summaryrefslogtreecommitdiff
path: root/storage/tokudb/PerconaFT/locktree/treenode.cc
blob: 0247242f97515d70a58302abded7ccad4d97b7b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.


Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.

    PerconaFT is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License, version 2,
    as published by the Free Software Foundation.

    PerconaFT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PerconaFT.  If not, see <http://www.gnu.org/licenses/>.

----------------------------------------

    PerconaFT is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License, version 3,
    as published by the Free Software Foundation.

    PerconaFT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with PerconaFT.  If not, see <http://www.gnu.org/licenses/>.

----------------------------------------

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
======= */

#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."

#include <toku_race_tools.h>

// TODO: source location info might have to be pulled up one caller
// to be useful
void treenode::mutex_lock(void) { toku_mutex_lock(&m_mutex); }

void treenode::mutex_unlock(void) {
    toku_mutex_unlock(&m_mutex);
}

void treenode::init(const comparator *cmp) {
    m_txnid = TXNID_NONE;
    m_is_root = false;
    m_is_empty = true;
    m_cmp = cmp;
    // use an adaptive mutex at each node since we expect the time the
    // lock is held to be relatively short compared to a context switch.
    // indeed, this improves performance at high thread counts considerably.
    memset(&m_mutex, 0, sizeof(toku_mutex_t));
    toku_pthread_mutexattr_t attr;
    toku_mutexattr_init(&attr);
    toku_mutexattr_settype(&attr, TOKU_MUTEX_ADAPTIVE);
    toku_mutex_init(*treenode_mutex_key, &m_mutex, &attr);
    toku_mutexattr_destroy(&attr);
    m_left_child.set(nullptr);
    m_right_child.set(nullptr);
}

void treenode::create_root(const comparator *cmp) {
    init(cmp);
    m_is_root = true;
}

void treenode::destroy_root(void) {
    invariant(is_root());
    invariant(is_empty());
    toku_mutex_destroy(&m_mutex);
    m_cmp = nullptr;
}

void treenode::set_range_and_txnid(const keyrange &range, TXNID txnid) {
    // allocates a new copy of the range for this node
    m_range.create_copy(range);
    m_txnid = txnid;
    m_is_empty = false;
}

bool treenode::is_root(void) {
    return m_is_root;
}

bool treenode::is_empty(void) {
    return m_is_empty;
}

bool treenode::range_overlaps(const keyrange &range) {
    return m_range.overlaps(*m_cmp, range);
}

treenode *treenode::alloc(const comparator *cmp, const keyrange &range, TXNID txnid) {
    treenode *XCALLOC(node);
    node->init(cmp);
    node->set_range_and_txnid(range, txnid);
    return node;
}

void treenode::swap_in_place(treenode *node1, treenode *node2) {
    keyrange tmp_range = node1->m_range;
    TXNID tmp_txnid = node1->m_txnid;
    node1->m_range = node2->m_range;
    node1->m_txnid = node2->m_txnid;
    node2->m_range = tmp_range;
    node2->m_txnid = tmp_txnid;
}

void treenode::free(treenode *node) {
    // destroy the range, freeing any copied keys
    node->m_range.destroy();

    // the root is simply marked as empty.
    if (node->is_root()) {
        toku_mutex_assert_locked(&node->m_mutex);
        node->m_is_empty = true;
    } else {
        toku_mutex_assert_unlocked(&node->m_mutex);
        toku_mutex_destroy(&node->m_mutex);
        toku_free(node);
    }
}

uint32_t treenode::get_depth_estimate(void) const {
    const uint32_t left_est = m_left_child.depth_est;
    const uint32_t right_est = m_right_child.depth_est;
    return (left_est > right_est ? left_est : right_est) + 1;
}

treenode *treenode::find_node_with_overlapping_child(const keyrange &range,
        const keyrange::comparison *cmp_hint) {

    // determine which child to look at based on a comparison. if we were
    // given a comparison hint, use that. otherwise, compare them now.
    keyrange::comparison c = cmp_hint ? *cmp_hint : range.compare(*m_cmp, m_range);

    treenode *child;
    if (c == keyrange::comparison::LESS_THAN) {
        child = lock_and_rebalance_left();
    } else {
        // The caller (locked_keyrange::acquire) handles the case where
        // the root of the locked_keyrange is the node that overlaps.
        // range is guaranteed not to overlap this node.
        invariant(c == keyrange::comparison::GREATER_THAN);
        child = lock_and_rebalance_right();
    }

    // if the search would lead us to an empty subtree (child == nullptr),
    // or the child overlaps, then we know this node is the parent we want.
    // otherwise we need to recur into that child.
    if (child == nullptr) {
        return this;
    } else {
        c = range.compare(*m_cmp, child->m_range);
        if (c == keyrange::comparison::EQUALS || c == keyrange::comparison::OVERLAPS) {
            child->mutex_unlock();
            return this;
        } else {
            // unlock this node before recurring into the locked child,
            // passing in a comparison hint since we just comapred range
            // to the child's range.
            mutex_unlock();
            return child->find_node_with_overlapping_child(range, &c);
        }
    }
}

template <class F>
void treenode::traverse_overlaps(const keyrange &range, F *function) {
    keyrange::comparison c = range.compare(*m_cmp, m_range);
    if (c == keyrange::comparison::EQUALS) {
        // Doesn't matter if fn wants to keep going, there
        // is nothing left, so return.
        function->fn(m_range, m_txnid);
        return;
    }

    treenode *left = m_left_child.get_locked();
    if (left) {
        if (c != keyrange::comparison::GREATER_THAN) {
            // Target range is less than this node, or it overlaps this
            // node.  There may be something on the left.
            left->traverse_overlaps(range, function);
        }
        left->mutex_unlock();
    }

    if (c == keyrange::comparison::OVERLAPS) {
        bool keep_going = function->fn(m_range, m_txnid);
        if (!keep_going) {
            return;
        }
    }

    treenode *right = m_right_child.get_locked();
    if (right) {
        if (c != keyrange::comparison::LESS_THAN) {
            // Target range is greater than this node, or it overlaps this
            // node.  There may be something on the right.
            right->traverse_overlaps(range, function);
        }
        right->mutex_unlock();
    }
}

void treenode::insert(const keyrange &range, TXNID txnid) {
    // choose a child to check. if that child is null, then insert the new node there.
    // otherwise recur down that child's subtree
    keyrange::comparison c = range.compare(*m_cmp, m_range);
    if (c == keyrange::comparison::LESS_THAN) {
        treenode *left_child = lock_and_rebalance_left();
        if (left_child == nullptr) {
            left_child = treenode::alloc(m_cmp, range, txnid);
            m_left_child.set(left_child);
        } else {
            left_child->insert(range, txnid);
            left_child->mutex_unlock();
        }
    } else {
        invariant(c == keyrange::comparison::GREATER_THAN);
        treenode *right_child = lock_and_rebalance_right();
        if (right_child == nullptr) {
            right_child = treenode::alloc(m_cmp, range, txnid);
            m_right_child.set(right_child);
        } else {
            right_child->insert(range, txnid);
            right_child->mutex_unlock();
        }
    }
}

treenode *treenode::find_child_at_extreme(int direction, treenode **parent) {
    treenode *child = direction > 0 ?
        m_right_child.get_locked() : m_left_child.get_locked();

    if (child) {
        *parent = this;
        treenode *child_extreme = child->find_child_at_extreme(direction, parent);
        child->mutex_unlock();
        return child_extreme;
    } else {
        return this;
    }
}

treenode *treenode::find_leftmost_child(treenode **parent) {
    return find_child_at_extreme(-1, parent);
}

treenode *treenode::find_rightmost_child(treenode **parent) {
    return find_child_at_extreme(1, parent);
}

treenode *treenode::remove_root_of_subtree() {
    // if this node has no children, just free it and return null
    if (m_left_child.ptr == nullptr && m_right_child.ptr == nullptr) {
        // treenode::free requires that non-root nodes are unlocked
        if (!is_root()) {
            mutex_unlock();
        }
        treenode::free(this);
        return nullptr;
    }
    
    // we have a child, so get either the in-order successor or
    // predecessor of this node to be our replacement.
    // replacement_parent is updated by the find functions as
    // they recur down the tree, so initialize it to this.
    treenode *child, *replacement;
    treenode *replacement_parent = this;
    if (m_left_child.ptr != nullptr) {
        child = m_left_child.get_locked();
        replacement = child->find_rightmost_child(&replacement_parent);
        invariant(replacement == child || replacement_parent != this);

        // detach the replacement from its parent
        if (replacement_parent == this) {
            m_left_child = replacement->m_left_child;
        } else {
            replacement_parent->m_right_child = replacement->m_left_child;
        }
    } else {
        child = m_right_child.get_locked();
        replacement = child->find_leftmost_child(&replacement_parent);
        invariant(replacement == child || replacement_parent != this);

        // detach the replacement from its parent
        if (replacement_parent == this) {
            m_right_child = replacement->m_right_child;
        } else {
            replacement_parent->m_left_child = replacement->m_right_child;
        }
    }
    child->mutex_unlock();

    // swap in place with the detached replacement, then destroy it
    treenode::swap_in_place(replacement, this);
    treenode::free(replacement);

    return this;
}

void treenode::recursive_remove(void) {
    treenode *left = m_left_child.ptr;
    if (left) {
        left->recursive_remove();
    }
    m_left_child.set(nullptr);

    treenode *right = m_right_child.ptr;
    if (right) {
        right->recursive_remove();
    }
    m_right_child.set(nullptr);

    // we do not take locks on the way down, so we know non-root nodes
    // are unlocked here and the caller is required to pass a locked
    // root, so this free is correct.
    treenode::free(this);
}

treenode *treenode::remove(const keyrange &range) {
    treenode *child;
    // if the range is equal to this node's range, then just remove
    // the root of this subtree. otherwise search down the tree
    // in either the left or right children.
    keyrange::comparison c = range.compare(*m_cmp, m_range);
    switch (c) {
    case keyrange::comparison::EQUALS:
        return remove_root_of_subtree();
    case keyrange::comparison::LESS_THAN:
        child = m_left_child.get_locked();
        invariant_notnull(child);
        child = child->remove(range);

        // unlock the child if there still is one.
        // regardless, set the right child pointer
        if (child) {
            child->mutex_unlock();
        }
        m_left_child.set(child);
        break;
    case keyrange::comparison::GREATER_THAN:
        child = m_right_child.get_locked();
        invariant_notnull(child);
        child = child->remove(range);

        // unlock the child if there still is one.
        // regardless, set the right child pointer
        if (child) {
            child->mutex_unlock();
        }
        m_right_child.set(child);
        break;
    case keyrange::comparison::OVERLAPS:
        // shouldn't be overlapping, since the tree is
        // non-overlapping and this range must exist
        abort();
    }

    return this;
}

bool treenode::left_imbalanced(int threshold) const {
    uint32_t left_depth = m_left_child.depth_est;
    uint32_t right_depth = m_right_child.depth_est;
    return m_left_child.ptr != nullptr && left_depth > threshold + right_depth;
}

bool treenode::right_imbalanced(int threshold) const {
    uint32_t left_depth = m_left_child.depth_est;
    uint32_t right_depth = m_right_child.depth_est;
    return m_right_child.ptr != nullptr && right_depth > threshold + left_depth;
}

// effect: rebalances the subtree rooted at this node
//         using AVL style O(1) rotations. unlocks this
//         node if it is not the new root of the subtree.
// requires: node is locked by this thread, children are not
// returns: locked root node of the rebalanced tree
treenode *treenode::maybe_rebalance(void) {
    // if we end up not rotating at all, the new root is this
    treenode *new_root = this;
    treenode *child = nullptr;

    if (left_imbalanced(IMBALANCE_THRESHOLD)) {
        child = m_left_child.get_locked();
        if (child->right_imbalanced(0)) {
            treenode *grandchild = child->m_right_child.get_locked();

            child->m_right_child = grandchild->m_left_child;
            grandchild->m_left_child.set(child);

            m_left_child = grandchild->m_right_child;
            grandchild->m_right_child.set(this);

            new_root = grandchild;
        } else {
            m_left_child = child->m_right_child;
            child->m_right_child.set(this);
            new_root = child;
        }
    } else if (right_imbalanced(IMBALANCE_THRESHOLD)) {
        child = m_right_child.get_locked();
        if (child->left_imbalanced(0)) {
            treenode *grandchild = child->m_left_child.get_locked();

            child->m_left_child = grandchild->m_right_child;
            grandchild->m_right_child.set(child);

            m_right_child = grandchild->m_left_child;
            grandchild->m_left_child.set(this);

            new_root = grandchild;
        } else {
            m_right_child = child->m_left_child;
            child->m_left_child.set(this);
            new_root = child;
        }
    }

    // up to three nodes may be locked.
    // - this
    // - child
    // - grandchild (but if it is locked, its the new root)
    //
    // one of them is the new root. we unlock everything except the new root.
    if (child && child != new_root) {
        TOKU_VALGRIND_RESET_MUTEX_ORDERING_INFO(&child->m_mutex);
        child->mutex_unlock();
    }
    if (this != new_root) {
        TOKU_VALGRIND_RESET_MUTEX_ORDERING_INFO(&m_mutex);
        mutex_unlock();
    }
    TOKU_VALGRIND_RESET_MUTEX_ORDERING_INFO(&new_root->m_mutex);
    return new_root;
}


treenode *treenode::lock_and_rebalance_left(void) {
    treenode *child = m_left_child.get_locked();
    if (child) {
        treenode *new_root = child->maybe_rebalance();
        m_left_child.set(new_root);
        child = new_root;
    }
    return child;
}

treenode *treenode::lock_and_rebalance_right(void) {
    treenode *child = m_right_child.get_locked();
    if (child) {
        treenode *new_root = child->maybe_rebalance();
        m_right_child.set(new_root);
        child = new_root;
    }
    return child;
}

void treenode::child_ptr::set(treenode *node) {
    ptr = node;
    depth_est = ptr ? ptr->get_depth_estimate() : 0;
}

treenode *treenode::child_ptr::get_locked(void) {
    if (ptr) {
        ptr->mutex_lock();
        depth_est = ptr->get_depth_estimate();
    }
    return ptr;
}