y
Applying this function to our point P gives another point P':
F_i (P):
P(x1, x2, ..., x{i-1}, x_i, x{i+1}, ..., x_N
--> P' (x1, x2, ..., x{i-1}, f_i(x_i), x{i+1}, ..., x_N)
That function defines in fact an aggregate !
In SQL terms, this aggregate would look like the following table:
@verbatim
CREATE VIEW EVENTS_WAITS_SUMMARY_BY_Func_i AS
SELECT col_1, col_2, ..., col_{i-1},
Func_i(col_i),
COUNT(col_i),
MIN(col_i), AVG(col_i), MAX(col_i), -- if col_i is a numeric value
col_{i+1}, ..., col_N
FROM EVENTS_WAITS_HISTORY_INFINITE
group by col_1, col_2, ..., col_{i-1}, col{i+1}, ..., col_N.
@endverbatim
Note that not all columns have to be included,
in particular some columns that are dependent on the x_i column should
be removed, so that in practice, MySQL's aggregation method tends to
remove many attributes at each aggregation steps.
For example, when aggregating wait events by object instances,
- the wait_time and number_of_bytes can be summed,
and sum(wait_time) now becomes an object instance attribute.
- the source, timer_start, timer_end columns are not in the
_BY_INSTANCE table, because these attributes are only
meaningful for a wait.
@section COMPOSITION Concept of composition
Now, the "test.t1" --> "test" example was purely theory,
just to explain the concept, and does not lead very far.
Let's look at a more interesting example of data that can be derived
from the row event.
An event creates a transient object, PFS_wait_locker, per operation.
This object's life cycle is extremely short: it's created just
before the start_wait() instrumentation call, and is destroyed in
the end_wait() call.
The wait locker itself contains a pointer to the object instance
waited on.
That allows to implement a wait_locker --> object instance projection,
with m_target.
The object instance life cycle depends on _init and _destroy calls
from the code, such as mysql_mutex_init()
and mysql_mutex_destroy() for a mutex.
The object instance waited on contains a pointer to the object class,
which is represented by the instrument name.
That allows to implement an object instance --> object class projection.
The object class life cycle is permanent, as instruments are loaded in
the server and never removed.
The object class is named in such a way
(for example, "wait/sync/mutex/sql/LOCK_open",
"wait/io/file/maria/data_file) that the component ("sql", "maria")
that it belongs to can be inferred.
That allows to implement an object class --> server component projection.
Back to math again, we have, for example for mutexes:
F1 (l) : PFS_wait_locker l --> PFS_mutex m = l->m_target.m_mutex
F1_to_2 (m) : PFS_mutex m --> PFS_mutex_class i = m->m_class
F2_to_3 (i) : PFS_mutex_class i --> const char *component =
substring(i->m_name, ...)
Per components aggregates are not implemented, this is just an illustration.
F1 alone defines this aggregate:
EVENTS_WAITS_HISTORY_INFINITE --> EVENTS_WAITS_SUMMARY_BY_INSTANCE
(or MUTEX_INSTANCE)
F1_to_2 alone could define this aggregate:
EVENTS_WAITS_SUMMARY_BY_INSTANCE --> EVENTS_WAITS_SUMMARY_BY_EVENT_NAME
Alternatively, using function composition, with
F2 = F1_to_2 o F1, F2 defines:
EVENTS_WAITS_HISTORY_INFINITE --> EVENTS_WAITS_SUMMARY_BY_EVENT_NAME
Likewise, F_2_to_3 defines:
EVENTS_WAITS_SUMMARY_BY_EVENT_NAME --> EVENTS_WAITS_SUMMARY_BY_COMPONENT
and F3 = F_2_to_3 o F_1_to_2 o F1 defines:
EVENTS_WAITS_HISTORY_INFINITE --> EVENTS_WAITS_SUMMARY_BY_COMPONENT
What has all this to do with the code ?
Function composition such as F_2_to_3 o F_1_to_2 o F1 is implemented
as PFS_single_stat_chain, where each link in the chain represents
an individual F_{i}_to_{i+1} aggregation step.
A single call to aggregate_single_stat_chain() updates all the tables
described in the statistics chain.
@section STAT_CHAIN Statistics chains
Statistics chains are only used for on the fly aggregates,
and are therefore all based initially on the '_CURRENT' base table that
contains the data recorded.
The following table aggregates are implemented with a statistics chain:
EVENTS_WAITS_CURRENT --> EVENTS_WAITS_SUMMARY_BY_INSTANCE
--> EVENTS_WAITS_SUMMARY_BY_EVENT_NAME
This relationship is between classes.
In terms of object instances, or records, this chain is implemented
as a flyweight.
For example, assuming the following scenario:
- A mutex class "M" is instrumented, the instrument name
is "wait/sync/mutex/sql/M"
- This mutex instrument has been instantiated twice,
mutex instances are noted M-1 and M-2
- Threads T-A and T-B are locking mutex instance M-1
- Threads T-C and T-D are locking mutex instance M-2
The performance schema will record the following data:
- EVENTS_WAITS_CURRENT has 4 rows, one for each mutex locker
- EVENTS_WAITS_SUMMARY_BY_INSTANCE shows 2 rows, for M-1 and M-2
- EVENTS_WAITS_SUMMARY_BY_EVENT_NAME shows 1 row, for M
The graph of structures will look like:
@verbatim
PFS_wait_locker (T-A, M-1) ----------
|
v
PFS_mutex (M-1)
- m_wait_stat ------------
^ |
| |
PFS_wait_locker (T-B, M-1) ---------- |
v
PFS_mutex_class (M)
- m_wait_stat
PFS_wait_locker (T-C, M-2) ---------- ^
| |
v |
PFS_mutex (M-2) |
- m_wait_stat ------------
^
|
PFS_wait_locker (T-D, M-2) ----------
|| || ||
|| || ||
vv vv vv
EVENTS_WAITS_CURRENT ..._SUMMARY_BY_INSTANCE ..._SUMMARY_BY_EVENT_NAME
@endverbatim
@section ON_THE_FLY On the fly aggregates
'On the fly' aggregates are computed during the code execution.
This is necessary because the data the aggregate is based on is volatile,
and can not be kept indefinitely.
@section HIGHER_LEVEL Higher level aggregates
Note: no higher level aggregate is implemented yet,
this section is a place holder.
*/
/**
@defgroup Performance_schema Performance Schema
The performance schema component.
For details, see the
@ref PAGE_PERFORMANCE_SCHEMA "performance schema main page".
@defgroup Performance_schema_implementation Performance Schema Implementation
@ingroup Performance_schema
@defgroup Performance_schema_tables Performance Schema Tables
@ingroup Performance_schema_implementation
*/
pthread_key(PFS_thread*, THR_PFS);
bool THR_PFS_initialized= false;
static enum_operation_type mutex_operation_map[]=
{
OPERATION_TYPE_LOCK,
OPERATION_TYPE_TRYLOCK
};
static enum_operation_type rwlock_operation_map[]=
{
OPERATION_TYPE_READLOCK,
OPERATION_TYPE_WRITELOCK,
OPERATION_TYPE_TRYREADLOCK,
OPERATION_TYPE_TRYWRITELOCK
};
static enum_operation_type cond_operation_map[]=
{
OPERATION_TYPE_WAIT,
OPERATION_TYPE_TIMEDWAIT
};
/**
Conversion map from PSI_file_operation to enum_operation_type.
Indexed by enum PSI_file_operation.
*/
static enum_operation_type file_operation_map[]=
{
OPERATION_TYPE_FILECREATE,
OPERATION_TYPE_FILECREATETMP,
OPERATION_TYPE_FILEOPEN,
OPERATION_TYPE_FILESTREAMOPEN,
OPERATION_TYPE_FILECLOSE,
OPERATION_TYPE_FILESTREAMCLOSE,
OPERATION_TYPE_FILEREAD,
OPERATION_TYPE_FILEWRITE,
OPERATION_TYPE_FILESEEK,
OPERATION_TYPE_FILETELL,
OPERATION_TYPE_FILEFLUSH,
OPERATION_TYPE_FILESTAT,
OPERATION_TYPE_FILEFSTAT,
OPERATION_TYPE_FILECHSIZE,
OPERATION_TYPE_FILEDELETE,
OPERATION_TYPE_FILERENAME,
OPERATION_TYPE_FILESYNC
};
/**
Build the prefix name of a class of instruments in a category.
For example, this function builds the string 'wait/sync/mutex/sql/' from
a prefix 'wait/sync/mutex' and a category 'sql'.
This prefix is used later to build each instrument name, such as
'wait/sync/mutex/sql/LOCK_open'.
@param prefix Prefix for this class of instruments
@param category Category name
@param [out] output Buffer of length PFS_MAX_INFO_NAME_LENGTH.
@param [out] output_length Length of the resulting output string.
@return 0 for success, non zero for errors
*/
static int build_prefix(const LEX_STRING *prefix, const char *category,
char *output, int *output_length)
{
int len= strlen(category);
char *out_ptr= output;
int prefix_length= prefix->length;
if (unlikely((prefix_length + len + 1) >=
PFS_MAX_FULL_PREFIX_NAME_LENGTH))
{
pfs_print_error("build_prefix: prefix+category is too long <%s> <%s>\n",
prefix->str, category);
return 1;
}
if (unlikely(strchr(category, '/') != NULL))
{
pfs_print_error("build_prefix: invalid category <%s>\n",
category);
return 1;
}
/* output = prefix + category + '/' */
memcpy(out_ptr, prefix->str, prefix_length);
out_ptr+= prefix_length;
memcpy(out_ptr, category, len);
out_ptr+= len;
*out_ptr= '/';
out_ptr++;
*output_length= out_ptr - output;
return 0;
}
#define REGISTER_BODY_V1(KEY_T, PREFIX, REGISTER_FUNC) \
KEY_T key; \
char formatted_name[PFS_MAX_INFO_NAME_LENGTH]; \
int prefix_length; \
int len; \
int full_length; \
\
DBUG_ASSERT(category != NULL); \
DBUG_ASSERT(info != NULL); \
if (unlikely(build_prefix(&PREFIX, category, \
formatted_name, &prefix_length))) \
{ \
for (; count>0; count--, info++) \
*(info->m_key)= 0; \
return ; \
} \
\
for (; count>0; count--, info++) \
{ \
DBUG_ASSERT(info->m_key != NULL); \
DBUG_ASSERT(info->m_name != NULL); \
len= strlen(info->m_name); \
full_length= prefix_length + len; \
if (likely(full_length <= PFS_MAX_INFO_NAME_LENGTH)) \
{ \
memcpy(formatted_name + prefix_length, info->m_name, len); \
key= REGISTER_FUNC(formatted_name, full_length, info->m_flags); \
} \
else \
{ \
pfs_print_error("REGISTER_BODY_V1: name too long <%s> <%s>\n", \
category, info->m_name); \
key= 0; \
} \
\
*(info->m_key)= key; \
} \
return;
/* Use C linkage for the interface functions. */
C_MODE_START
static void register_mutex_v1(const char *category,
PSI_mutex_info_v1 *info,
int count)
{
REGISTER_BODY_V1(PSI_mutex_key,
mutex_instrument_prefix,
register_mutex_class)
}
static void register_rwlock_v1(const char *category,
PSI_rwlock_info_v1 *info,
int count)
{
REGISTER_BODY_V1(PSI_rwlock_key,
rwlock_instrument_prefix,
register_rwlock_class)
}
static void register_cond_v1(const char *category,
PSI_cond_info_v1 *info,
int count)
{
REGISTER_BODY_V1(PSI_cond_key,
cond_instrument_prefix,
register_cond_class)
}
static void register_thread_v1(const char *category,
PSI_thread_info_v1 *info,
int count)
{
REGISTER_BODY_V1(PSI_thread_key,
thread_instrument_prefix,
register_thread_class)
}
static void register_file_v1(const char *category,
PSI_file_info_v1 *info,
int count)
{
REGISTER_BODY_V1(PSI_file_key,
file_instrument_prefix,
register_file_class)
}
#define INIT_BODY_V1(T, KEY, ID) \
PFS_##T##_class *klass; \
PFS_##T *pfs; \
PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS); \
if (unlikely(pfs_thread == NULL)) \
return NULL; \
if (! pfs_thread->m_enabled) \
return NULL; \
klass= find_##T##_class(KEY); \
if (unlikely(klass == NULL)) \
return NULL; \
if (! klass->m_enabled) \
return NULL; \
pfs= create_##T(klass, ID); \
return reinterpret_cast<PSI_##T *> (pfs)
static PSI_mutex*
init_mutex_v1(PSI_mutex_key key, const void *identity)
{
INIT_BODY_V1(mutex, key, identity);
}
static void destroy_mutex_v1(PSI_mutex* mutex)
{
PFS_mutex *pfs= reinterpret_cast<PFS_mutex*> (mutex);
destroy_mutex(pfs);
}
static PSI_rwlock*
init_rwlock_v1(PSI_rwlock_key key, const void *identity)
{
INIT_BODY_V1(rwlock, key, identity);
}
static void destroy_rwlock_v1(PSI_rwlock* rwlock)
{
PFS_rwlock *pfs= reinterpret_cast<PFS_rwlock*> (rwlock);
destroy_rwlock(pfs);
}
static PSI_cond*
init_cond_v1(PSI_cond_key key, const void *identity)
{
INIT_BODY_V1(cond, key, identity);
}
static void destroy_cond_v1(PSI_cond* cond)
{
PFS_cond *pfs= reinterpret_cast<PFS_cond*> (cond);
destroy_cond(pfs);
}
static PSI_table_share*
get_table_share_v1(const char *schema_name, int schema_name_length,
const char *table_name, int table_name_length,
const void *identity)
{
#ifdef HAVE_TABLE_WAIT
PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
if (unlikely(pfs_thread == NULL))
return NULL;
PFS_table_share* share;
share= find_or_create_table_share(pfs_thread,
schema_name, schema_name_length,
table_name, table_name_length);
return reinterpret_cast<PSI_table_share*> (share);
#else
return NULL;
#endif
}
static void release_table_share_v1(PSI_table_share* share)
{
/*
To be implemented by WL#4895 PERFORMANCE_SCHEMA Instrumenting Table IO.
*/
}
static PSI_table*
open_table_v1(PSI_table_share *share, const void *identity)
{
PFS_table_share *pfs_table_share=
reinterpret_cast<PFS_table_share*> (share);
PFS_table *pfs_table;
DBUG_ASSERT(pfs_table_share);
pfs_table= create_table(pfs_table_share, identity);
return reinterpret_cast<PSI_table *> (pfs_table);
}
static void close_table_v1(PSI_table *table)
{
PFS_table *pfs= reinterpret_cast<PFS_table*> (table);
DBUG_ASSERT(pfs);
destroy_table(pfs);
}
static void create_file_v1(PSI_file_key key, const char *name, File file)
{
int index= (int) file;
if (unlikely(index < 0))
return;
PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
if (unlikely(pfs_thread == NULL))
return;
if (! pfs_thread->m_enabled)
return;
PFS_file_class *klass= find_file_class(key);
if (unlikely(klass == NULL))
return;
if (! klass->m_enabled)
return;
if (likely(index < file_handle_max))
{
uint len= strlen(name);
PFS_file *pfs= find_or_create_file(pfs_thread, klass, name, len);
file_handle_array[index]= pfs;
}
else
file_handle_lost++;
}
struct PFS_spawn_thread_arg
{
PFS_thread *m_parent_thread;
PSI_thread_key m_child_key;
const void *m_child_identity;
void *(*m_user_start_routine)(void*);
void *m_user_arg;
};
void* pfs_spawn_thread(void *arg)
{
PFS_spawn_thread_arg *typed_arg= (PFS_spawn_thread_arg*) arg;
void *user_arg;
void *(*user_start_routine)(void*);
PFS_thread *pfs;
/* First, attach instrumentation to this newly created pthread. */
PFS_thread_class *klass= find_thread_class(typed_arg->m_child_key);
if (likely(klass != NULL))
pfs= create_thread(klass, typed_arg->m_child_identity, 0);
else
pfs= NULL;
my_pthread_setspecific_ptr(THR_PFS, pfs);
/*
Secondly, free the memory allocated in spawn_thread_v1().
It is preferable to do this before invoking the user
routine, to avoid memory leaks at shutdown, in case
the server exits without waiting for this thread.
*/
user_start_routine= typed_arg->m_user_start_routine;
user_arg= typed_arg->m_user_arg;
my_free(typed_arg);
/* Then, execute the user code for this thread. */
(*user_start_routine)(user_arg);
return NULL;
}
static int spawn_thread_v1(PSI_thread_key key,
pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg)
{
PFS_spawn_thread_arg *psi_arg;
/* psi_arg can not be global, and can not be a local variable. */
psi_arg= (PFS_spawn_thread_arg*) my_malloc(sizeof(PFS_spawn_thread_arg),
MYF(MY_WME));
if (unlikely(psi_arg == NULL))
return EAGAIN;
psi_arg->m_parent_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
psi_arg->m_child_key= key;
psi_arg->m_child_identity= (arg ? arg : thread);
psi_arg->m_user_start_routine= start_routine;
psi_arg->m_user_arg= arg;
int result= pthread_create(thread, attr, pfs_spawn_thread, psi_arg);
if (unlikely(result != 0))
my_free(psi_arg);
return result;
}
static PSI_thread*
new_thread_v1(PSI_thread_key key, const void *identity, ulong thread_id)
{
PFS_thread *pfs;
PFS_thread_class *klass= find_thread_class(key);
if (likely(klass != NULL))
pfs= create_thread(klass, identity, thread_id);
else
pfs= NULL;
return reinterpret_cast<PSI_thread*> (pfs);
}
static void set_thread_id_v1(PSI_thread *thread, unsigned long id)
{
DBUG_ASSERT(thread);
PFS_thread *pfs= reinterpret_cast<PFS_thread*> (thread);
pfs->m_thread_id= id;
}
static PSI_thread*
get_thread_v1(void)
{
PFS_thread *pfs= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
return reinterpret_cast<PSI_thread*> (pfs);
}
static void set_thread_v1(PSI_thread* thread)
{
PFS_thread *pfs= reinterpret_cast<PFS_thread*> (thread);
my_pthread_setspecific_ptr(THR_PFS, pfs);
}
static void delete_current_thread_v1(void)
{
PFS_thread *thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
if (thread != NULL)
{
my_pthread_setspecific_ptr(THR_PFS, NULL);
destroy_thread(thread);
}
}
static void delete_thread_v1(PSI_thread *thread)
{
PFS_thread *pfs= reinterpret_cast<PFS_thread*> (thread);
if (pfs != NULL)
destroy_thread(pfs);
}
static PSI_mutex_locker*
get_thread_mutex_locker_v1(PSI_mutex_locker_state *state,
PSI_mutex *mutex, PSI_mutex_operation op)
{
PFS_mutex *pfs_mutex= reinterpret_cast<PFS_mutex*> (mutex);
DBUG_ASSERT((int) op >= 0);
DBUG_ASSERT((uint) op < array_elements(mutex_operation_map));
DBUG_ASSERT(pfs_mutex != NULL);
DBUG_ASSERT(pfs_mutex->m_class != NULL);
if (! flag_events_waits_current)
return NULL;
if (! pfs_mutex->m_class->m_enabled)
return NULL;
PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
if (unlikely(pfs_thread == NULL))
return NULL;
if (! pfs_thread->m_enabled)
return NULL;
if (unlikely(pfs_thread->m_wait_locker_count >= LOCKER_STACK_SIZE))
{
locker_lost++;
return NULL;
}
PFS_wait_locker *pfs_locker= &pfs_thread->m_wait_locker_stack
[pfs_thread->m_wait_locker_count];
pfs_locker->m_target.m_mutex= pfs_mutex;
pfs_locker->m_waits_current.m_thread= pfs_thread;
pfs_locker->m_waits_current.m_class= pfs_mutex->m_class;
if (pfs_mutex->m_class->m_timed)
{
pfs_locker->m_timer_name= wait_timer;
pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_STARTING;
}
else
pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_UNTIMED;
pfs_locker->m_waits_current.m_object_instance_addr= pfs_mutex->m_identity;
pfs_locker->m_waits_current.m_event_id= pfs_thread->m_event_id++;
pfs_locker->m_waits_current.m_operation= mutex_operation_map[(int) op];
pfs_locker->m_waits_current.m_wait_class= WAIT_CLASS_MUTEX;
pfs_thread->m_wait_locker_count++;
return reinterpret_cast<PSI_mutex_locker*> (pfs_locker);
}
static PSI_rwlock_locker*
get_thread_rwlock_locker_v1(PSI_rwlock_locker_state *state,
PSI_rwlock *rwlock, PSI_rwlock_operation op)
{
PFS_rwlock *pfs_rwlock= reinterpret_cast<PFS_rwlock*> (rwlock);
DBUG_ASSERT(static_cast<int> (op) >= 0);
DBUG_ASSERT(static_cast<uint> (op) < array_elements(rwlock_operation_map));
DBUG_ASSERT(pfs_rwlock != NULL);
DBUG_ASSERT(pfs_rwlock->m_class != NULL);
if (! flag_events_waits_current)
return NULL;
if (! pfs_rwlock->m_class->m_enabled)
return NULL;
PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
if (unlikely(pfs_thread == NULL))
return NULL;
if (! pfs_thread->m_enabled)
return NULL;
if (unlikely(pfs_thread->m_wait_locker_count >= LOCKER_STACK_SIZE))
{
locker_lost++;
return NULL;
}
PFS_wait_locker *pfs_locker= &pfs_thread->m_wait_locker_stack
[pfs_thread->m_wait_locker_count];
pfs_locker->m_target.m_rwlock= pfs_rwlock;
pfs_locker->m_waits_current.m_thread= pfs_thread;
pfs_locker->m_waits_current.m_class= pfs_rwlock->m_class;
if (pfs_rwlock->m_class->m_timed)
{
pfs_locker->m_timer_name= wait_timer;
pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_STARTING;
}
else
pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_UNTIMED;
pfs_locker->m_waits_current.m_object_instance_addr= pfs_rwlock->m_identity;
pfs_locker->m_waits_current.m_event_id= pfs_thread->m_event_id++;
pfs_locker->m_waits_current.m_operation=
rwlock_operation_map[static_cast<int> (op)];
pfs_locker->m_waits_current.m_wait_class= WAIT_CLASS_RWLOCK;
pfs_thread->m_wait_locker_count++;
return reinterpret_cast<PSI_rwlock_locker*> (pfs_locker);
}
static PSI_cond_locker*
get_thread_cond_locker_v1(PSI_cond_locker_state *state,
PSI_cond *cond, PSI_mutex * /* unused: mutex */,
PSI_cond_operation op)
{
/*
Note about the unused PSI_mutex *mutex parameter:
In the pthread library, a call to pthread_cond_wait()
causes an unlock() + lock() on the mutex associated with the condition.
This mutex operation is not instrumented, so the mutex will still
appear as locked when a thread is waiting on a condition.
This has no impact now, as unlock_mutex() is not recording events.
When unlock_mutex() is implemented by later work logs,
this parameter here will be used to adjust the mutex state,
in start_cond_wait_v1() and end_cond_wait_v1().
*/
PFS_cond *pfs_cond= reinterpret_cast<PFS_cond*> (cond);
DBUG_ASSERT(static_cast<int> (op) >= 0);
DBUG_ASSERT(static_cast<uint> (op) < array_elements(cond_operation_map));
DBUG_ASSERT(pfs_cond != NULL);
DBUG_ASSERT(pfs_cond->m_class != NULL);
if (! flag_events_waits_current)
return NULL;
if (! pfs_cond->m_class->m_enabled)
return NULL;
PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
if (unlikely(pfs_thread == NULL))
return NULL;
if (! pfs_thread->m_enabled)
return NULL;
if (unlikely(pfs_thread->m_wait_locker_count >= LOCKER_STACK_SIZE))
{
locker_lost++;
return NULL;
}
PFS_wait_locker *pfs_locker= &pfs_thread->m_wait_locker_stack
[pfs_thread->m_wait_locker_count];
pfs_locker->m_target.m_cond= pfs_cond;
pfs_locker->m_waits_current.m_thread= pfs_thread;
pfs_locker->m_waits_current.m_class= pfs_cond->m_class;
if (pfs_cond->m_class->m_timed)
{
pfs_locker->m_timer_name= wait_timer;
pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_STARTING;
}
else
pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_UNTIMED;
pfs_locker->m_waits_current.m_object_instance_addr= pfs_cond->m_identity;
pfs_locker->m_waits_current.m_event_id= pfs_thread->m_event_id++;
pfs_locker->m_waits_current.m_operation=
cond_operation_map[static_cast<int> (op)];
pfs_locker->m_waits_current.m_wait_class= WAIT_CLASS_COND;
pfs_thread->m_wait_locker_count++;
return reinterpret_cast<PSI_cond_locker*> (pfs_locker);
}
static PSI_table_locker*
get_thread_table_locker_v1(PSI_table_locker_state *state,
PSI_table *table)
{
PFS_table *pfs_table= reinterpret_cast<PFS_table*> (table);
DBUG_ASSERT(pfs_table != NULL);
DBUG_ASSERT(pfs_table->m_share != NULL);
if (! flag_events_waits_current)
return NULL;
if (! pfs_table->m_share->m_enabled)
return NULL;
PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
if (unlikely(pfs_thread == NULL))
return NULL;
if (! pfs_thread->m_enabled)
return NULL;
if (unlikely(pfs_thread->m_wait_locker_count >= LOCKER_STACK_SIZE))
{
locker_lost++;
return NULL;
}
PFS_wait_locker *pfs_locker= &pfs_thread->m_wait_locker_stack
[pfs_thread->m_wait_locker_count];
pfs_locker->m_target.m_table= pfs_table;
pfs_locker->m_waits_current.m_thread= pfs_thread;
pfs_locker->m_waits_current.m_class= &global_table_class;
if (pfs_table->m_share->m_timed)
{
pfs_locker->m_timer_name= wait_timer;
pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_STARTING;
}
else
pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_UNTIMED;
pfs_locker->m_waits_current.m_object_instance_addr= pfs_table->m_identity;
pfs_locker->m_waits_current.m_event_id= pfs_thread->m_event_id++;
pfs_locker->m_waits_current.m_wait_class= WAIT_CLASS_TABLE;
pfs_thread->m_wait_locker_count++;
return reinterpret_cast<PSI_table_locker*> (pfs_locker);
}
static PSI_file_locker*
get_thread_file_name_locker_v1(PSI_file_locker_state *state,
PSI_file_key key,
PSI_file_operation op,
const char *name, const void *identity)
{
DBUG_ASSERT(static_cast<int> (op) >= 0);
DBUG_ASSERT(static_cast<uint> (op) < array_elements(file_operation_map));
if (! flag_events_waits_current)
return NULL;
PFS_file_class *klass= find_file_class(key);
if (unlikely(klass == NULL))
return NULL;
if (! klass->m_enabled)
return NULL;
PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
if (unlikely(pfs_thread == NULL))
return NULL;
if (! pfs_thread->m_enabled)
return NULL;
if (unlikely(pfs_thread->m_wait_locker_count >= LOCKER_STACK_SIZE))
{
locker_lost++;
return NULL;
}
uint len= strlen(name);
PFS_file *pfs_file= find_or_create_file(pfs_thread, klass, name, len);
if (unlikely(pfs_file == NULL))
return NULL;
PFS_wait_locker *pfs_locker= &pfs_thread->m_wait_locker_stack
[pfs_thread->m_wait_locker_count];
pfs_locker->m_target.m_file= pfs_file;
pfs_locker->m_waits_current.m_thread= pfs_thread;
pfs_locker->m_waits_current.m_class= pfs_file->m_class;
if (pfs_file->m_class->m_timed)
{
pfs_locker->m_timer_name= wait_timer;
pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_STARTING;
}
else
pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_UNTIMED;
pfs_locker->m_waits_current.m_object_instance_addr= pfs_file;
pfs_locker->m_waits_current.m_object_name= pfs_file->m_filename;
pfs_locker->m_waits_current.m_object_name_length=
pfs_file->m_filename_length;
pfs_locker->m_waits_current.m_event_id= pfs_thread->m_event_id++;
pfs_locker->m_waits_current.m_operation=
file_operation_map[static_cast<int> (op)];
pfs_locker->m_waits_current.m_wait_class= WAIT_CLASS_FILE;
pfs_thread->m_wait_locker_count++;
return reinterpret_cast<PSI_file_locker*> (pfs_locker);
}
static PSI_file_locker*
get_thread_file_stream_locker_v1(PSI_file_locker_state *state,
PSI_file *file, PSI_file_operation op)
{
PFS_file *pfs_file= reinterpret_cast<PFS_file*> (file);
DBUG_ASSERT(static_cast<int> (op) >= 0);
DBUG_ASSERT(static_cast<uint> (op) < array_elements(file_operation_map));
DBUG_ASSERT(pfs_file != NULL);
DBUG_ASSERT(pfs_file->m_class != NULL);
if (! flag_events_waits_current)
return NULL;
if (! pfs_file->m_class->m_enabled)
return NULL;
PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
if (unlikely(pfs_thread == NULL))
return NULL;
if (! pfs_thread->m_enabled)
return NULL;
if (unlikely(pfs_thread->m_wait_locker_count >= LOCKER_STACK_SIZE))
{
locker_lost++;
return NULL;
}
PFS_wait_locker *pfs_locker= &pfs_thread->m_wait_locker_stack
[pfs_thread->m_wait_locker_count];
pfs_locker->m_target.m_file= pfs_file;
pfs_locker->m_waits_current.m_thread= pfs_thread;
pfs_locker->m_waits_current.m_class= pfs_file->m_class;
if (pfs_file->m_class->m_timed)
{
pfs_locker->m_timer_name= wait_timer;
pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_STARTING;
}
else
pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_UNTIMED;
pfs_locker->m_waits_current.m_object_instance_addr= pfs_file;
pfs_locker->m_waits_current.m_object_name= pfs_file->m_filename;
pfs_locker->m_waits_current.m_object_name_length=
pfs_file->m_filename_length;
pfs_locker->m_waits_current.m_event_id= pfs_thread->m_event_id++;
pfs_locker->m_waits_current.m_operation=
file_operation_map[static_cast<int> (op)];
pfs_locker->m_waits_current.m_wait_class= WAIT_CLASS_FILE;
pfs_thread->m_wait_locker_count++;
return reinterpret_cast<PSI_file_locker*> (pfs_locker);
}
static PSI_file_locker*
get_thread_file_descriptor_locker_v1(PSI_file_locker_state *state,
File file, PSI_file_operation op)
{
int index= static_cast<int> (file);
DBUG_ASSERT(static_cast<int> (op) >= 0);
DBUG_ASSERT(static_cast<uint> (op) < array_elements(file_operation_map));
if (! flag_events_waits_current)
return NULL;
if (likely((index >= 0) && (index < file_handle_max)))
{
PFS_file *pfs_file= file_handle_array[index];
if (likely(pfs_file != NULL))
{
PFS_thread *pfs_thread;
/*
We are about to close a file by descriptor number,
and the calling code still holds the descriptor.
Cleanup the file descriptor <--> file instrument association.
Remove the instrumentation *before* the close to avoid race
conditions with another thread opening a file
(that could be given the same descriptor).
*/
if (op == PSI_FILE_CLOSE)
file_handle_array[index]= NULL;
DBUG_ASSERT(pfs_file->m_class != NULL);
if (! pfs_file->m_class->m_enabled)
return NULL;
pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
if (unlikely(pfs_thread == NULL))
return NULL;
if (! pfs_thread->m_enabled)
return NULL;
if (unlikely(pfs_thread->m_wait_locker_count >= LOCKER_STACK_SIZE))
{
locker_lost++;
return NULL;
}
PFS_wait_locker *pfs_locker= &pfs_thread->m_wait_locker_stack
[pfs_thread->m_wait_locker_count];
pfs_locker->m_target.m_file= pfs_file;
pfs_locker->m_waits_current.m_thread= pfs_thread;
pfs_locker->m_waits_current.m_class= pfs_file->m_class;
if (pfs_file->m_class->m_timed)
{
pfs_locker->m_timer_name= wait_timer;
pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_STARTING;
}
else
pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_UNTIMED;
pfs_locker->m_waits_current.m_object_instance_addr= pfs_file;
pfs_locker->m_waits_current.m_object_name= pfs_file->m_filename;
pfs_locker->m_waits_current.m_object_name_length=
pfs_file->m_filename_length;
pfs_locker->m_waits_current.m_event_id= pfs_thread->m_event_id++;
pfs_locker->m_waits_current.m_operation=
file_operation_map[static_cast<int> (op)];
pfs_locker->m_waits_current.m_wait_class= WAIT_CLASS_FILE;
pfs_thread->m_wait_locker_count++;
return reinterpret_cast<PSI_file_locker*> (pfs_locker);
}
}
return NULL;
}
static void unlock_mutex_v1(PSI_mutex *mutex)
{
PFS_mutex *pfs_mutex= reinterpret_cast<PFS_mutex*> (mutex);
DBUG_ASSERT(pfs_mutex != NULL);
/*
Note that this code is still protected by the instrumented mutex,
and therefore is thread safe. See inline_mysql_mutex_unlock().
*/
/* Always update the instrumented state */
pfs_mutex->m_owner= NULL;
pfs_mutex->m_last_locked= 0;
#ifdef LATER_WL2333
/*
See WL#2333: SHOW ENGINE ... LOCK STATUS.
PFS_mutex::m_lock_stat is not exposed in user visible tables
currently, so there is no point spending time computing it.
*/
PFS_thread *pfs_thread= reinterpret_cast<PFS_thread*> (thread);
DBUG_ASSERT(pfs_thread != NULL);
if (unlikely(! flag_events_waits_current))
return;
if (! pfs_mutex->m_class->m_enabled)
return;
if (! pfs_thread->m_enabled)
return;
if (pfs_mutex->m_class->m_timed)
{
ulonglong locked_time;
locked_time= get_timer_value(wait_timer) - pfs_mutex->m_last_locked;
aggregate_single_stat_chain(&pfs_mutex->m_lock_stat, locked_time);
}
#endif
}
static void unlock_rwlock_v1(PSI_rwlock *rwlock)
{
PFS_rwlock *pfs_rwlock= reinterpret_cast<PFS_rwlock*> (rwlock);
DBUG_ASSERT(pfs_rwlock != NULL);
bool last_writer= false;
bool last_reader= false;
/*
Note that this code is still protected by the instrumented rwlock,
and therefore is:
- thread safe for write locks
- almost thread safe for read locks (pfs_rwlock->m_readers is unsafe).
See inline_mysql_rwlock_unlock()
*/
/* Always update the instrumented state */
if (pfs_rwlock->m_writer)
{
/* Nominal case, a writer is unlocking. */
last_writer= true;
pfs_rwlock->m_writer= NULL;
/* Reset the readers stats, they could be off */
pfs_rwlock->m_readers= 0;
}
else if (likely(pfs_rwlock->m_readers > 0))
{
/* Nominal case, a reader is unlocking. */
if (--(pfs_rwlock->m_readers) == 0)
last_reader= true;
}
else
{
/*
Edge case, we have no writer and no readers,
on an unlock event.
This is possible for:
- partial instrumentation
- instrumentation disabled at runtime,
see when get_thread_rwlock_locker_v1() returns NULL
No further action is taken here, the next
write lock will put the statistics is a valid state.
*/
}
#ifdef LATER_WL2333
/* See WL#2333: SHOW ENGINE ... LOCK STATUS. */
PFS_thread *pfs_thread= reinterpret_cast<PFS_thread*> (thread);
DBUG_ASSERT(pfs_thread != NULL);
if (unlikely(! flag_events_waits_current))
return;
if (! pfs_rwlock->m_class->m_enabled)
return;
if (! pfs_thread->m_enabled)
return;
ulonglong locked_time;
if (last_writer)
{
if (pfs_rwlock->m_class->m_timed)
{
locked_time= get_timer_value(wait_timer) - pfs_rwlock->m_last_written;
aggregate_single_stat_chain(&pfs_rwlock->m_write_lock_stat, locked_time);
}
}
else if (last_reader)
{
if (pfs_rwlock->m_class->m_timed)
{
locked_time= get_timer_value(wait_timer) - pfs_rwlock->m_last_read;
aggregate_single_stat_chain(&pfs_rwlock->m_read_lock_stat, locked_time);
}
}
#endif
}
static void signal_cond_v1(PSI_cond* cond)
{
PFS_cond *pfs_cond= reinterpret_cast<PFS_cond*> (cond);
DBUG_ASSERT(pfs_cond != NULL);
pfs_cond->m_cond_stat.m_signal_count++;
}
static void broadcast_cond_v1(PSI_cond* cond)
{
PFS_cond *pfs_cond= reinterpret_cast<PFS_cond*> (cond);
DBUG_ASSERT(pfs_cond != NULL);
pfs_cond->m_cond_stat.m_broadcast_count++;
}
static void start_mutex_wait_v1(PSI_mutex_locker* locker,
const char *src_file, uint src_line)
{
PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
DBUG_ASSERT(pfs_locker != NULL);
PFS_events_waits *wait= &pfs_locker->m_waits_current;
if (wait->m_timer_state == TIMER_STATE_STARTING)
{
wait->m_timer_start= get_timer_value(pfs_locker->m_timer_name);
wait->m_timer_state= TIMER_STATE_STARTED;
}
wait->m_source_file= src_file;
wait->m_source_line= src_line;
}
static void end_mutex_wait_v1(PSI_mutex_locker* locker, int rc)
{
PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
DBUG_ASSERT(pfs_locker != NULL);
PFS_events_waits *wait= &pfs_locker->m_waits_current;
if (wait->m_timer_state == TIMER_STATE_STARTED)
{
wait->m_timer_end= get_timer_value(pfs_locker->m_timer_name);
wait->m_timer_state= TIMER_STATE_TIMED;
}
if (flag_events_waits_history)
insert_events_waits_history(wait->m_thread, wait);
if (flag_events_waits_history_long)
insert_events_waits_history_long(wait);
if (rc == 0)
{
/* Thread safe: we are protected by the instrumented mutex */
PFS_mutex *mutex= pfs_locker->m_target.m_mutex;
PFS_single_stat_chain *stat= find_per_thread_mutex_class_wait_stat(wait->m_thread, mutex->m_class);
mutex->m_owner= wait->m_thread;
mutex->m_last_locked= wait->m_timer_end;
/* If timed then aggregate stats, else increment the value counts only */
if (wait->m_timer_state == TIMER_STATE_TIMED)
{
ulonglong wait_time= wait->m_timer_end - wait->m_timer_start;
aggregate_single_stat_chain(&mutex->m_wait_stat, wait_time);
aggregate_single_stat_chain(stat, wait_time);
}
else
{
increment_single_stat_chain(&mutex->m_wait_stat);
increment_single_stat_chain(stat);
}
}
wait->m_thread->m_wait_locker_count--;
}
static void start_rwlock_rdwait_v1(PSI_rwlock_locker* locker,
const char *src_file, uint src_line)
{
PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
DBUG_ASSERT(pfs_locker != NULL);
PFS_events_waits *wait= &pfs_locker->m_waits_current;
if (wait->m_timer_state == TIMER_STATE_STARTING)
{
wait->m_timer_start= get_timer_value(pfs_locker->m_timer_name);
wait->m_timer_state= TIMER_STATE_STARTED;
}
wait->m_source_file= src_file;
wait->m_source_line= src_line;
}
static void end_rwlock_rdwait_v1(PSI_rwlock_locker* locker, int rc)
{
PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
DBUG_ASSERT(pfs_locker != NULL);
PFS_events_waits *wait= &pfs_locker->m_waits_current;
if (wait->m_timer_state == TIMER_STATE_STARTED)
{
wait->m_timer_end= get_timer_value(pfs_locker->m_timer_name);
wait->m_timer_state= TIMER_STATE_TIMED;
}
if (flag_events_waits_history)
insert_events_waits_history(wait->m_thread, wait);
if (flag_events_waits_history_long)
insert_events_waits_history_long(wait);
if (rc == 0)
{
/*
Warning:
Multiple threads can execute this section concurrently
(since multiple readers can execute in parallel).
The statistics generated are not safe, which is why they are
just statistics, not facts.
*/
PFS_rwlock *rwlock= pfs_locker->m_target.m_rwlock;
PFS_single_stat_chain *stat= find_per_thread_rwlock_class_wait_stat(wait->m_thread, rwlock->m_class);
if (rwlock->m_readers == 0)
rwlock->m_last_read= wait->m_timer_end;
rwlock->m_writer= NULL;
rwlock->m_readers++;
/* If timed then aggregate stats, else increment the value counts only */
if (wait->m_timer_state == TIMER_STATE_TIMED)
{
ulonglong wait_time= wait->m_timer_end - wait->m_timer_start;
aggregate_single_stat_chain(&rwlock->m_wait_stat, wait_time);
aggregate_single_stat_chain(stat, wait_time);
}
else
{
increment_single_stat_chain(&rwlock->m_wait_stat);
increment_single_stat_chain(stat);
}
}
wait->m_thread->m_wait_locker_count--;
}
static void start_rwlock_wrwait_v1(PSI_rwlock_locker* locker,
const char *src_file, uint src_line)
{
PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
DBUG_ASSERT(pfs_locker != NULL);
PFS_events_waits *wait= &pfs_locker->m_waits_current;
if (wait->m_timer_state == TIMER_STATE_STARTING)
{
wait->m_timer_start= get_timer_value(pfs_locker->m_timer_name);
wait->m_timer_state= TIMER_STATE_STARTED;
}
wait->m_source_file= src_file;
wait->m_source_line= src_line;
}
static void end_rwlock_wrwait_v1(PSI_rwlock_locker* locker, int rc)
{
PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
DBUG_ASSERT(pfs_locker != NULL);
PFS_events_waits *wait= &pfs_locker->m_waits_current;
if (wait->m_timer_state == TIMER_STATE_STARTED)
{
wait->m_timer_end= get_timer_value(pfs_locker->m_timer_name);
wait->m_timer_state= TIMER_STATE_TIMED;
}
if (flag_events_waits_history)
insert_events_waits_history(wait->m_thread, wait);
if (flag_events_waits_history_long)
insert_events_waits_history_long(wait);
if (rc == 0)
{
/* Thread safe : we are protected by the instrumented rwlock */
PFS_rwlock *rwlock= pfs_locker->m_target.m_rwlock;
PFS_single_stat_chain *stat= find_per_thread_rwlock_class_wait_stat(wait->m_thread, rwlock->m_class);
rwlock->m_writer= wait->m_thread;
rwlock->m_last_written= wait->m_timer_end;
/* Reset the readers stats, they could be off */
rwlock->m_readers= 0;
rwlock->m_last_read= 0;
/* If timed then aggregate stats, else increment the value counts only */
if (wait->m_timer_state == TIMER_STATE_TIMED)
{
ulonglong wait_time= wait->m_timer_end - wait->m_timer_start;
aggregate_single_stat_chain(&rwlock->m_wait_stat, wait_time);
aggregate_single_stat_chain(stat, wait_time);
}
else
{
increment_single_stat_chain(&rwlock->m_wait_stat);
increment_single_stat_chain(stat);
}
}
wait->m_thread->m_wait_locker_count--;
}
static void start_cond_wait_v1(PSI_cond_locker* locker,
const char *src_file, uint src_line)
{
PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
DBUG_ASSERT(pfs_locker != NULL);
PFS_events_waits *wait= &pfs_locker->m_waits_current;
if (wait->m_timer_state == TIMER_STATE_STARTING)
{
wait->m_timer_start= get_timer_value(pfs_locker->m_timer_name);
wait->m_timer_state= TIMER_STATE_STARTED;
}
wait->m_source_file= src_file;
wait->m_source_line= src_line;
}
static void end_cond_wait_v1(PSI_cond_locker* locker, int rc)
{
PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
DBUG_ASSERT(pfs_locker != NULL);
PFS_events_waits *wait= &pfs_locker->m_waits_current;
if (wait->m_timer_state == TIMER_STATE_STARTED)
{
wait->m_timer_end= get_timer_value(pfs_locker->m_timer_name);
wait->m_timer_state= TIMER_STATE_TIMED;
}
if (flag_events_waits_history)
insert_events_waits_history(wait->m_thread, wait);
if (flag_events_waits_history_long)
insert_events_waits_history_long(wait);
if (rc == 0)
{
/*
Not thread safe, race conditions will occur.
A first race condition is:
- thread 1 waits on cond A
- thread 2 waits on cond B
threads 1 and 2 compete when updating the same cond A
statistics, possibly missing a min / max / sum / count.
A second race condition is:
- thread 1 waits on cond A
- thread 2 destroys cond A
- thread 2 or 3 creates cond B in the same condition slot
thread 1 will then aggregate statistics about defunct A
in condition B.
This is accepted, the data will be slightly inaccurate.
*/
PFS_cond *cond= pfs_locker->m_target.m_cond;
PFS_single_stat_chain *stat= find_per_thread_cond_class_wait_stat(wait->m_thread, cond->m_class);
/* If timed then aggregate stats, else increment the value counts only */
if (wait->m_timer_state == TIMER_STATE_TIMED)
{
ulonglong wait_time= wait->m_timer_end - wait->m_timer_start;
aggregate_single_stat_chain(&cond->m_wait_stat, wait_time);
aggregate_single_stat_chain(stat, wait_time);
}
else
{
increment_single_stat_chain(&cond->m_wait_stat);
increment_single_stat_chain(stat);
}
}
wait->m_thread->m_wait_locker_count--;
}
static void start_table_wait_v1(PSI_table_locker* locker,
const char *src_file, uint src_line)
{
PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
DBUG_ASSERT(pfs_locker != NULL);
PFS_events_waits *wait= &pfs_locker->m_waits_current;
if (wait->m_timer_state == TIMER_STATE_STARTING)
{
wait->m_timer_start= get_timer_value(pfs_locker->m_timer_name);
wait->m_timer_state= TIMER_STATE_STARTED;
}
wait->m_source_file= src_file;
wait->m_source_line= src_line;
wait->m_operation= OPERATION_TYPE_LOCK;
PFS_table_share *share= pfs_locker->m_target.m_table->m_share;
wait->m_schema_name= share->m_schema_name;
wait->m_schema_name_length= share->m_schema_name_length;
wait->m_object_name= share->m_table_name;
wait->m_object_name_length= share->m_table_name_length;
}
static void end_table_wait_v1(PSI_table_locker* locker)
{
PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
DBUG_ASSERT(pfs_locker != NULL);
PFS_events_waits *wait= &pfs_locker->m_waits_current;
if (wait->m_timer_state == TIMER_STATE_STARTED)
{
wait->m_timer_end= get_timer_value(pfs_locker->m_timer_name);
wait->m_timer_state= TIMER_STATE_TIMED;
}
if (flag_events_waits_history)
insert_events_waits_history(wait->m_thread, wait);
if (flag_events_waits_history_long)
insert_events_waits_history_long(wait);
PFS_table *table= pfs_locker->m_target.m_table;
/* If timed then aggregate stats, else increment the value counts only */
if (wait->m_timer_state == TIMER_STATE_TIMED)
{
ulonglong wait_time= wait->m_timer_end - wait->m_timer_start;
aggregate_single_stat_chain(&table->m_wait_stat, wait_time);
}
else
{
increment_single_stat_chain(&table->m_wait_stat);
}
/*
There is currently no per table and per thread aggregation.
The number of tables in the application is arbitrary, and may be high.
The number of slots per thread to hold aggregates is fixed,
and is constrained by memory.
Implementing a per thread and per table aggregate has not been
decided yet.
If it's implemented, it's likely that the user will have to specify,
per table name, if the aggregate per thread is to be computed or not.
This will mean a SETUP_ table.
*/
wait->m_thread->m_wait_locker_count--;
}
static void start_file_wait_v1(PSI_file_locker *locker,
size_t count,
const char *src_file,
uint src_line);
static void end_file_wait_v1(PSI_file_locker *locker,
size_t count);
static PSI_file* start_file_open_wait_v1(PSI_file_locker *locker,
const char *src_file,
uint src_line)
{
PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
DBUG_ASSERT(pfs_locker != NULL);
start_file_wait_v1(locker, 0, src_file, src_line);
PFS_file *pfs_file= pfs_locker->m_target.m_file;
return reinterpret_cast<PSI_file*> (pfs_file);
}
static void end_file_open_wait_v1(PSI_file_locker *locker)
{
end_file_wait_v1(locker, 0);
}
static void end_file_open_wait_and_bind_to_descriptor_v1
(PSI_file_locker *locker, File file)
{
int index= (int) file;
PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
DBUG_ASSERT(pfs_locker != NULL);
end_file_wait_v1(locker, 0);
PFS_file *pfs_file= pfs_locker->m_target.m_file;
DBUG_ASSERT(pfs_file != NULL);
if (likely(index >= 0))
{
if (likely(index < file_handle_max))
file_handle_array[index]= pfs_file;
else
file_handle_lost++;
}
else
release_file(pfs_file);
}
static void start_file_wait_v1(PSI_file_locker *locker,
size_t count,
const char *src_file,
uint src_line)
{
PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
DBUG_ASSERT(pfs_locker != NULL);
PFS_events_waits *wait= &pfs_locker->m_waits_current;
if (wait->m_timer_state == TIMER_STATE_STARTING)
{
wait->m_timer_start= get_timer_value(pfs_locker->m_timer_name);
wait->m_timer_state= TIMER_STATE_STARTED;
}
wait->m_source_file= src_file;
wait->m_source_line= src_line;
wait->m_number_of_bytes= count;
}
static void end_file_wait_v1(PSI_file_locker *locker,
size_t count)
{
PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
DBUG_ASSERT(pfs_locker != NULL);
PFS_events_waits *wait= &pfs_locker->m_waits_current;
wait->m_number_of_bytes= count;
if (wait->m_timer_state == TIMER_STATE_STARTED)
{
wait->m_timer_end= get_timer_value(pfs_locker->m_timer_name);
wait->m_timer_state= TIMER_STATE_TIMED;
}
if (flag_events_waits_history)
insert_events_waits_history(wait->m_thread, wait);
if (flag_events_waits_history_long)
insert_events_waits_history_long(wait);
PFS_file *file= pfs_locker->m_target.m_file;
PFS_single_stat_chain *stat= find_per_thread_file_class_wait_stat(wait->m_thread, file->m_class);
/* If timed then aggregate stats, else increment the value counts only */
if (wait->m_timer_state == TIMER_STATE_TIMED)
{
ulonglong wait_time= wait->m_timer_end - wait->m_timer_start;
aggregate_single_stat_chain(&file->m_wait_stat, wait_time);
aggregate_single_stat_chain(stat, wait_time);
}
else
{
increment_single_stat_chain(&file->m_wait_stat);
increment_single_stat_chain(stat);
}
PFS_file_class *klass= file->m_class;
switch(wait->m_operation)
{
case OPERATION_TYPE_FILEREAD:
file->m_file_stat.m_count_read++;
file->m_file_stat.m_read_bytes+= count;
klass->m_file_stat.m_count_read++;
klass->m_file_stat.m_read_bytes+= count;
break;
case OPERATION_TYPE_FILEWRITE:
file->m_file_stat.m_count_write++;
file->m_file_stat.m_write_bytes+= count;
klass->m_file_stat.m_count_write++;
klass->m_file_stat.m_write_bytes+= count;
break;
case OPERATION_TYPE_FILECLOSE:
case OPERATION_TYPE_FILESTREAMCLOSE:
case OPERATION_TYPE_FILESTAT:
release_file(pfs_locker->m_target.m_file);
break;
case OPERATION_TYPE_FILEDELETE:
destroy_file(wait->m_thread, pfs_locker->m_target.m_file);
break;
default:
break;
}
wait->m_thread->m_wait_locker_count--;
}
PSI_v1 PFS_v1=
{
register_mutex_v1,
register_rwlock_v1,
register_cond_v1,
register_thread_v1,
register_file_v1,
init_mutex_v1,
destroy_mutex_v1,
init_rwlock_v1,
destroy_rwlock_v1,
init_cond_v1,
destroy_cond_v1,
get_table_share_v1,
release_table_share_v1,
open_table_v1,
close_table_v1,
create_file_v1,
spawn_thread_v1,
new_thread_v1,
set_thread_id_v1,
get_thread_v1,
set_thread_v1,
delete_current_thread_v1,
delete_thread_v1,
get_thread_mutex_locker_v1,
get_thread_rwlock_locker_v1,
get_thread_cond_locker_v1,
get_thread_table_locker_v1,
get_thread_file_name_locker_v1,
get_thread_file_stream_locker_v1,
get_thread_file_descriptor_locker_v1,
unlock_mutex_v1,
unlock_rwlock_v1,
signal_cond_v1,
broadcast_cond_v1,
start_mutex_wait_v1,
end_mutex_wait_v1,
start_rwlock_rdwait_v1,
end_rwlock_rdwait_v1,
start_rwlock_wrwait_v1,
end_rwlock_wrwait_v1,
start_cond_wait_v1,
end_cond_wait_v1,
start_table_wait_v1,
end_table_wait_v1,
start_file_open_wait_v1,
end_file_open_wait_v1,
end_file_open_wait_and_bind_to_descriptor_v1,
start_file_wait_v1,
end_file_wait_v1
};
static void* get_interface(int version)
{
switch (version)
{
case PSI_VERSION_1:
return &PFS_v1;
default:
return NULL;
}
}
C_MODE_END
struct PSI_bootstrap PFS_bootstrap=
{
get_interface
};
|