summaryrefslogtreecommitdiff
path: root/storage/tokudb/PerconaFT/ft/ft-hot-flusher.cc
blob: ffab8647541dd681bd24c497e78e06463afb5766 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.


Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.

    PerconaFT is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License, version 2,
    as published by the Free Software Foundation.

    PerconaFT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PerconaFT.  If not, see <http://www.gnu.org/licenses/>.

----------------------------------------

    PerconaFT is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License, version 3,
    as published by the Free Software Foundation.

    PerconaFT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with PerconaFT.  If not, see <http://www.gnu.org/licenses/>.
======= */

#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."

#include <my_global.h>
#include "ft/ft.h"
#include "ft/ft-cachetable-wrappers.h"
#include "ft/ft-flusher.h"
#include "ft/ft-flusher-internal.h"
#include "ft/ft-internal.h"
#include "ft/node.h"
#include "portability/toku_atomic.h"
#include "util/context.h"
#include "util/status.h"

// Member Descirption:
// 1. highest_pivot_key - this is the key that corresponds to the 
// most recently flushed leaf entry.
// 2. max_current_key - this is the pivot/key that we inherit as
// we descend down the tree.  We use this to set the highest_pivot_key.
// 3. sub_tree_size - this is the percentage of the entire tree that our
// current position (in a sub-tree) encompasses.
// 4. percentage_done - this is the percentage of leaf nodes that have
// been flushed into.
// 5. rightmost_leaf_seen - this is a boolean we use to determine if
// if we have flushed to every leaf node.
struct hot_flusher_extra {
    DBT highest_pivot_key;
    DBT max_current_key;
    float sub_tree_size;
    float percentage_done;
    bool rightmost_leaf_seen;
};

void
toku_ft_hot_get_status(FT_HOT_STATUS s) {
    hot_status.init();
    *s = hot_status;
}

// Copies the max current key to the highest pivot key seen.
static void
hot_set_highest_key(struct hot_flusher_extra *flusher)
{
    // The max current key will be NULL if we are traversing in the
    // rightmost subtree of a given parent.  As such, we don't want to
    // allocate memory for this case.
    toku_destroy_dbt(&flusher->highest_pivot_key);
    if (flusher->max_current_key.data != NULL) {
        // Otherwise, let's copy all the contents from one key to the other.
        toku_clone_dbt(&flusher->highest_pivot_key, flusher->max_current_key);
    }
}

static void
hot_set_start_key(struct hot_flusher_extra *flusher, const DBT* start)
{
    toku_destroy_dbt(&flusher->highest_pivot_key);
    if (start != NULL) {
        // Otherwise, let's copy all the contents from one key to the other.
        toku_clone_dbt(&flusher->highest_pivot_key, *start);
    }
}

static int
hot_just_pick_child(FT ft,
                    FTNODE parent,
                    struct hot_flusher_extra *flusher)
{
    int childnum = 0;

    // Search through Parents pivots, see which one is greater than
    // the highest_pivot_key seen so far.
    if (flusher->highest_pivot_key.data == NULL)
    {
        // Special case of the first child of the root node.
        // Also known as, NEGATIVE INFINITY....
        childnum = 0;
    } else {
        // Find the pivot boundary.
        childnum = toku_ftnode_hot_next_child(parent, &flusher->highest_pivot_key, ft->cmp);
    }

    return childnum;
}

static void
hot_update_flusher_keys(FTNODE parent,
                        int childnum,
                        struct hot_flusher_extra *flusher)
{
    // Update maximum current key if the child is NOT the rightmost
    // child node.
    if (childnum < (parent->n_children - 1)) {
        toku_destroy_dbt(&flusher->max_current_key);
        toku_clone_dbt(&flusher->max_current_key, parent->pivotkeys.get_pivot(childnum));
    }
}

// Picks which child toku_ft_flush_some_child will use for flushing and
// recursion.
static int
hot_pick_child(FT ft,
               FTNODE parent,
               void *extra)
{
    struct hot_flusher_extra *flusher = (struct hot_flusher_extra *) extra;
    int childnum = hot_just_pick_child(ft, parent, flusher);

    // Now we determine the percentage of the tree flushed so far.

    // Whichever subtree we choose to recurse into, it is a fraction
    // of the current parent.
    flusher->sub_tree_size /= parent->n_children;

    // Update the precentage complete, using our new sub tree size AND
    // the number of children we have already flushed.
    flusher->percentage_done += (flusher->sub_tree_size * childnum);

    hot_update_flusher_keys(parent, childnum, flusher);

    return childnum;
}

// Does nothing for now.
static void
hot_update_status(FTNODE UU(child),
                  int UU(dirtied),
                  void *UU(extra))
{
    return;
}

// If we've just split a node, HOT needs another chance to decide which
// one to flush into.  This gives it a chance to do that, and update the
// keys it maintains.
static int
hot_pick_child_after_split(FT ft,
                           FTNODE parent,
                           int childnuma,
                           int childnumb,
                           void *extra)
{
    struct hot_flusher_extra *flusher = (struct hot_flusher_extra *) extra;
    int childnum = hot_just_pick_child(ft, parent, flusher);
    assert(childnum == childnuma || childnum == childnumb);
    hot_update_flusher_keys(parent, childnum, flusher);
    if (parent->height == 1) {
        // We don't want to recurse into a leaf node, but if we return
        // anything valid, ft_split_child will try to go there, so we
        // return -1 to allow ft_split_child to have its default
        // behavior, which will be to stop recursing.
        childnum = -1;
    }
    return childnum;
}

// Basic constructor/initializer for the hot flusher struct.
static void
hot_flusher_init(struct flusher_advice *advice,
                 struct hot_flusher_extra *flusher)
{
    // Initialize the highest pivot key seen to NULL.  This represents
    // NEGATIVE INFINITY and is used to cover the special case of our
    // first traversal of the tree.
    toku_init_dbt(&(flusher->highest_pivot_key));
    toku_init_dbt(&(flusher->max_current_key));
    flusher->rightmost_leaf_seen = 0;
    flusher->sub_tree_size = 1.0;
    flusher->percentage_done = 0.0;
    flusher_advice_init(advice,
                        hot_pick_child,
                        dont_destroy_basement_nodes,
                        always_recursively_flush,
                        default_merge_child,
                        hot_update_status,
                        hot_pick_child_after_split,
                        flusher
                        );
}

// Erases any DBT keys we have copied from a traversal.
static void
hot_flusher_destroy(struct hot_flusher_extra *flusher)
{
    toku_destroy_dbt(&flusher->highest_pivot_key);
    toku_destroy_dbt(&flusher->max_current_key);
}

// Entry point for Hot Optimize Table (HOT).  Note, this function is
// not recursive.  It iterates over root-to-leaf paths.
int
toku_ft_hot_optimize(FT_HANDLE ft_handle, DBT* left, DBT* right,
                     int (*progress_callback)(void *extra, float progress),
                     void *progress_extra, uint64_t* loops_run)
{
    toku::context flush_ctx(CTX_FLUSH);

    int r = 0;
    struct hot_flusher_extra flusher;
    struct flusher_advice advice;

    hot_flusher_init(&advice, &flusher);
    hot_set_start_key(&flusher, left);

    uint64_t loop_count = 0;
    MSN msn_at_start_of_hot = ZERO_MSN;  // capture msn from root at
                                         // start of HOT operation
    (void) toku_sync_fetch_and_add(&HOT_STATUS_VAL(FT_HOT_NUM_STARTED), 1);

    toku_ft_note_hot_begin(ft_handle);

    // Higher level logic prevents a dictionary from being deleted or
    // truncated during a hot optimize operation.  Doing so would violate
    // the hot optimize contract.
    do {
        FTNODE root;
        CACHEKEY root_key;
        uint32_t fullhash;

        {
            // Get root node (the first parent of each successive HOT
            // call.)
            toku_calculate_root_offset_pointer(ft_handle->ft, &root_key, &fullhash);
            ftnode_fetch_extra bfe;
            bfe.create_for_full_read(ft_handle->ft);
            toku_pin_ftnode(ft_handle->ft,
                            (BLOCKNUM) root_key,
                            fullhash,
                            &bfe,
                            PL_WRITE_EXPENSIVE, 
                            &root,
                            true);
            toku_ftnode_assert_fully_in_memory(root);
        }

        // Prepare HOT diagnostics.
        if (loop_count == 0) {
            // The first time through, capture msn from root
            msn_at_start_of_hot = root->max_msn_applied_to_node_on_disk;
        }

        loop_count++;

        if (loop_count > HOT_STATUS_VAL(FT_HOT_MAX_ROOT_FLUSH_COUNT)) {
            HOT_STATUS_VAL(FT_HOT_MAX_ROOT_FLUSH_COUNT) = loop_count;
        }

        // Initialize the maximum current key.  We need to do this for
        // every traversal.
        toku_destroy_dbt(&flusher.max_current_key);

        flusher.sub_tree_size = 1.0;
        flusher.percentage_done = 0.0;

        // This should recurse to the bottom of the tree and then
        // return.
        if (root->height > 0) {
            toku_ft_flush_some_child(ft_handle->ft, root, &advice);
        } else {
            // Since there are no children to flush, we should abort
            // the HOT call.
            flusher.rightmost_leaf_seen = 1;
            toku_unpin_ftnode(ft_handle->ft, root);
        }

        // Set the highest pivot key seen here, since the parent may
        // be unlocked and NULL'd later in our caller:
        // toku_ft_flush_some_child().
        hot_set_highest_key(&flusher);

        // This is where we determine if the traversal is finished or
        // not.
        if (flusher.max_current_key.data == NULL) {
            flusher.rightmost_leaf_seen = 1;
        }
        else if (right) {
            // if we have flushed past the bounds set for us,
            // set rightmost_leaf_seen so we exit
            int cmp = ft_handle->ft->cmp(&flusher.max_current_key, right);
            if (cmp > 0) {
                flusher.rightmost_leaf_seen = 1;
            }
        }

        // Update HOT's progress.
        if (progress_callback != NULL) {
            r = progress_callback(progress_extra, flusher.percentage_done);

            // Check if the callback wants us to stop running HOT.
            if (r != 0) {
                flusher.rightmost_leaf_seen = 1;
            }
        }

        // Loop until the max key has been updated to positive
        // infinity.
    } while (!flusher.rightmost_leaf_seen);
    *loops_run = loop_count;

    // Cleanup.
    hot_flusher_destroy(&flusher);

    // More diagnostics.
    {
        bool success = false;
        if (r == 0) { success = true; }

        {
            toku_ft_note_hot_complete(ft_handle, success, msn_at_start_of_hot);
        }

        if (success) {
            (void) toku_sync_fetch_and_add(&HOT_STATUS_VAL(FT_HOT_NUM_COMPLETED), 1);
        } else {
            (void) toku_sync_fetch_and_add(&HOT_STATUS_VAL(FT_HOT_NUM_ABORTED), 1);
        }
    }
    return r;
}

#include <toku_race_tools.h>
void __attribute__((__constructor__)) toku_hot_helgrind_ignore(void);
void
toku_hot_helgrind_ignore(void) {
    // incremented only while lock is held, but read by engine status asynchronously.
    TOKU_VALGRIND_HG_DISABLE_CHECKING(&hot_status, sizeof hot_status);
}