summaryrefslogtreecommitdiff
path: root/storage/tokudb/ft-index/ft/ft_node-serialize.cc
blob: fcb38f11834d9800049e23c91493d3f55cf1f2ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*
COPYING CONDITIONS NOTICE:

  This program is free software; you can redistribute it and/or modify
  it under the terms of version 2 of the GNU General Public License as
  published by the Free Software Foundation, and provided that the
  following conditions are met:

      * Redistributions of source code must retain this COPYING
        CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
        DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
        PATENT MARKING NOTICE (below), and the PATENT RIGHTS
        GRANT (below).

      * Redistributions in binary form must reproduce this COPYING
        CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
        DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
        PATENT MARKING NOTICE (below), and the PATENT RIGHTS
        GRANT (below) in the documentation and/or other materials
        provided with the distribution.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  02110-1301, USA.

COPYRIGHT NOTICE:

  TokuDB, Tokutek Fractal Tree Indexing Library.
  Copyright (C) 2007-2013 Tokutek, Inc.

DISCLAIMER:

  This program is distributed in the hope that it will be useful, but
  WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  General Public License for more details.

UNIVERSITY PATENT NOTICE:

  The technology is licensed by the Massachusetts Institute of
  Technology, Rutgers State University of New Jersey, and the Research
  Foundation of State University of New York at Stony Brook under
  United States of America Serial No. 11/760379 and to the patents
  and/or patent applications resulting from it.

PATENT MARKING NOTICE:

  This software is covered by US Patent No. 8,185,551.
  This software is covered by US Patent No. 8,489,638.

PATENT RIGHTS GRANT:

  "THIS IMPLEMENTATION" means the copyrightable works distributed by
  Tokutek as part of the Fractal Tree project.

  "PATENT CLAIMS" means the claims of patents that are owned or
  licensable by Tokutek, both currently or in the future; and that in
  the absence of this license would be infringed by THIS
  IMPLEMENTATION or by using or running THIS IMPLEMENTATION.

  "PATENT CHALLENGE" shall mean a challenge to the validity,
  patentability, enforceability and/or non-infringement of any of the
  PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.

  Tokutek hereby grants to you, for the term and geographical scope of
  the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
  irrevocable (except as stated in this section) patent license to
  make, have made, use, offer to sell, sell, import, transfer, and
  otherwise run, modify, and propagate the contents of THIS
  IMPLEMENTATION, where such license applies only to the PATENT
  CLAIMS.  This grant does not include claims that would be infringed
  only as a consequence of further modifications of THIS
  IMPLEMENTATION.  If you or your agent or licensee institute or order
  or agree to the institution of patent litigation against any entity
  (including a cross-claim or counterclaim in a lawsuit) alleging that
  THIS IMPLEMENTATION constitutes direct or contributory patent
  infringement, or inducement of patent infringement, then any rights
  granted to you under this License shall terminate as of the date
  such litigation is filed.  If you or your agent or exclusive
  licensee institute or order or agree to the institution of a PATENT
  CHALLENGE, then Tokutek may terminate any rights granted to you
  under this License.
*/

#ident "Copyright (c) 2007-2013 Tokutek Inc.  All rights reserved."
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."

#include "ft-internal.h"
#include "log-internal.h"
#include <compress.h>
#include <portability/toku_atomic.h>
#include <util/sort.h>
#include <util/threadpool.h>
#include "ft.h"
#include <util/status.h>
#include <util/scoped_malloc.h>

static FT_UPGRADE_STATUS_S ft_upgrade_status;

#define STATUS_INIT(k,c,t,l,inc) TOKUDB_STATUS_INIT(ft_upgrade_status, k, c, t, "ft upgrade: " l, inc)

static void
status_init(void)
{
    // Note, this function initializes the keyname, type, and legend fields.
    // Value fields are initialized to zero by compiler.
    STATUS_INIT(FT_UPGRADE_FOOTPRINT,             nullptr, UINT64, "footprint", TOKU_ENGINE_STATUS);
    ft_upgrade_status.initialized = true;
}
#undef STATUS_INIT

#define UPGRADE_STATUS_VALUE(x) ft_upgrade_status.status[x].value.num

void
toku_ft_upgrade_get_status(FT_UPGRADE_STATUS s) {
    if (!ft_upgrade_status.initialized) {
        status_init();
    }
    UPGRADE_STATUS_VALUE(FT_UPGRADE_FOOTPRINT) = toku_log_upgrade_get_footprint();
    *s = ft_upgrade_status;
}

static int num_cores = 0; // cache the number of cores for the parallelization
static struct toku_thread_pool *ft_pool = NULL;

int get_num_cores(void) {
    return num_cores;
}

struct toku_thread_pool *get_ft_pool(void) {
    return ft_pool;
}

void 
toku_ft_serialize_layer_init(void) {
    num_cores = toku_os_get_number_active_processors();
    int r = toku_thread_pool_create(&ft_pool, num_cores); lazy_assert_zero(r);
}

void
toku_ft_serialize_layer_destroy(void) {
    toku_thread_pool_destroy(&ft_pool);
}

enum {FILE_CHANGE_INCREMENT = (16<<20)};

static inline uint64_t 
alignup64(uint64_t a, uint64_t b) {
    return ((a+b-1)/b)*b;
}

// safe_file_size_lock must be held.
void
toku_maybe_truncate_file (int fd, uint64_t size_used, uint64_t expected_size, uint64_t *new_sizep)
// Effect: If file size >= SIZE+32MiB, reduce file size.
// (32 instead of 16.. hysteresis).
// Return 0 on success, otherwise an error number.
{
    int64_t file_size;
    {
        int r = toku_os_get_file_size(fd, &file_size);
        lazy_assert_zero(r);
        invariant(file_size >= 0);
    }
    invariant(expected_size == (uint64_t)file_size);
    // If file space is overallocated by at least 32M
    if ((uint64_t)file_size >= size_used + (2*FILE_CHANGE_INCREMENT)) {
        toku_off_t new_size = alignup64(size_used, (2*FILE_CHANGE_INCREMENT)); //Truncate to new size_used.
        invariant(new_size < file_size);
        invariant(new_size >= 0);
        int r = ftruncate(fd, new_size);
        lazy_assert_zero(r);
        *new_sizep = new_size;
    }
    else {
        *new_sizep = file_size;
    }
    return;
}

static int64_t 
min64(int64_t a, int64_t b) {
    if (a<b) return a;
    return b;
}

void
toku_maybe_preallocate_in_file (int fd, int64_t size, int64_t expected_size, int64_t *new_size)
// Effect: make the file bigger by either doubling it or growing by 16MiB whichever is less, until it is at least size
// Return 0 on success, otherwise an error number.
{
    int64_t file_size;
    //TODO(yoni): Allow variable stripe_width (perhaps from ft) for larger raids
    const uint64_t stripe_width = 4096;
    {
        int r = toku_os_get_file_size(fd, &file_size);
        if (r != 0) { // debug #2463
            int the_errno = get_maybe_error_errno();
            fprintf(stderr, "%s:%d fd=%d size=%" PRIu64 " r=%d errno=%d\n", __FUNCTION__, __LINE__, fd, size, r, the_errno); fflush(stderr);
        }
        lazy_assert_zero(r);
    }
    invariant(file_size >= 0);
    invariant(expected_size == file_size);
    // We want to double the size of the file, or add 16MiB, whichever is less.
    // We emulate calling this function repeatedly until it satisfies the request.
    int64_t to_write = 0;
    if (file_size == 0) {
        // Prevent infinite loop by starting with stripe_width as a base case.
        to_write = stripe_width;
    }
    while (file_size + to_write < size) {
        to_write += alignup64(min64(file_size + to_write, FILE_CHANGE_INCREMENT), stripe_width);
    }
    if (to_write > 0) {
        assert(to_write%512==0);
        toku::scoped_malloc_aligned wbuf_aligned(to_write, 512);
        char *wbuf = reinterpret_cast<char *>(wbuf_aligned.get());
        memset(wbuf, 0, to_write);
        toku_off_t start_write = alignup64(file_size, stripe_width);
        invariant(start_write >= file_size);
        toku_os_full_pwrite(fd, wbuf, to_write, start_write);
        *new_size = start_write + to_write;
    }
    else {
        *new_size = file_size;
    }
}

// Don't include the sub_block header
// Overhead calculated in same order fields are written to wbuf
enum {
    node_header_overhead = (8+   // magic "tokunode" or "tokuleaf" or "tokuroll"
                            4+   // layout_version
                            4+   // layout_version_original
                            4),  // build_id
};

#include "sub_block.h"
#include "sub_block_map.h"

// uncompressed header offsets
enum {
    uncompressed_magic_offset = 0,
    uncompressed_version_offset = 8,
};

static uint32_t
serialize_node_header_size(FTNODE node) {
    uint32_t retval = 0;
    retval += 8; // magic
    retval += sizeof(node->layout_version);
    retval += sizeof(node->layout_version_original);
    retval += 4; // BUILD_ID
    retval += 4; // n_children
    retval += node->n_children*8; // encode start offset and length of each partition
    retval += 4; // checksum
    return retval;
}

static void
serialize_node_header(FTNODE node, FTNODE_DISK_DATA ndd, struct wbuf *wbuf) {
    if (node->height == 0) 
        wbuf_nocrc_literal_bytes(wbuf, "tokuleaf", 8);
    else 
        wbuf_nocrc_literal_bytes(wbuf, "tokunode", 8);
    paranoid_invariant(node->layout_version == FT_LAYOUT_VERSION);
    wbuf_nocrc_int(wbuf, node->layout_version);
    wbuf_nocrc_int(wbuf, node->layout_version_original);
    wbuf_nocrc_uint(wbuf, BUILD_ID);
    wbuf_nocrc_int (wbuf, node->n_children);
    for (int i=0; i<node->n_children; i++) {
        assert(BP_SIZE(ndd,i)>0);
        wbuf_nocrc_int(wbuf, BP_START(ndd, i)); // save the beginning of the partition
        wbuf_nocrc_int(wbuf, BP_SIZE (ndd, i));         // and the size
    }
    // checksum the header
    uint32_t end_to_end_checksum = toku_x1764_memory(wbuf->buf, wbuf_get_woffset(wbuf));
    wbuf_nocrc_int(wbuf, end_to_end_checksum);
    invariant(wbuf->ndone == wbuf->size);
}

static uint32_t
serialize_ftnode_partition_size (FTNODE node, int i)
{
    uint32_t result = 0;
    paranoid_invariant(node->bp[i].state == PT_AVAIL);
    result++; // Byte that states what the partition is
    if (node->height > 0) {
        result += 4; // size of bytes in buffer table
        result += toku_bnc_nbytesinbuf(BNC(node, i));
    }
    else {
        result += 4 + bn_data::HEADER_LENGTH; // n_entries in buffer table + basement header
        result += BLB_NBYTESINDATA(node, i);
    }
    result += 4; // checksum
    return result;
}

#define FTNODE_PARTITION_DMT_LEAVES 0xaa
#define FTNODE_PARTITION_FIFO_MSG 0xbb

static void
serialize_nonleaf_childinfo(NONLEAF_CHILDINFO bnc, struct wbuf *wb)
{
    unsigned char ch = FTNODE_PARTITION_FIFO_MSG;
    wbuf_nocrc_char(wb, ch);
    // serialize the FIFO, first the number of entries, then the elements
    wbuf_nocrc_int(wb, toku_bnc_n_entries(bnc));
    FIFO_ITERATE(
        bnc->buffer, key, keylen, data, datalen, type, msn, xids, is_fresh,
        {
            paranoid_invariant((int) type >= 0 && (int) type < 256);
            wbuf_nocrc_char(wb, (unsigned char) type);
            wbuf_nocrc_char(wb, (unsigned char) is_fresh);
            wbuf_MSN(wb, msn);
            wbuf_nocrc_xids(wb, xids);
            wbuf_nocrc_bytes(wb, key, keylen);
            wbuf_nocrc_bytes(wb, data, datalen);
        });
}

//
// Serialize the i'th partition of node into sb
// For leaf nodes, this would be the i'th basement node
// For internal nodes, this would be the i'th internal node
//
static void
serialize_ftnode_partition(FTNODE node, int i, struct sub_block *sb) {
    if (sb->uncompressed_ptr == NULL) {
        assert(sb->uncompressed_size == 0);
        sb->uncompressed_size = serialize_ftnode_partition_size(node,i);
        sb->uncompressed_ptr = toku_xmalloc(sb->uncompressed_size);
    } else {
        assert(sb->uncompressed_size > 0);
    }
    //
    // Now put the data into sb->uncompressed_ptr
    //
    struct wbuf wb;
    wbuf_init(&wb, sb->uncompressed_ptr, sb->uncompressed_size);
    if (node->height > 0) {
        // TODO: (Zardosht) possibly exit early if there are no messages
        serialize_nonleaf_childinfo(BNC(node, i), &wb);
    }
    else {
        unsigned char ch = FTNODE_PARTITION_DMT_LEAVES;
        bn_data* bd = BLB_DATA(node, i);

        wbuf_nocrc_char(&wb, ch);
        wbuf_nocrc_uint(&wb, bd->num_klpairs());

        bd->serialize_to_wbuf(&wb);
    }
    uint32_t end_to_end_checksum = toku_x1764_memory(sb->uncompressed_ptr, wbuf_get_woffset(&wb));
    wbuf_nocrc_int(&wb, end_to_end_checksum);
    invariant(wb.ndone == wb.size);
    invariant(sb->uncompressed_size==wb.ndone);
}

//
// Takes the data in sb->uncompressed_ptr, and compresses it 
// into a newly allocated buffer sb->compressed_ptr
// 
static void
compress_ftnode_sub_block(struct sub_block *sb, enum toku_compression_method method) {
    assert(sb->compressed_ptr == NULL);
    set_compressed_size_bound(sb, method);
    // add 8 extra bytes, 4 for compressed size,  4 for decompressed size
    sb->compressed_ptr = toku_xmalloc(sb->compressed_size_bound + 8);
    //
    // This probably seems a bit complicated. Here is what is going on.
    // In TokuDB 5.0, sub_blocks were compressed and the compressed data
    // was checksummed. The checksum did NOT include the size of the compressed data
    // and the size of the uncompressed data. The fields of sub_block only reference the
    // compressed data, and it is the responsibility of the user of the sub_block
    // to write the length
    //
    // For Dr. No, we want the checksum to also include the size of the compressed data, and the 
    // size of the decompressed data, because this data
    // may be read off of disk alone, so it must be verifiable alone.
    //
    // So, we pass in a buffer to compress_nocrc_sub_block that starts 8 bytes after the beginning
    // of sb->compressed_ptr, so we have space to put in the sizes, and then run the checksum.
    //
    sb->compressed_size = compress_nocrc_sub_block(
        sb,
        (char *)sb->compressed_ptr + 8,
        sb->compressed_size_bound,
        method
        );

    uint32_t* extra = (uint32_t *)(sb->compressed_ptr);
    // store the compressed and uncompressed size at the beginning
    extra[0] = toku_htod32(sb->compressed_size);
    extra[1] = toku_htod32(sb->uncompressed_size);
    // now checksum the entire thing
    sb->compressed_size += 8; // now add the eight bytes that we saved for the sizes
    sb->xsum = toku_x1764_memory(sb->compressed_ptr,sb->compressed_size);

    //
    // This is the end result for Dr. No and forward. For ftnodes, sb->compressed_ptr contains
    // two integers at the beginning, the size and uncompressed size, and then the compressed
    // data. sb->xsum contains the checksum of this entire thing.
    // 
    // In TokuDB 5.0, sb->compressed_ptr only contained the compressed data, sb->xsum
    // checksummed only the compressed data, and the checksumming of the sizes were not
    // done here.
    //
}

//
// Returns the size needed to serialize the ftnode info
// Does not include header information that is common with rollback logs
// such as the magic, layout_version, and build_id
// Includes only node specific info such as pivot information, n_children, and so on
//
static uint32_t
serialize_ftnode_info_size(FTNODE node)
{
    uint32_t retval = 0;
    retval += 8; // max_msn_applied_to_node_on_disk
    retval += 4; // nodesize
    retval += 4; // flags
    retval += 4; // height;
    retval += 8; // oldest_referenced_xid_known
    retval += node->totalchildkeylens; // total length of pivots
    retval += (node->n_children-1)*4; // encode length of each pivot
    if (node->height > 0) {
        retval += node->n_children*8; // child blocknum's
    }
    retval += 4; // checksum
    return retval;
}

static void serialize_ftnode_info(FTNODE node, 
                                   SUB_BLOCK sb // output
                                   ) {
    assert(sb->uncompressed_size == 0);
    assert(sb->uncompressed_ptr == NULL);
    sb->uncompressed_size = serialize_ftnode_info_size(node);
    sb->uncompressed_ptr = toku_xmalloc(sb->uncompressed_size);
    struct wbuf wb;
    wbuf_init(&wb, sb->uncompressed_ptr, sb->uncompressed_size);

    wbuf_MSN(&wb, node->max_msn_applied_to_node_on_disk);
    wbuf_nocrc_uint(&wb, 0); // write a dummy value for where node->nodesize used to be
    wbuf_nocrc_uint(&wb, node->flags);
    wbuf_nocrc_int (&wb, node->height);    
    wbuf_TXNID(&wb, node->oldest_referenced_xid_known);

    // pivot information
    for (int i = 0; i < node->n_children-1; i++) {
        wbuf_nocrc_bytes(&wb, node->childkeys[i].data, node->childkeys[i].size);
    }
    // child blocks, only for internal nodes
    if (node->height > 0) {
        for (int i = 0; i < node->n_children; i++) {
            wbuf_nocrc_BLOCKNUM(&wb, BP_BLOCKNUM(node,i));
        }
    }

    uint32_t end_to_end_checksum = toku_x1764_memory(sb->uncompressed_ptr, wbuf_get_woffset(&wb));
    wbuf_nocrc_int(&wb, end_to_end_checksum);
    invariant(wb.ndone == wb.size);
    invariant(sb->uncompressed_size==wb.ndone);
}

// This is the size of the uncompressed data, not including the compression headers
unsigned int
toku_serialize_ftnode_size (FTNODE node) {
    unsigned int result = 0;
    //
    // As of now, this seems to be called if and only if the entire node is supposed
    // to be in memory, so we will assert it.
    //
    toku_assert_entire_node_in_memory(node);
    result += serialize_node_header_size(node);
    result += serialize_ftnode_info_size(node);
    for (int i = 0; i < node->n_children; i++) {
        result += serialize_ftnode_partition_size(node,i);
    }
    return result;
}

struct array_info {
    uint32_t offset;
    LEAFENTRY* le_array;
    uint32_t* key_sizes_array;
    const void** key_ptr_array;
};

static int
array_item(const void* key, const uint32_t keylen, const LEAFENTRY &le, const uint32_t idx, struct array_info *const ai) {
    ai->le_array[idx+ai->offset] = le;
    ai->key_sizes_array[idx+ai->offset] = keylen;
    ai->key_ptr_array[idx+ai->offset] = key;
    return 0;
}

// There must still be at least one child
// Requires that all messages in buffers above have been applied.
// Because all messages above have been applied, setting msn of all new basements 
// to max msn of existing basements is correct.  (There cannot be any messages in
// buffers above that still need to be applied.)
void
rebalance_ftnode_leaf(FTNODE node, unsigned int basementnodesize)
{
    assert(node->height == 0);
    assert(node->dirty);

    uint32_t num_orig_basements = node->n_children;
    // Count number of leaf entries in this leaf (num_le).
    uint32_t num_le = 0;
    for (uint32_t i = 0; i < num_orig_basements; i++) {
        num_le += BLB_DATA(node, i)->num_klpairs();
    }

    uint32_t num_alloc = num_le ? num_le : 1;  // simplify logic below by always having at least one entry per array

    // Create an array of OMTVALUE's that store all the pointers to all the data.
    // Each element in leafpointers is a pointer to a leaf.
    toku::scoped_malloc leafpointers_buf(sizeof(LEAFENTRY) * num_alloc);
    LEAFENTRY *leafpointers = reinterpret_cast<LEAFENTRY *>(leafpointers_buf.get());
    leafpointers[0] = NULL;

    toku::scoped_malloc key_pointers_buf(sizeof(void *) * num_alloc);
    const void **key_pointers = reinterpret_cast<const void **>(key_pointers_buf.get());
    key_pointers[0] = NULL;

    toku::scoped_malloc key_sizes_buf(sizeof(uint32_t) * num_alloc);
    uint32_t *key_sizes = reinterpret_cast<uint32_t *>(key_sizes_buf.get());

    // Capture pointers to old mempools' buffers (so they can be destroyed)
    toku::scoped_malloc old_bns_buf(sizeof(BASEMENTNODE) * num_orig_basements);
    BASEMENTNODE *old_bns = reinterpret_cast<BASEMENTNODE *>(old_bns_buf.get());
    old_bns[0] = NULL;

    uint32_t curr_le = 0;
    for (uint32_t i = 0; i < num_orig_basements; i++) {
        bn_data* bd = BLB_DATA(node, i);
        struct array_info ai {.offset = curr_le, .le_array = leafpointers, .key_sizes_array = key_sizes, .key_ptr_array = key_pointers };
        bd->iterate<array_info, array_item>(&ai);
        curr_le += bd->num_klpairs();
    }

    // Create an array that will store indexes of new pivots.
    // Each element in new_pivots is the index of a pivot key.
    // (Allocating num_le of them is overkill, but num_le is an upper bound.)
    toku::scoped_malloc new_pivots_buf(sizeof(uint32_t) * num_alloc);
    uint32_t *new_pivots = reinterpret_cast<uint32_t *>(new_pivots_buf.get());
    new_pivots[0] = 0;

    // Each element in le_sizes is the size of the leafentry pointed to by leafpointers.
    toku::scoped_malloc le_sizes_buf(sizeof(size_t) * num_alloc);
    size_t *le_sizes = reinterpret_cast<size_t *>(le_sizes_buf.get());
    le_sizes[0] = 0;

    // Create an array that will store the size of each basement.
    // This is the sum of the leaf sizes of all the leaves in that basement.
    // We don't know how many basements there will be, so we use num_le as the upper bound.

    // Sum of all le sizes in a single basement
    toku::scoped_calloc bn_le_sizes_buf(sizeof(size_t) * num_alloc);
    size_t *bn_le_sizes = reinterpret_cast<size_t *>(bn_le_sizes_buf.get());

    // Sum of all key sizes in a single basement
    toku::scoped_calloc bn_key_sizes_buf(sizeof(size_t) * num_alloc);
    size_t *bn_key_sizes = reinterpret_cast<size_t *>(bn_key_sizes_buf.get());

    // TODO 4050: All these arrays should be combined into a single array of some bn_info struct (pivot, msize, num_les).
    // Each entry is the number of leafentries in this basement.  (Again, num_le is overkill upper baound.)
    toku::scoped_malloc num_les_this_bn_buf(sizeof(uint32_t) * num_alloc);
    uint32_t *num_les_this_bn = reinterpret_cast<uint32_t *>(num_les_this_bn_buf.get());
    num_les_this_bn[0] = 0;
    
    // Figure out the new pivots.  
    // We need the index of each pivot, and for each basement we need
    // the number of leaves and the sum of the sizes of the leaves (memory requirement for basement).
    uint32_t curr_pivot = 0;
    uint32_t num_le_in_curr_bn = 0;
    uint32_t bn_size_so_far = 0;
    for (uint32_t i = 0; i < num_le; i++) {
        uint32_t curr_le_size = leafentry_disksize((LEAFENTRY) leafpointers[i]); 
        le_sizes[i] = curr_le_size;
        if ((bn_size_so_far + curr_le_size + sizeof(uint32_t) + key_sizes[i] > basementnodesize) && (num_le_in_curr_bn != 0)) {
            // cap off the current basement node to end with the element before i
            new_pivots[curr_pivot] = i-1;
            curr_pivot++;
            num_le_in_curr_bn = 0;
            bn_size_so_far = 0;
        }
        num_le_in_curr_bn++;
        num_les_this_bn[curr_pivot] = num_le_in_curr_bn;
        bn_le_sizes[curr_pivot] += curr_le_size;
        bn_key_sizes[curr_pivot] += sizeof(uint32_t) + key_sizes[i];  // uint32_t le_offset
        bn_size_so_far += curr_le_size + sizeof(uint32_t) + key_sizes[i];
    }
    // curr_pivot is now the total number of pivot keys in the leaf node
    int num_pivots   = curr_pivot;
    int num_children = num_pivots + 1;

    // now we need to fill in the new basement nodes and pivots

    // TODO: (Zardosht) this is an ugly thing right now
    // Need to figure out how to properly deal with seqinsert.
    // I am not happy with how this is being
    // handled with basement nodes
    uint32_t tmp_seqinsert = BLB_SEQINSERT(node, num_orig_basements - 1);

    // choose the max msn applied to any basement as the max msn applied to all new basements
    MSN max_msn = ZERO_MSN;
    for (uint32_t i = 0; i < num_orig_basements; i++) {
        MSN curr_msn = BLB_MAX_MSN_APPLIED(node,i);
        max_msn = (curr_msn.msn > max_msn.msn) ? curr_msn : max_msn;
    }
    // remove the basement node in the node, we've saved a copy
    for (uint32_t i = 0; i < num_orig_basements; i++) {
        // save a reference to the old basement nodes
        // we will need them to ensure that the memory
        // stays intact
        old_bns[i] = toku_detach_bn(node, i);
    }
    // Now destroy the old basements, but do not destroy leaves
    toku_destroy_ftnode_internals(node);

    // now reallocate pieces and start filling them in
    invariant(num_children > 0);
    node->totalchildkeylens = 0;

    XCALLOC_N(num_pivots, node->childkeys);        // allocate pointers to pivot structs
    node->n_children = num_children;
    XCALLOC_N(num_children, node->bp);             // allocate pointers to basements (bp)
    for (int i = 0; i < num_children; i++) {
        set_BLB(node, i, toku_create_empty_bn());  // allocate empty basements and set bp pointers
    }

    // now we start to fill in the data

    // first the pivots
    for (int i = 0; i < num_pivots; i++) {
        uint32_t keylen = key_sizes[new_pivots[i]];
        const void *key = key_pointers[new_pivots[i]];
        toku_memdup_dbt(&node->childkeys[i], key, keylen);
        node->totalchildkeylens += keylen;
    }

    uint32_t baseindex_this_bn = 0;
    // now the basement nodes
    for (int i = 0; i < num_children; i++) {
        // put back seqinsert
        BLB_SEQINSERT(node, i) = tmp_seqinsert;

        // create start (inclusive) and end (exclusive) boundaries for data of basement node
        uint32_t curr_start = (i==0) ? 0 : new_pivots[i-1]+1;               // index of first leaf in basement
        uint32_t curr_end = (i==num_pivots) ? num_le : new_pivots[i]+1;     // index of first leaf in next basement
        uint32_t num_in_bn = curr_end - curr_start;                         // number of leaves in this basement

        // create indexes for new basement
        invariant(baseindex_this_bn == curr_start);
        uint32_t num_les_to_copy = num_les_this_bn[i];
        invariant(num_les_to_copy == num_in_bn); 

        bn_data* bd = BLB_DATA(node, i);
        bd->set_contents_as_clone_of_sorted_array(
            num_les_to_copy,
            &key_pointers[baseindex_this_bn],
            &key_sizes[baseindex_this_bn],
            &leafpointers[baseindex_this_bn],
            &le_sizes[baseindex_this_bn],
            bn_key_sizes[i],  // Total key sizes
            bn_le_sizes[i]  // total le sizes
            );

        BP_STATE(node,i) = PT_AVAIL;
        BP_TOUCH_CLOCK(node,i);
        BLB_MAX_MSN_APPLIED(node,i) = max_msn;
        baseindex_this_bn += num_les_to_copy;  // set to index of next bn
    }
    node->max_msn_applied_to_node_on_disk = max_msn;

    // destroy buffers of old mempools
    for (uint32_t i = 0; i < num_orig_basements; i++) {
        destroy_basement_node(old_bns[i]);
    }
}  // end of rebalance_ftnode_leaf()

struct serialize_times {
    tokutime_t serialize_time;
    tokutime_t compress_time;
};

static void
serialize_and_compress_partition(FTNODE node,
                                 int childnum,
                                 enum toku_compression_method compression_method,
                                 SUB_BLOCK sb,
                                 struct serialize_times *st)
{
    // serialize, compress, update status
    tokutime_t t0 = toku_time_now();
    serialize_ftnode_partition(node, childnum, sb);
    tokutime_t t1 = toku_time_now();
    compress_ftnode_sub_block(sb, compression_method);
    tokutime_t t2 = toku_time_now();

    st->serialize_time += t1 - t0;
    st->compress_time += t2 - t1;
}

void
toku_create_compressed_partition_from_available(
    FTNODE node,
    int childnum,
    enum toku_compression_method compression_method,
    SUB_BLOCK sb
    )
{
    tokutime_t t0 = toku_time_now();

    // serialize
    sb->uncompressed_size = serialize_ftnode_partition_size(node, childnum);
    toku::scoped_malloc uncompressed_buf(sb->uncompressed_size);
    sb->uncompressed_ptr = uncompressed_buf.get();
    serialize_ftnode_partition(node, childnum, sb);

    tokutime_t t1 = toku_time_now();

    // compress. no need to pad with extra bytes for sizes/xsum - we're not storing them
    set_compressed_size_bound(sb, compression_method);
    sb->compressed_ptr = toku_xmalloc(sb->compressed_size_bound);
    sb->compressed_size = compress_nocrc_sub_block(
        sb,
        sb->compressed_ptr,
        sb->compressed_size_bound,
        compression_method
        );
    sb->uncompressed_ptr = NULL;

    tokutime_t t2 = toku_time_now();

    toku_ft_status_update_serialize_times(node, t1 - t0, t2 - t1);
}

static void
serialize_and_compress_serially(FTNODE node,
                                int npartitions,
                                enum toku_compression_method compression_method,
                                struct sub_block sb[],
                                struct serialize_times *st) {
    for (int i = 0; i < npartitions; i++) {
        serialize_and_compress_partition(node, i, compression_method, &sb[i], st);
    }
}

struct serialize_compress_work {
    struct work base;
    FTNODE node;
    int i;
    enum toku_compression_method compression_method;
    struct sub_block *sb;
    struct serialize_times st;
};

static void *
serialize_and_compress_worker(void *arg) {
    struct workset *ws = (struct workset *) arg;
    while (1) {
        struct serialize_compress_work *w = (struct serialize_compress_work *) workset_get(ws);
        if (w == NULL)
            break;
        int i = w->i;
        serialize_and_compress_partition(w->node, i, w->compression_method, &w->sb[i], &w->st);
    }
    workset_release_ref(ws);
    return arg;
}

static void
serialize_and_compress_in_parallel(FTNODE node,
                                   int npartitions,
                                   enum toku_compression_method compression_method,
                                   struct sub_block sb[],
                                   struct serialize_times *st) {
    if (npartitions == 1) {
        serialize_and_compress_partition(node, 0, compression_method, &sb[0], st);
    } else {
        int T = num_cores;
        if (T > npartitions)
            T = npartitions;
        if (T > 0)
            T = T - 1;
        struct workset ws;
        ZERO_STRUCT(ws);
        workset_init(&ws);
        struct serialize_compress_work work[npartitions];
        workset_lock(&ws);
        for (int i = 0; i < npartitions; i++) {
            work[i] = (struct serialize_compress_work) { .base = {{NULL}},
                                                         .node = node,
                                                         .i = i,
                                                         .compression_method = compression_method,
                                                         .sb = sb,
                                                         .st = { .serialize_time = 0, .compress_time = 0} };
            workset_put_locked(&ws, &work[i].base);
        }
        workset_unlock(&ws);
        toku_thread_pool_run(ft_pool, 0, &T, serialize_and_compress_worker, &ws);
        workset_add_ref(&ws, T);
        serialize_and_compress_worker(&ws);
        workset_join(&ws);
        workset_destroy(&ws);

        // gather up the statistics from each thread's work item
        for (int i = 0; i < npartitions; i++) {
            st->serialize_time += work[i].st.serialize_time;
            st->compress_time += work[i].st.compress_time;
        }
    }
}

static void
serialize_and_compress_sb_node_info(FTNODE node, struct sub_block *sb,
        enum toku_compression_method compression_method, struct serialize_times *st) {
    // serialize, compress, update serialize times.
    tokutime_t t0 = toku_time_now();
    serialize_ftnode_info(node, sb);
    tokutime_t t1 = toku_time_now();
    compress_ftnode_sub_block(sb, compression_method);
    tokutime_t t2 = toku_time_now();

    st->serialize_time += t1 - t0;
    st->compress_time += t2 - t1;
}

int toku_serialize_ftnode_to_memory(FTNODE node,
                                    FTNODE_DISK_DATA* ndd,
                                    unsigned int basementnodesize,
                                    enum toku_compression_method compression_method,
                                    bool do_rebalancing,
                                    bool in_parallel, // for loader is true, for toku_ftnode_flush_callback, is false
                            /*out*/ size_t *n_bytes_to_write,
                            /*out*/ size_t *n_uncompressed_bytes,
                            /*out*/ char  **bytes_to_write)
// Effect: Writes out each child to a separate malloc'd buffer, then compresses
//   all of them, and writes the uncompressed header, to bytes_to_write,
//   which is malloc'd.
//
//   The resulting buffer is guaranteed to be 512-byte aligned and the total length is a multiple of 512 (so we pad with zeros at the end if needed).
//   512-byte padding is for O_DIRECT to work.
{
    toku_assert_entire_node_in_memory(node);

    if (do_rebalancing && node->height == 0) {
        rebalance_ftnode_leaf(node, basementnodesize);
    }
    const int npartitions = node->n_children;

    // Each partition represents a compressed sub block
    // For internal nodes, a sub block is a message buffer
    // For leaf nodes, a sub block is a basement node
    toku::scoped_malloc sb_buf(sizeof(struct sub_block) * npartitions);
    struct sub_block *sb = reinterpret_cast<struct sub_block *>(sb_buf.get());
    XREALLOC_N(npartitions, *ndd);
    struct sub_block sb_node_info;
    for (int i = 0; i < npartitions; i++) {
        sub_block_init(&sb[i]);;
    }
    sub_block_init(&sb_node_info);

    //
    // First, let's serialize and compress the individual sub blocks
    //
    struct serialize_times st;
    memset(&st, 0, sizeof(st));
    if (in_parallel) {
        serialize_and_compress_in_parallel(node, npartitions, compression_method, sb, &st);
    }
    else {
        serialize_and_compress_serially(node, npartitions, compression_method, sb, &st);
    }

    //
    // Now lets create a sub-block that has the common node information,
    // This does NOT include the header
    //
    serialize_and_compress_sb_node_info(node, &sb_node_info, compression_method, &st);

    // update the serialize times, ignore the header for simplicity. we captured all
    // of the partitions' serialize times so that's probably good enough.
    toku_ft_status_update_serialize_times(node, st.serialize_time, st.compress_time);

    // now we have compressed each of our pieces into individual sub_blocks,
    // we can put the header and all the subblocks into a single buffer
    // and return it.

    // The total size of the node is:
    // size of header + disk size of the n+1 sub_block's created above
    uint32_t total_node_size = (serialize_node_header_size(node) // uncompressed header
                                 + sb_node_info.compressed_size   // compressed nodeinfo (without its checksum)
                                 + 4);                            // nodeinfo's checksum
    uint32_t total_uncompressed_size = (serialize_node_header_size(node) // uncompressed header
                                 + sb_node_info.uncompressed_size   // uncompressed nodeinfo (without its checksum)
                                 + 4);                            // nodeinfo's checksum
    // store the BP_SIZESs
    for (int i = 0; i < node->n_children; i++) {
        uint32_t len         = sb[i].compressed_size + 4; // data and checksum
        BP_SIZE (*ndd,i) = len;
        BP_START(*ndd,i) = total_node_size;
        total_node_size += sb[i].compressed_size + 4;
        total_uncompressed_size += sb[i].uncompressed_size + 4;
    }

    uint32_t total_buffer_size = roundup_to_multiple(512, total_node_size); // make the buffer be 512 bytes.
    
    char *XMALLOC_N_ALIGNED(512, total_buffer_size, data);
    char *curr_ptr = data;
    // now create the final serialized node

    // write the header
    struct wbuf wb;
    wbuf_init(&wb, curr_ptr, serialize_node_header_size(node));
    serialize_node_header(node, *ndd, &wb);
    assert(wb.ndone == wb.size);
    curr_ptr += serialize_node_header_size(node);

    // now write sb_node_info
    memcpy(curr_ptr, sb_node_info.compressed_ptr, sb_node_info.compressed_size);
    curr_ptr += sb_node_info.compressed_size;
    // write the checksum
    *(uint32_t *)curr_ptr = toku_htod32(sb_node_info.xsum);
    curr_ptr += sizeof(sb_node_info.xsum);

    for (int i = 0; i < npartitions; i++) {
        memcpy(curr_ptr, sb[i].compressed_ptr, sb[i].compressed_size);
        curr_ptr += sb[i].compressed_size;
        // write the checksum
        *(uint32_t *)curr_ptr = toku_htod32(sb[i].xsum);
        curr_ptr += sizeof(sb[i].xsum);
    }
    // Zero the rest of the buffer
    for (uint32_t i=total_node_size; i<total_buffer_size; i++) {
        data[i]=0;
    }
            
    assert(curr_ptr - data == total_node_size);
    *bytes_to_write = data;
    *n_bytes_to_write = total_buffer_size;
    *n_uncompressed_bytes = total_uncompressed_size;

    //
    // now that node has been serialized, go through sub_block's and free
    // memory
    //
    toku_free(sb_node_info.compressed_ptr);
    toku_free(sb_node_info.uncompressed_ptr);
    for (int i = 0; i < npartitions; i++) {
        toku_free(sb[i].compressed_ptr);
        toku_free(sb[i].uncompressed_ptr);
    }

    assert(0 == (*n_bytes_to_write)%512);
    assert(0 == ((unsigned long long)(*bytes_to_write))%512);
    return 0;
}

int
toku_serialize_ftnode_to (int fd, BLOCKNUM blocknum, FTNODE node, FTNODE_DISK_DATA* ndd, bool do_rebalancing, FT h, bool for_checkpoint) {

    size_t n_to_write;
    size_t n_uncompressed_bytes;
    char *compressed_buf = nullptr;

    // because toku_serialize_ftnode_to is only called for 
    // in toku_ftnode_flush_callback, we pass false
    // for in_parallel. The reasoning is that when we write
    // nodes to disk via toku_ftnode_flush_callback, we 
    // assume that it is being done on a non-critical
    // background thread (probably for checkpointing), and therefore 
    // should not hog CPU,
    //
    // Should the above facts change, we may want to revisit
    // passing false for in_parallel here
    //
    // alternatively, we could have made in_parallel a parameter
    // for toku_serialize_ftnode_to, but instead we did this.
    int r = toku_serialize_ftnode_to_memory(
        node,
        ndd,
        h->h->basementnodesize,
        h->h->compression_method,
        do_rebalancing,
        false, // in_parallel
        &n_to_write,
        &n_uncompressed_bytes,
        &compressed_buf
        );
    if (r != 0) {
        return r;
    }

    // If the node has never been written, then write the whole buffer, including the zeros
    invariant(blocknum.b>=0);
    DISKOFF offset;

    toku_blocknum_realloc_on_disk(h->blocktable, blocknum, n_to_write, &offset,
                                  h, fd, for_checkpoint); //dirties h

    tokutime_t t0 = toku_time_now();
    toku_os_full_pwrite(fd, compressed_buf, n_to_write, offset);
    tokutime_t t1 = toku_time_now();

    tokutime_t io_time = t1 - t0;
    toku_ft_status_update_flush_reason(node, n_uncompressed_bytes, n_to_write, io_time, for_checkpoint);

    toku_free(compressed_buf);
    node->dirty = 0;  // See #1957.   Must set the node to be clean after serializing it so that it doesn't get written again on the next checkpoint or eviction.
    return 0;
}

static void
deserialize_child_buffer(NONLEAF_CHILDINFO bnc, struct rbuf *rbuf,
                         DESCRIPTOR desc, ft_compare_func cmp) {
    int r;
    int n_in_this_buffer = rbuf_int(rbuf);
    int32_t *fresh_offsets = NULL, *stale_offsets = NULL;
    int32_t *broadcast_offsets = NULL;
    int nfresh = 0, nstale = 0;
    int nbroadcast_offsets = 0;
    if (cmp) {
        XMALLOC_N(n_in_this_buffer, stale_offsets);
        XMALLOC_N(n_in_this_buffer, fresh_offsets);
        XMALLOC_N(n_in_this_buffer, broadcast_offsets);
    }
    toku_fifo_resize(bnc->buffer, rbuf->size + 64);
    for (int i = 0; i < n_in_this_buffer; i++) {
        bytevec key; ITEMLEN keylen;
        bytevec val; ITEMLEN vallen;
        // this is weird but it's necessary to pass icc and gcc together
        unsigned char ctype = rbuf_char(rbuf);
        enum ft_msg_type type = (enum ft_msg_type) ctype;
        bool is_fresh = rbuf_char(rbuf);
        MSN msn = rbuf_msn(rbuf);
        XIDS xids;
        xids_create_from_buffer(rbuf, &xids);
        rbuf_bytes(rbuf, &key, &keylen); /* Returns a pointer into the rbuf. */
        rbuf_bytes(rbuf, &val, &vallen);
        int32_t *dest;
        if (cmp) {
            if (ft_msg_type_applies_once(type)) {
                if (is_fresh) {
                    dest = &fresh_offsets[nfresh];
                    nfresh++;
                } else {
                    dest = &stale_offsets[nstale];
                    nstale++;
                }
            } else if (ft_msg_type_applies_all(type) || ft_msg_type_does_nothing(type)) {
                dest = &broadcast_offsets[nbroadcast_offsets];
                nbroadcast_offsets++;
            } else {
                abort();
            }
        } else {
            dest = NULL;
        }
        r = toku_fifo_enq(bnc->buffer, key, keylen, val, vallen, type, msn, xids, is_fresh, dest); /* Copies the data into the fifo */
        lazy_assert_zero(r);
        xids_destroy(&xids);
    }
    invariant(rbuf->ndone == rbuf->size);

    if (cmp) {
        struct toku_fifo_entry_key_msn_cmp_extra extra = { .desc = desc, .cmp = cmp, .fifo = bnc->buffer };
        r = toku::sort<int32_t, const struct toku_fifo_entry_key_msn_cmp_extra, toku_fifo_entry_key_msn_cmp>::mergesort_r(fresh_offsets, nfresh, extra);
        assert_zero(r);
        bnc->fresh_message_tree.destroy();
        bnc->fresh_message_tree.create_steal_sorted_array(&fresh_offsets, nfresh, n_in_this_buffer);
        r = toku::sort<int32_t, const struct toku_fifo_entry_key_msn_cmp_extra, toku_fifo_entry_key_msn_cmp>::mergesort_r(stale_offsets, nstale, extra);
        assert_zero(r);
        bnc->stale_message_tree.destroy();
        bnc->stale_message_tree.create_steal_sorted_array(&stale_offsets, nstale, n_in_this_buffer);
        bnc->broadcast_list.destroy();
        bnc->broadcast_list.create_steal_sorted_array(&broadcast_offsets, nbroadcast_offsets, n_in_this_buffer);
    }
}

// dump a buffer to stderr
// no locking around this for now
void
dump_bad_block(unsigned char *vp, uint64_t size) {
    const uint64_t linesize = 64;
    uint64_t n = size / linesize;
    for (uint64_t i = 0; i < n; i++) {
        fprintf(stderr, "%p: ", vp);
        for (uint64_t j = 0; j < linesize; j++) {
            unsigned char c = vp[j];
            fprintf(stderr, "%2.2X", c);
        }
        fprintf(stderr, "\n");
        vp += linesize;
    }
    size = size % linesize;
    for (uint64_t i=0; i<size; i++) {
        if ((i % linesize) == 0)
            fprintf(stderr, "%p: ", vp+i);
        fprintf(stderr, "%2.2X", vp[i]);
        if (((i+1) % linesize) == 0)
            fprintf(stderr, "\n");
    }
    fprintf(stderr, "\n");
}

////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////

BASEMENTNODE toku_create_empty_bn(void) {
    BASEMENTNODE bn = toku_create_empty_bn_no_buffer();
    bn->data_buffer.initialize_empty();
    return bn;
}

BASEMENTNODE toku_clone_bn(BASEMENTNODE orig_bn) {
    BASEMENTNODE bn = toku_create_empty_bn_no_buffer();
    bn->max_msn_applied = orig_bn->max_msn_applied;
    bn->seqinsert = orig_bn->seqinsert;
    bn->stale_ancestor_messages_applied = orig_bn->stale_ancestor_messages_applied;
    bn->stat64_delta = orig_bn->stat64_delta;
    bn->data_buffer.clone(&orig_bn->data_buffer);
    return bn;
}

BASEMENTNODE toku_create_empty_bn_no_buffer(void) {
    BASEMENTNODE XMALLOC(bn);
    bn->max_msn_applied.msn = 0;
    bn->seqinsert = 0;
    bn->stale_ancestor_messages_applied = false;
    bn->stat64_delta = ZEROSTATS;
    bn->data_buffer.init_zero();
    return bn;
}

NONLEAF_CHILDINFO toku_create_empty_nl(void) {
    NONLEAF_CHILDINFO XMALLOC(cn);
    int r = toku_fifo_create(&cn->buffer); assert_zero(r);
    cn->fresh_message_tree.create_no_array();
    cn->stale_message_tree.create_no_array();
    cn->broadcast_list.create_no_array();
    memset(cn->flow, 0, sizeof cn->flow);
    return cn;
}

// does NOT create OMTs, just the FIFO
NONLEAF_CHILDINFO toku_clone_nl(NONLEAF_CHILDINFO orig_childinfo) {
    NONLEAF_CHILDINFO XMALLOC(cn);
    toku_fifo_clone(orig_childinfo->buffer, &cn->buffer);
    cn->fresh_message_tree.create_no_array();
    cn->stale_message_tree.create_no_array();
    cn->broadcast_list.create_no_array();
    memset(cn->flow, 0, sizeof cn->flow);
    return cn;
}

void destroy_basement_node (BASEMENTNODE bn)
{
    bn->data_buffer.destroy();
    toku_free(bn);
}

void destroy_nonleaf_childinfo (NONLEAF_CHILDINFO nl)
{
    toku_fifo_free(&nl->buffer);
    nl->fresh_message_tree.destroy();
    nl->stale_message_tree.destroy();
    nl->broadcast_list.destroy();
    toku_free(nl);
}

void read_block_from_fd_into_rbuf(
    int fd, 
    BLOCKNUM blocknum,
    FT h,
    struct rbuf *rb
    ) 
{
    // get the file offset and block size for the block
    DISKOFF offset, size;
    toku_translate_blocknum_to_offset_size(h->blocktable, blocknum, &offset, &size);
    DISKOFF size_aligned = roundup_to_multiple(512, size);
    uint8_t *XMALLOC_N_ALIGNED(512, size_aligned, raw_block);
    rbuf_init(rb, raw_block, size);
    // read the block
    ssize_t rlen = toku_os_pread(fd, raw_block, size_aligned, offset);
    assert((DISKOFF)rlen >= size);
    assert((DISKOFF)rlen <= size_aligned);
}

static const int read_header_heuristic_max = 32*1024;

#ifndef MIN
#define MIN(a,b) (((a)>(b)) ? (b) : (a))
#endif

static void read_ftnode_header_from_fd_into_rbuf_if_small_enough (int fd, BLOCKNUM blocknum, FT ft, struct rbuf *rb, struct ftnode_fetch_extra *bfe)
// Effect: If the header part of the node is small enough, then read it into the rbuf.  The rbuf will be allocated to be big enough in any case.
{
    DISKOFF offset, size;
    toku_translate_blocknum_to_offset_size(ft->blocktable, blocknum, &offset, &size);
    DISKOFF read_size = roundup_to_multiple(512, MIN(read_header_heuristic_max, size));
    uint8_t *XMALLOC_N_ALIGNED(512, roundup_to_multiple(512, size), raw_block);
    rbuf_init(rb, raw_block, read_size);

    // read the block
    tokutime_t t0 = toku_time_now();
    ssize_t rlen = toku_os_pread(fd, raw_block, read_size, offset);
    tokutime_t t1 = toku_time_now();

    assert(rlen >= 0);
    rbuf_init(rb, raw_block, rlen);

    bfe->bytes_read = rlen;
    bfe->io_time = t1 - t0;
    toku_ft_status_update_pivot_fetch_reason(bfe);
}

//
// read the compressed partition into the sub_block,
// validate the checksum of the compressed data
//
int
read_compressed_sub_block(struct rbuf *rb, struct sub_block *sb)
{
    int r = 0;
    sb->compressed_size = rbuf_int(rb);
    sb->uncompressed_size = rbuf_int(rb);
    bytevec* cp = (bytevec*)&sb->compressed_ptr;
    rbuf_literal_bytes(rb, cp, sb->compressed_size);
    sb->xsum = rbuf_int(rb);
    // let's check the checksum
    uint32_t actual_xsum = toku_x1764_memory((char *)sb->compressed_ptr-8, 8+sb->compressed_size);
    if (sb->xsum != actual_xsum) {
        r = TOKUDB_BAD_CHECKSUM;
    }
    return r;
}

static int
read_and_decompress_sub_block(struct rbuf *rb, struct sub_block *sb)
{
    int r = 0;
    r = read_compressed_sub_block(rb, sb);
    if (r != 0) {
        goto exit;
    }

    just_decompress_sub_block(sb);
exit:
    return r;
}

// Allocates space for the sub-block and de-compresses the data from
// the supplied compressed pointer..
void
just_decompress_sub_block(struct sub_block *sb)
{
    // <CER> TODO: Add assert that the subblock was read in.
    sb->uncompressed_ptr = toku_xmalloc(sb->uncompressed_size);

    toku_decompress(
        (Bytef *) sb->uncompressed_ptr,
        sb->uncompressed_size,
        (Bytef *) sb->compressed_ptr,
        sb->compressed_size
        );
}

// verify the checksum
int
verify_ftnode_sub_block (struct sub_block *sb)
{
    int r = 0;
    // first verify the checksum
    uint32_t data_size = sb->uncompressed_size - 4; // checksum is 4 bytes at end
    uint32_t stored_xsum = toku_dtoh32(*((uint32_t *)((char *)sb->uncompressed_ptr + data_size)));
    uint32_t actual_xsum = toku_x1764_memory(sb->uncompressed_ptr, data_size);
    if (stored_xsum != actual_xsum) {
        dump_bad_block((Bytef *) sb->uncompressed_ptr, sb->uncompressed_size);
        r = TOKUDB_BAD_CHECKSUM;
    }
    return r;
}

// This function deserializes the data stored by serialize_ftnode_info
static int
deserialize_ftnode_info(
    struct sub_block *sb, 
    FTNODE node
    )
{
    // sb_node_info->uncompressed_ptr stores the serialized node information
    // this function puts that information into node

    // first verify the checksum
    int r = 0;
    r = verify_ftnode_sub_block(sb);
    if (r != 0) {
        goto exit;
    }

    uint32_t data_size;
    data_size = sb->uncompressed_size - 4; // checksum is 4 bytes at end

    // now with the data verified, we can read the information into the node
    struct rbuf rb;
    rbuf_init(&rb, (unsigned char *) sb->uncompressed_ptr, data_size);

    node->max_msn_applied_to_node_on_disk = rbuf_msn(&rb);
    (void)rbuf_int(&rb);
    node->flags = rbuf_int(&rb);
    node->height = rbuf_int(&rb);
    if (node->layout_version_read_from_disk < FT_LAYOUT_VERSION_19) {
        (void) rbuf_int(&rb); // optimized_for_upgrade
    }
    if (node->layout_version_read_from_disk >= FT_LAYOUT_VERSION_22) {
        rbuf_TXNID(&rb, &node->oldest_referenced_xid_known);
    }

    // now create the basement nodes or childinfos, depending on whether this is a
    // leaf node or internal node
    // now the subtree_estimates

    // n_children is now in the header, nd the allocatio of the node->bp is in deserialize_ftnode_from_rbuf.

    // now the pivots
    node->totalchildkeylens = 0;
    if (node->n_children > 1) {
        XMALLOC_N(node->n_children - 1, node->childkeys);
        for (int i=0; i < node->n_children-1; i++) {
            bytevec childkeyptr;
            unsigned int cklen;
            rbuf_bytes(&rb, &childkeyptr, &cklen);
            toku_memdup_dbt(&node->childkeys[i], childkeyptr, cklen);
            node->totalchildkeylens += cklen;
        }
    }
    else {
        node->childkeys = NULL;
        node->totalchildkeylens = 0;
    }

    // if this is an internal node, unpack the block nums, and fill in necessary fields
    // of childinfo
    if (node->height > 0) {
        for (int i = 0; i < node->n_children; i++) {
            BP_BLOCKNUM(node,i) = rbuf_blocknum(&rb);
            BP_WORKDONE(node, i) = 0;
        }
    }

    // make sure that all the data was read
    if (data_size != rb.ndone) {
        dump_bad_block(rb.buf, rb.size);
        abort();
    }
exit:
    return r;
}

static void
setup_available_ftnode_partition(FTNODE node, int i) {
    if (node->height == 0) {
        set_BLB(node, i, toku_create_empty_bn());
        BLB_MAX_MSN_APPLIED(node,i) = node->max_msn_applied_to_node_on_disk;
    }
    else {
        set_BNC(node, i, toku_create_empty_nl());
    }
}

// Assign the child_to_read member of the bfe from the given ftnode
// that has been brought into memory.
static void
update_bfe_using_ftnode(FTNODE node, struct ftnode_fetch_extra *bfe)
{
    if (bfe->type == ftnode_fetch_subset && bfe->search != NULL) {
        // we do not take into account prefetching yet
        // as of now, if we need a subset, the only thing
        // we can possibly require is a single basement node
        // we find out what basement node the query cares about
        // and check if it is available
        bfe->child_to_read = toku_ft_search_which_child(
            &bfe->h->cmp_descriptor,
            bfe->h->compare_fun,
            node,
            bfe->search
            );
    } else if (bfe->type == ftnode_fetch_keymatch) {
        // we do not take into account prefetching yet
        // as of now, if we need a subset, the only thing
        // we can possibly require is a single basement node
        // we find out what basement node the query cares about
        // and check if it is available
        paranoid_invariant(bfe->h->compare_fun);
        if (node->height == 0) {
            int left_child = toku_bfe_leftmost_child_wanted(bfe, node);
            int right_child = toku_bfe_rightmost_child_wanted(bfe, node);
            if (left_child == right_child) {
                bfe->child_to_read = left_child;
            }
        }
    }
}

// Using the search parameters in the bfe, this function will
// initialize all of the given ftnode's partitions.
static void
setup_partitions_using_bfe(FTNODE node,
                           struct ftnode_fetch_extra *bfe,
                           bool data_in_memory)
{
    // Leftmost and Rightmost Child bounds.
    int lc, rc;
    if (bfe->type == ftnode_fetch_subset || bfe->type == ftnode_fetch_prefetch) {
        lc = toku_bfe_leftmost_child_wanted(bfe, node);
        rc = toku_bfe_rightmost_child_wanted(bfe, node);
    } else {
        lc = -1;
        rc = -1;
    }

    //
    // setup memory needed for the node
    //
    //printf("node height %d, blocknum %" PRId64 ", type %d lc %d rc %d\n", node->height, node->thisnodename.b, bfe->type, lc, rc);
    for (int i = 0; i < node->n_children; i++) {
        BP_INIT_UNTOUCHED_CLOCK(node,i);
        if (data_in_memory) {
            BP_STATE(node, i) = ((toku_bfe_wants_child_available(bfe, i) || (lc <= i && i <= rc))
                                 ? PT_AVAIL : PT_COMPRESSED);
        } else {
            BP_STATE(node, i) = PT_ON_DISK;
        }
        BP_WORKDONE(node,i) = 0;

        switch (BP_STATE(node,i)) {
        case PT_AVAIL:
            setup_available_ftnode_partition(node, i);
            BP_TOUCH_CLOCK(node,i);
            break;
        case PT_COMPRESSED:
            set_BSB(node, i, sub_block_creat());
            break;
        case PT_ON_DISK:
            set_BNULL(node, i);
            break;
        case PT_INVALID:
            abort();
        }
    }
}

static void setup_ftnode_partitions(FTNODE node, struct ftnode_fetch_extra* bfe, bool data_in_memory)
// Effect: Used when reading a ftnode into main memory, this sets up the partitions.
//   We set bfe->child_to_read as well as the BP_STATE and the data pointers (e.g., with set_BSB or set_BNULL or other set_ operations).
// Arguments:  Node: the node to set up.
//             bfe:  Describes the key range needed.
//             data_in_memory: true if we have all the data (in which case we set the BP_STATE to be either PT_AVAIL or PT_COMPRESSED depending on the bfe.
//                             false if we don't have the partitions in main memory (in which case we set the state to PT_ON_DISK.
{
    // Set bfe->child_to_read.
    update_bfe_using_ftnode(node, bfe);

    // Setup the partitions.
    setup_partitions_using_bfe(node, bfe, data_in_memory);
}

/* deserialize the partition from the sub-block's uncompressed buffer
 * and destroy the uncompressed buffer
 */
static int
deserialize_ftnode_partition(
    struct sub_block *sb,
    FTNODE node,
    int childnum,      // which partition to deserialize
    DESCRIPTOR desc,
    ft_compare_func cmp
    )
{
    int r = 0;
    r = verify_ftnode_sub_block(sb);
    if (r != 0) {
        goto exit;
    }
    uint32_t data_size;
    data_size = sb->uncompressed_size - 4; // checksum is 4 bytes at end

    // now with the data verified, we can read the information into the node
    struct rbuf rb;
    rbuf_init(&rb, (unsigned char *) sb->uncompressed_ptr, data_size);
    unsigned char ch;
    ch = rbuf_char(&rb);

    if (node->height > 0) {
        assert(ch == FTNODE_PARTITION_FIFO_MSG);
        deserialize_child_buffer(BNC(node, childnum), &rb, desc, cmp);
        BP_WORKDONE(node, childnum) = 0;
    }
    else {
        assert(ch == FTNODE_PARTITION_DMT_LEAVES);
        BLB_SEQINSERT(node, childnum) = 0;
        uint32_t num_entries = rbuf_int(&rb);
        // we are now at the first byte of first leafentry
        data_size -= rb.ndone; // remaining bytes of leafentry data

        BASEMENTNODE bn = BLB(node, childnum);
        bn->data_buffer.deserialize_from_rbuf(num_entries, &rb, data_size, node->layout_version_read_from_disk);
    }
    assert(rb.ndone == rb.size);
exit:
    return r;
}

static int
decompress_and_deserialize_worker(struct rbuf curr_rbuf, struct sub_block curr_sb, FTNODE node, int child,
        DESCRIPTOR desc, ft_compare_func cmp, tokutime_t *decompress_time)
{
    int r = 0;
    tokutime_t t0 = toku_time_now();
    r = read_and_decompress_sub_block(&curr_rbuf, &curr_sb);
    tokutime_t t1 = toku_time_now();
    if (r == 0) {
        // at this point, sb->uncompressed_ptr stores the serialized node partition
        r = deserialize_ftnode_partition(&curr_sb, node, child, desc, cmp);
    }
    *decompress_time = t1 - t0;

    toku_free(curr_sb.uncompressed_ptr);
    return r;
}

static int
check_and_copy_compressed_sub_block_worker(struct rbuf curr_rbuf, struct sub_block curr_sb, FTNODE node, int child)
{
    int r = 0;
    r = read_compressed_sub_block(&curr_rbuf, &curr_sb);
    if (r != 0) {
        goto exit;
    }

    SUB_BLOCK bp_sb;
    bp_sb = BSB(node, child);
    bp_sb->compressed_size = curr_sb.compressed_size;
    bp_sb->uncompressed_size = curr_sb.uncompressed_size;
    bp_sb->compressed_ptr = toku_xmalloc(bp_sb->compressed_size);
    memcpy(bp_sb->compressed_ptr, curr_sb.compressed_ptr, bp_sb->compressed_size);
exit:
    return r;
}

static FTNODE alloc_ftnode_for_deserialize(uint32_t fullhash, BLOCKNUM blocknum) {
// Effect: Allocate an FTNODE and fill in the values that are not read from
    FTNODE XMALLOC(node);
    node->fullhash = fullhash;
    node->thisnodename = blocknum;
    node->dirty = 0;
    node->bp = nullptr;
    node->oldest_referenced_xid_known = TXNID_NONE;
    return node; 
}

static int
deserialize_ftnode_header_from_rbuf_if_small_enough (FTNODE *ftnode,
                                                      FTNODE_DISK_DATA* ndd, 
                                                      BLOCKNUM blocknum,
                                                      uint32_t fullhash,
                                                      struct ftnode_fetch_extra *bfe,
                                                      struct rbuf *rb,
                                                      int fd)
// If we have enough information in the rbuf to construct a header, then do so.
// Also fetch in the basement node if needed.
// Return 0 if it worked.  If something goes wrong (including that we are looking at some old data format that doesn't have partitions) then return nonzero.
{
    int r = 0;

    tokutime_t t0, t1;
    tokutime_t decompress_time = 0;
    tokutime_t deserialize_time = 0;
    
    t0 = toku_time_now();

    FTNODE node = alloc_ftnode_for_deserialize(fullhash, blocknum);

    if (rb->size < 24) {
        // TODO: What error do we return here?
        // Does it even matter?
        r = toku_db_badformat();
        goto cleanup;
    }

    bytevec magic;
    rbuf_literal_bytes(rb, &magic, 8);
    if (memcmp(magic, "tokuleaf", 8)!=0 &&
        memcmp(magic, "tokunode", 8)!=0) {
        r = toku_db_badformat();        
        goto cleanup;
    }

    node->layout_version_read_from_disk = rbuf_int(rb);
    if (node->layout_version_read_from_disk < FT_FIRST_LAYOUT_VERSION_WITH_BASEMENT_NODES) {
        // This code path doesn't have to worry about upgrade.
        r = toku_db_badformat();
        goto cleanup;
    }

    // If we get here, we know the node is at least
    // FT_FIRST_LAYOUT_VERSION_WITH_BASEMENT_NODES.  We haven't changed
    // the serialization format since then (this comment is correct as of
    // version 20, which is Deadshot) so we can go ahead and say the
    // layout version is current (it will be as soon as we finish
    // deserializing).
    // TODO(leif): remove node->layout_version (#5174)
    node->layout_version = FT_LAYOUT_VERSION;

    node->layout_version_original = rbuf_int(rb);
    node->build_id = rbuf_int(rb);
    node->n_children = rbuf_int(rb);
    // Guaranteed to be have been able to read up to here.  If n_children
    // is too big, we may have a problem, so check that we won't overflow
    // while reading the partition locations.
    unsigned int nhsize;
    nhsize =  serialize_node_header_size(node); // we can do this because n_children is filled in.
    unsigned int needed_size;
    needed_size = nhsize + 12; // we need 12 more so that we can read the compressed block size information that follows for the nodeinfo.
    if (needed_size > rb->size) {
        r = toku_db_badformat();
        goto cleanup;
    }

    XMALLOC_N(node->n_children, node->bp);
    XMALLOC_N(node->n_children, *ndd);
    // read the partition locations
    for (int i=0; i<node->n_children; i++) {
        BP_START(*ndd,i) = rbuf_int(rb);
        BP_SIZE (*ndd,i) = rbuf_int(rb);
    }

    uint32_t checksum;
    checksum = toku_x1764_memory(rb->buf, rb->ndone);
    uint32_t stored_checksum;
    stored_checksum = rbuf_int(rb);
    if (stored_checksum != checksum) {
        dump_bad_block(rb->buf, rb->size);
        r = TOKUDB_BAD_CHECKSUM;
        goto cleanup;
    }

    // Now we want to read the pivot information.
    struct sub_block sb_node_info;
    sub_block_init(&sb_node_info);
    sb_node_info.compressed_size = rbuf_int(rb); // we'll be able to read these because we checked the size earlier.
    sb_node_info.uncompressed_size = rbuf_int(rb);
    if (rb->size-rb->ndone < sb_node_info.compressed_size + 8) {
        r = toku_db_badformat();
        goto cleanup;
    }

    // Finish reading compressed the sub_block
    bytevec* cp;
    cp = (bytevec*)&sb_node_info.compressed_ptr;
    rbuf_literal_bytes(rb, cp, sb_node_info.compressed_size);
    sb_node_info.xsum = rbuf_int(rb);
    // let's check the checksum
    uint32_t actual_xsum;
    actual_xsum = toku_x1764_memory((char *)sb_node_info.compressed_ptr-8, 8+sb_node_info.compressed_size);
    if (sb_node_info.xsum != actual_xsum) {
        r = TOKUDB_BAD_CHECKSUM;
        goto cleanup;
    }

    // Now decompress the subblock
    sb_node_info.uncompressed_ptr = toku_xmalloc(sb_node_info.uncompressed_size);
    {
        tokutime_t decompress_t0 = toku_time_now();
        toku_decompress(
            (Bytef *) sb_node_info.uncompressed_ptr,
            sb_node_info.uncompressed_size,
            (Bytef *) sb_node_info.compressed_ptr,
            sb_node_info.compressed_size
            );
        tokutime_t decompress_t1 = toku_time_now();
        decompress_time = decompress_t1 - decompress_t0;
    }

    // at this point sb->uncompressed_ptr stores the serialized node info.
    r = deserialize_ftnode_info(&sb_node_info, node);
    if (r != 0) {
        goto cleanup;
    }

    toku_free(sb_node_info.uncompressed_ptr);
    sb_node_info.uncompressed_ptr = NULL;

    // Now we have the ftnode_info.  We have a bunch more stuff in the
    // rbuf, so we might be able to store the compressed data for some
    // objects.
    // We can proceed to deserialize the individual subblocks.
    paranoid_invariant(is_valid_ftnode_fetch_type(bfe->type));

    // setup the memory of the partitions
    // for partitions being decompressed, create either FIFO or basement node
    // for partitions staying compressed, create sub_block
    setup_ftnode_partitions(node, bfe, false);

    // We must capture deserialize and decompression time before
    // the pf_callback, otherwise we would double-count.
    t1 = toku_time_now();
    deserialize_time = (t1 - t0) - decompress_time;

    // do partial fetch if necessary
    if (bfe->type != ftnode_fetch_none) {
        PAIR_ATTR attr;
        r = toku_ftnode_pf_callback(node, *ndd, bfe, fd, &attr);
        if (r != 0) {
            goto cleanup;
        }
    }

    // handle clock
    for (int i = 0; i < node->n_children; i++) {
        if (toku_bfe_wants_child_available(bfe, i)) {
            paranoid_invariant(BP_STATE(node,i) == PT_AVAIL);
            BP_TOUCH_CLOCK(node,i);
        }
    }
    *ftnode = node;
    r = 0;

cleanup:
    if (r == 0) {
        bfe->deserialize_time += deserialize_time;
        bfe->decompress_time += decompress_time;
        toku_ft_status_update_deserialize_times(node, deserialize_time, decompress_time);
    }
    if (r != 0) {
        if (node) {
            toku_free(*ndd);
            toku_free(node->bp);
            toku_free(node);
        }
    }
    return r;
}

// This function takes a deserialized version 13 or 14 buffer and
// constructs the associated internal, non-leaf ftnode object.  It
// also creates MSN's for older messages created in older versions
// that did not generate MSN's for messages.  These new MSN's are
// generated from the root downwards, counting backwards from MIN_MSN
// and persisted in the ft header.
static int
deserialize_and_upgrade_internal_node(FTNODE node,
                                      struct rbuf *rb,
                                      struct ftnode_fetch_extra* bfe,
                                      STAT64INFO info)
{
    int r = 0;
    int version = node->layout_version_read_from_disk;

    if(version == FT_LAST_LAYOUT_VERSION_WITH_FINGERPRINT) {
        (void) rbuf_int(rb);                          // 10. fingerprint
    }

    node->n_children = rbuf_int(rb);                  // 11. n_children

    // Sub-tree esitmates...
    for (int i = 0; i < node->n_children; ++i) {
        if (version == FT_LAST_LAYOUT_VERSION_WITH_FINGERPRINT) {
            (void) rbuf_int(rb);                      // 12. fingerprint
        }
        uint64_t nkeys = rbuf_ulonglong(rb);          // 13. nkeys
        uint64_t ndata = rbuf_ulonglong(rb);          // 14. ndata
        uint64_t dsize = rbuf_ulonglong(rb);          // 15. dsize
        (void) rbuf_char(rb);                         // 16. exact (char)
        invariant(nkeys == ndata);
        if (info) {
            // info is non-null if we're trying to upgrade old subtree
            // estimates to stat64info
            info->numrows += nkeys;
            info->numbytes += dsize;
        }
    }

    node->childkeys = NULL;
    node->totalchildkeylens = 0;
    // I. Allocate keys based on number of children.
    XMALLOC_N(node->n_children - 1, node->childkeys);
    // II. Copy keys from buffer to allocated keys in ftnode.
    for (int i = 0; i < node->n_children - 1; ++i) {
        bytevec childkeyptr;
        unsigned int cklen;
        rbuf_bytes(rb, &childkeyptr, &cklen);         // 17. child key pointers
        toku_memdup_dbt(&node->childkeys[i], childkeyptr, cklen);
        node->totalchildkeylens += cklen;
    }

    // Create space for the child node buffers (a.k.a. partitions).
    XMALLOC_N(node->n_children, node->bp);

    // Set the child blocknums.
    for (int i = 0; i < node->n_children; ++i) {
        BP_BLOCKNUM(node, i) = rbuf_blocknum(rb);    // 18. blocknums
        BP_WORKDONE(node, i) = 0;
    }

    // Read in the child buffer maps.
    struct sub_block_map child_buffer_map[node->n_children];
    for (int i = 0; i < node->n_children; ++i) {
        // The following fields are read in the
        // sub_block_map_deserialize() call:
        // 19. index 20. offset 21. size
        sub_block_map_deserialize(&child_buffer_map[i], rb);
    }

    // We need to setup this node's partitions, but we can't call the
    // existing call (setup_ftnode_paritions.) because there are
    // existing optimizations that would prevent us from bringing all
    // of this node's partitions into memory.  Instead, We use the
    // existing bfe and node to set the bfe's child_to_search member.
    // Then we create a temporary bfe that needs all the nodes to make
    // sure we properly intitialize our partitions before filling them
    // in from our soon-to-be-upgraded node.
    update_bfe_using_ftnode(node, bfe);
    struct ftnode_fetch_extra temp_bfe;
    temp_bfe.type = ftnode_fetch_all;
    setup_partitions_using_bfe(node, &temp_bfe, true);

    // Cache the highest MSN generated for the message buffers.  This
    // will be set in the ftnode.
    //
    // The way we choose MSNs for upgraded messages is delicate.  The
    // field `highest_unused_msn_for_upgrade' in the header is always an
    // MSN that no message has yet.  So when we have N messages that need
    // MSNs, we decrement it by N, and then use it and the N-1 MSNs less
    // than it, but we do not use the value we decremented it to.
    //
    // In the code below, we initialize `lowest' with the value of
    // `highest_unused_msn_for_upgrade' after it is decremented, so we
    // need to be sure to increment it once before we enqueue our first
    // message.
    MSN highest_msn;
    highest_msn.msn = 0;

    // Deserialize de-compressed buffers.
    for (int i = 0; i < node->n_children; ++i) {
        NONLEAF_CHILDINFO bnc = BNC(node, i);
        int n_in_this_buffer = rbuf_int(rb);          // 22. node count

        int32_t *fresh_offsets = NULL;
        int32_t *broadcast_offsets = NULL;
        int nfresh = 0;
        int nbroadcast_offsets = 0;

        if (bfe->h->compare_fun) {
            XMALLOC_N(n_in_this_buffer, fresh_offsets);
            // We skip 'stale' offsets for upgraded nodes.
            XMALLOC_N(n_in_this_buffer, broadcast_offsets);
        }

        // Atomically decrement the header's MSN count by the number
        // of messages in the buffer.
        MSN lowest;
        uint64_t amount = n_in_this_buffer;
        lowest.msn = toku_sync_sub_and_fetch(&bfe->h->h->highest_unused_msn_for_upgrade.msn, amount);
        if (highest_msn.msn == 0) {
            highest_msn.msn = lowest.msn + n_in_this_buffer;
        }

        // Create the FIFO entires from the deserialized buffer.
        for (int j = 0; j < n_in_this_buffer; ++j) {
            bytevec key; ITEMLEN keylen;
            bytevec val; ITEMLEN vallen;
            unsigned char ctype = rbuf_char(rb);       // 23. message type
            enum ft_msg_type type = (enum ft_msg_type) ctype;
            XIDS xids;
            xids_create_from_buffer(rb, &xids);        // 24. XID
            rbuf_bytes(rb, &key, &keylen);             // 25. key
            rbuf_bytes(rb, &val, &vallen);             // 26. value

            // <CER> can we factor this out?
            int32_t *dest;
            if (bfe->h->compare_fun) {
                if (ft_msg_type_applies_once(type)) {
                    dest = &fresh_offsets[nfresh];
                    nfresh++;
                } else if (ft_msg_type_applies_all(type) || ft_msg_type_does_nothing(type)) {
                    dest = &broadcast_offsets[nbroadcast_offsets];
                    nbroadcast_offsets++;
                } else {
                    abort();
                }
            } else {
                dest = NULL;
            }

            // Increment our MSN, the last message should have the
            // newest/highest MSN.  See above for a full explanation.
            lowest.msn++;
            r = toku_fifo_enq(bnc->buffer,
                              key,
                              keylen,
                              val,
                              vallen,
                              type,
                              lowest,
                              xids,
                              true,
                              dest);
            lazy_assert_zero(r);
            xids_destroy(&xids);
        }

        if (bfe->h->compare_fun) {
            struct toku_fifo_entry_key_msn_cmp_extra extra = { .desc = &bfe->h->cmp_descriptor,
                                                               .cmp = bfe->h->compare_fun,
                                                               .fifo = bnc->buffer };
            typedef toku::sort<int32_t, const struct toku_fifo_entry_key_msn_cmp_extra, toku_fifo_entry_key_msn_cmp> key_msn_sort;
            r = key_msn_sort::mergesort_r(fresh_offsets, nfresh, extra);
            assert_zero(r);
            bnc->fresh_message_tree.destroy();
            bnc->fresh_message_tree.create_steal_sorted_array(&fresh_offsets, nfresh, n_in_this_buffer);
            bnc->broadcast_list.destroy();
            bnc->broadcast_list.create_steal_sorted_array(&broadcast_offsets, nbroadcast_offsets, n_in_this_buffer);
        }
    }

    // Assign the highest msn from our upgrade message FIFO queues.
    node->max_msn_applied_to_node_on_disk = highest_msn;
    // Since we assigned MSNs to this node's messages, we need to dirty it.
    node->dirty = 1;

    // Must compute the checksum now (rather than at the end, while we
    // still have the pointer to the buffer).
    if (version >= FT_FIRST_LAYOUT_VERSION_WITH_END_TO_END_CHECKSUM) {
        uint32_t expected_xsum = toku_dtoh32(*(uint32_t*)(rb->buf+rb->size-4)); // 27. checksum
        uint32_t actual_xsum   = toku_x1764_memory(rb->buf, rb->size-4);
        if (expected_xsum != actual_xsum) {
            fprintf(stderr, "%s:%d: Bad checksum: expected = %" PRIx32 ", actual= %" PRIx32 "\n",
                    __FUNCTION__,
                    __LINE__,
                    expected_xsum,
                    actual_xsum);
            fprintf(stderr,
                    "Checksum failure while reading node in file %s.\n",
                    toku_cachefile_fname_in_env(bfe->h->cf));
            fflush(stderr);
            return toku_db_badformat();
        }
    }

    return r;
}

// This function takes a deserialized version 13 or 14 buffer and
// constructs the associated leaf ftnode object.
static int
deserialize_and_upgrade_leaf_node(FTNODE node,
                                  struct rbuf *rb,
                                  struct ftnode_fetch_extra* bfe,
                                  STAT64INFO info)
{
    int r = 0;
    int version = node->layout_version_read_from_disk;

    // This is a leaf node, so the offsets in the buffer will be
    // different from the internal node offsets above.
    uint64_t nkeys = rbuf_ulonglong(rb);                // 10. nkeys
    uint64_t ndata = rbuf_ulonglong(rb);                // 11. ndata
    uint64_t dsize = rbuf_ulonglong(rb);                // 12. dsize
    invariant(nkeys == ndata);
    if (info) {
        // info is non-null if we're trying to upgrade old subtree
        // estimates to stat64info
        info->numrows += nkeys;
        info->numbytes += dsize;
    }

    // This is the optimized for upgrade field.
    if (version == FT_LAYOUT_VERSION_14) {
        (void) rbuf_int(rb);                            // 13. optimized
    }

    // npartitions - This is really the number of leaf entries in
    // our single basement node.  There should only be 1 (ONE)
    // partition, so there shouldn't be any pivot key stored.  This
    // means the loop will not iterate.  We could remove the loop and
    // assert that the value is indeed 1.
    int npartitions = rbuf_int(rb);                     // 14. npartitions
    assert(npartitions == 1);

    // Set number of children to 1, since we will only have one
    // basement node.
    node->n_children = 1;
    XMALLOC_N(node->n_children, node->bp);
    // This is a malloc(0), but we need to do it in order to get a pointer
    // we can free() later.
    XMALLOC_N(node->n_children - 1, node->childkeys);
    node->totalchildkeylens = 0;

    // Create one basement node to contain all the leaf entries by
    // setting up the single partition and updating the bfe.
    update_bfe_using_ftnode(node, bfe);
    struct ftnode_fetch_extra temp_bfe;
    fill_bfe_for_full_read(&temp_bfe, bfe->h);
    setup_partitions_using_bfe(node, &temp_bfe, true);

    // 11. Deserialize the partition maps, though they are not used in the
    // newer versions of ftnodes.
    struct sub_block_map part_map[npartitions];
    for (int i = 0; i < npartitions; ++i) {
        sub_block_map_deserialize(&part_map[i], rb);
    }

    // Copy all of the leaf entries into the single basement node.

    // The number of leaf entries in buffer.
    int n_in_buf = rbuf_int(rb);                        // 15. # of leaves
    BLB_SEQINSERT(node,0) = 0;
    BASEMENTNODE bn = BLB(node, 0);

    // Read the leaf entries from the buffer, advancing the buffer
    // as we go.
    bool has_end_to_end_checksum = (version >= FT_FIRST_LAYOUT_VERSION_WITH_END_TO_END_CHECKSUM);
    if (version <= FT_LAYOUT_VERSION_13) {
        // Create our mempool.
        // Loop through
        for (int i = 0; i < n_in_buf; ++i) {
            LEAFENTRY_13 le = reinterpret_cast<LEAFENTRY_13>(&rb->buf[rb->ndone]);
            uint32_t disksize = leafentry_disksize_13(le);
            rb->ndone += disksize;                       // 16. leaf entry (13)
            invariant(rb->ndone<=rb->size);
            LEAFENTRY new_le;
            size_t new_le_size;
            void* key = NULL;
            uint32_t keylen = 0;
            r = toku_le_upgrade_13_14(le,
                                      &key,
                                      &keylen,
                                      &new_le_size,
                                      &new_le);
            assert_zero(r);
            // Copy the pointer value straight into the OMT
            LEAFENTRY new_le_in_bn = nullptr;
            void *maybe_free;
            bn->data_buffer.get_space_for_insert(
                i,
                key,
                keylen,
                new_le_size,
                &new_le_in_bn,
                &maybe_free
                );
            if (maybe_free) {
                toku_free(maybe_free);
            }
            memcpy(new_le_in_bn, new_le, new_le_size);
            toku_free(new_le);
        }
    } else {
        uint32_t data_size = rb->size - rb->ndone;
        if (has_end_to_end_checksum) {
            data_size -= sizeof(uint32_t);
        }
        bn->data_buffer.deserialize_from_rbuf(n_in_buf, rb, data_size, node->layout_version_read_from_disk);
    }

    // Whatever this is must be less than the MSNs of every message above
    // it, so it's ok to take it here.
    bn->max_msn_applied = bfe->h->h->highest_unused_msn_for_upgrade;
    bn->stale_ancestor_messages_applied = false;
    node->max_msn_applied_to_node_on_disk = bn->max_msn_applied;

    // Checksum (end to end) is only on version 14
    if (has_end_to_end_checksum) {
        uint32_t expected_xsum = rbuf_int(rb);             // 17. checksum 
        uint32_t actual_xsum = toku_x1764_memory(rb->buf, rb->size - 4);
        if (expected_xsum != actual_xsum) {
            fprintf(stderr, "%s:%d: Bad checksum: expected = %" PRIx32 ", actual= %" PRIx32 "\n",
                    __FUNCTION__,
                    __LINE__,
                    expected_xsum,
                    actual_xsum);
            fprintf(stderr,
                    "Checksum failure while reading node in file %s.\n",
                    toku_cachefile_fname_in_env(bfe->h->cf));
            fflush(stderr);
            return toku_db_badformat();
        }
    }

    // We should have read the whole block by this point.
    if (rb->ndone != rb->size) {
        // TODO: Error handling.
        return 1;
    }

    return r;
}

static int
read_and_decompress_block_from_fd_into_rbuf(int fd, BLOCKNUM blocknum,
                                            DISKOFF offset, DISKOFF size,
                                            FT h,
                                            struct rbuf *rb,
                                            /* out */ int *layout_version_p);

// This function upgrades a version 14 or 13 ftnode to the current
// verison. NOTE: This code assumes the first field of the rbuf has
// already been read from the buffer (namely the layout_version of the
// ftnode.)
static int
deserialize_and_upgrade_ftnode(FTNODE node,
                                FTNODE_DISK_DATA* ndd,
                                BLOCKNUM blocknum,
                                struct ftnode_fetch_extra* bfe,
                                STAT64INFO info,
                                int fd)
{
    int r = 0;
    int version;

    // I. First we need to de-compress the entire node, only then can
    // we read the different sub-sections.
    // get the file offset and block size for the block
    DISKOFF offset, size;
    toku_translate_blocknum_to_offset_size(bfe->h->blocktable,
                                           blocknum,
                                           &offset,
                                           &size);
    struct rbuf rb;
    r = read_and_decompress_block_from_fd_into_rbuf(fd,
                                                    blocknum,
                                                    offset,
                                                    size,
                                                    bfe->h,
                                                    &rb,
                                                    &version);
    if (r != 0) {
        goto exit;
    }

    // Re-read the magic field from the previous call, since we are
    // restarting with a fresh rbuf.
    {
        bytevec magic;
        rbuf_literal_bytes(&rb, &magic, 8);              // 1. magic
    }

    // II. Start reading ftnode fields out of the decompressed buffer.

    // Copy over old version info.
    node->layout_version_read_from_disk = rbuf_int(&rb); // 2. layout version
    version = node->layout_version_read_from_disk;
    assert(version <= FT_LAYOUT_VERSION_14);
    // Upgrade the current version number to the current version.
    node->layout_version = FT_LAYOUT_VERSION;

    node->layout_version_original = rbuf_int(&rb);      // 3. original layout
    node->build_id = rbuf_int(&rb);                     // 4. build id

    // The remaining offsets into the rbuf do not map to the current
    // version, so we need to fill in the blanks and ignore older
    // fields.
    (void)rbuf_int(&rb);                                // 5. nodesize
    node->flags = rbuf_int(&rb);                        // 6. flags
    node->height = rbuf_int(&rb);                       // 7. height

    // If the version is less than 14, there are two extra ints here.
    // we would need to ignore them if they are there.
    // These are the 'fingerprints'.
    if (version == FT_LAYOUT_VERSION_13) {
        (void) rbuf_int(&rb);                           // 8. rand4
        (void) rbuf_int(&rb);                           // 9. local
    }

    // The next offsets are dependent on whether this is a leaf node
    // or not.

    // III. Read in Leaf and Internal Node specific data.

    // Check height to determine whether this is a leaf node or not.
    if (node->height > 0) {
        r = deserialize_and_upgrade_internal_node(node, &rb, bfe, info);
    } else {
        r = deserialize_and_upgrade_leaf_node(node, &rb, bfe, info);
    }

    XMALLOC_N(node->n_children, *ndd);
    // Initialize the partition locations to zero, because version 14
    // and below have no notion of partitions on disk.
    for (int i=0; i<node->n_children; i++) {
        BP_START(*ndd,i) = 0;
        BP_SIZE (*ndd,i) = 0;
    }

    toku_free(rb.buf);
exit:
    return r;
}

static int
deserialize_ftnode_from_rbuf(
    FTNODE *ftnode,
    FTNODE_DISK_DATA* ndd,
    BLOCKNUM blocknum,
    uint32_t fullhash,
    struct ftnode_fetch_extra* bfe,
    STAT64INFO info,
    struct rbuf *rb,
    int fd
    )
// Effect: deserializes a ftnode that is in rb (with pointer of rb just past the magic) into a FTNODE.
{
    int r = 0;
    struct sub_block sb_node_info;

    tokutime_t t0, t1;
    tokutime_t decompress_time = 0;
    tokutime_t deserialize_time = 0;

    t0 = toku_time_now();

    FTNODE node = alloc_ftnode_for_deserialize(fullhash, blocknum);

    // now start reading from rbuf
    // first thing we do is read the header information
    bytevec magic;
    rbuf_literal_bytes(rb, &magic, 8);
    if (memcmp(magic, "tokuleaf", 8)!=0 &&
        memcmp(magic, "tokunode", 8)!=0) {
        r = toku_db_badformat();
        goto cleanup;
    }

    node->layout_version_read_from_disk = rbuf_int(rb);
    lazy_assert(node->layout_version_read_from_disk >= FT_LAYOUT_MIN_SUPPORTED_VERSION);

    // Check if we are reading in an older node version.
    if (node->layout_version_read_from_disk <= FT_LAYOUT_VERSION_14) {
        int version = node->layout_version_read_from_disk;
        // Perform the upgrade.
        r = deserialize_and_upgrade_ftnode(node, ndd, blocknum, bfe, info, fd);
        if (r != 0) {
            goto cleanup;
        }

        if (version <= FT_LAYOUT_VERSION_13) {
            // deprecate 'TOKU_DB_VALCMP_BUILTIN'. just remove the flag
            node->flags &= ~TOKU_DB_VALCMP_BUILTIN_13;
        }

        // If everything is ok, just re-assign the ftnode and retrn.
        *ftnode = node;
        r = 0;
        goto cleanup;
    }

    // Upgrade versions after 14 to current.  This upgrade is trivial, it
    // removes the optimized for upgrade field, which has already been
    // removed in the deserialization code (see
    // deserialize_ftnode_info()).
    node->layout_version = FT_LAYOUT_VERSION;
    node->layout_version_original = rbuf_int(rb);
    node->build_id = rbuf_int(rb);
    node->n_children = rbuf_int(rb);
    XMALLOC_N(node->n_children, node->bp);
    XMALLOC_N(node->n_children, *ndd);
    // read the partition locations
    for (int i=0; i<node->n_children; i++) {
        BP_START(*ndd,i) = rbuf_int(rb);
        BP_SIZE (*ndd,i) = rbuf_int(rb);
    }
    // verify checksum of header stored
    uint32_t checksum;
    checksum = toku_x1764_memory(rb->buf, rb->ndone);
    uint32_t stored_checksum;
    stored_checksum = rbuf_int(rb);
    if (stored_checksum != checksum) {
        dump_bad_block(rb->buf, rb->size);
        invariant(stored_checksum == checksum);
    }

    // now we read and decompress the pivot and child information
    sub_block_init(&sb_node_info);
    {
        tokutime_t sb_decompress_t0 = toku_time_now();
        r = read_and_decompress_sub_block(rb, &sb_node_info);
        tokutime_t sb_decompress_t1 = toku_time_now();
        decompress_time += sb_decompress_t1 - sb_decompress_t0;
    }
    if (r != 0) {
        goto cleanup;
    }

    // at this point, sb->uncompressed_ptr stores the serialized node info
    r = deserialize_ftnode_info(&sb_node_info, node);
    if (r != 0) {
        goto cleanup;
    }
    toku_free(sb_node_info.uncompressed_ptr);

    // now that the node info has been deserialized, we can proceed to deserialize
    // the individual sub blocks
    paranoid_invariant(is_valid_ftnode_fetch_type(bfe->type));

    // setup the memory of the partitions
    // for partitions being decompressed, create either FIFO or basement node
    // for partitions staying compressed, create sub_block
    setup_ftnode_partitions(node, bfe, true);

    // This loop is parallelizeable, since we don't have a dependency on the work done so far.
    for (int i = 0; i < node->n_children; i++) {
        uint32_t curr_offset = BP_START(*ndd,i);
        uint32_t curr_size   = BP_SIZE(*ndd,i);
        // the compressed, serialized partitions start at where rb is currently pointing,
        // which would be rb->buf + rb->ndone
        // we need to intialize curr_rbuf to point to this place
        struct rbuf curr_rbuf  = {.buf = NULL, .size = 0, .ndone = 0};
        rbuf_init(&curr_rbuf, rb->buf + curr_offset, curr_size);

        //
        // now we are at the point where we have:
        //  - read the entire compressed node off of disk,
        //  - decompressed the pivot and offset information,
        //  - have arrived at the individual partitions.
        //
        // Based on the information in bfe, we want to decompress a subset of
        // of the compressed partitions (also possibly none or possibly all)
        // The partitions that we want to decompress and make available
        // to the node, we do, the rest we simply copy in compressed
        // form into the node, and set the state of the partition to PT_COMPRESSED
        //

        struct sub_block curr_sb;
        sub_block_init(&curr_sb);

        // curr_rbuf is passed by value to decompress_and_deserialize_worker, so there's no ugly race condition.
        // This would be more obvious if curr_rbuf were an array.

        // deserialize_ftnode_info figures out what the state
        // should be and sets up the memory so that we are ready to use it

        switch (BP_STATE(node,i)) {
        case PT_AVAIL: {
                //  case where we read and decompress the partition
                tokutime_t partition_decompress_time;
                r = decompress_and_deserialize_worker(curr_rbuf, curr_sb, node, i,
                        &bfe->h->cmp_descriptor, bfe->h->compare_fun, &partition_decompress_time);
                decompress_time += partition_decompress_time;
                if (r != 0) {
                    goto cleanup;
                }
                break;
            }
        case PT_COMPRESSED:
            // case where we leave the partition in the compressed state
            r = check_and_copy_compressed_sub_block_worker(curr_rbuf, curr_sb, node, i);
            if (r != 0) {
                goto cleanup;
            }
            break;
        case PT_INVALID: // this is really bad
        case PT_ON_DISK: // it's supposed to be in memory.
            abort();
        }
    }
    *ftnode = node;
    r = 0;

cleanup:
    if (r == 0) {
        t1 = toku_time_now();
        deserialize_time = (t1 - t0) - decompress_time;
        bfe->deserialize_time += deserialize_time;
        bfe->decompress_time += decompress_time; 
        toku_ft_status_update_deserialize_times(node, deserialize_time, decompress_time);
    }
    if (r != 0) {
        // NOTE: Right now, callers higher in the stack will assert on
        // failure, so this is OK for production.  However, if we
        // create tools that use this function to search for errors in
        // the FT, then we will leak memory.
        if (node) {
            toku_free(node);
        }
    }
    return r;
}

int
toku_deserialize_bp_from_disk(FTNODE node, FTNODE_DISK_DATA ndd, int childnum, int fd, struct ftnode_fetch_extra* bfe) {
    int r = 0;
    assert(BP_STATE(node,childnum) == PT_ON_DISK);
    assert(node->bp[childnum].ptr.tag == BCT_NULL);
    
    //
    // setup the partition
    //
    setup_available_ftnode_partition(node, childnum);
    BP_STATE(node,childnum) = PT_AVAIL;
    
    //
    // read off disk and make available in memory
    // 
    // get the file offset and block size for the block
    DISKOFF node_offset, total_node_disk_size;
    toku_translate_blocknum_to_offset_size(
        bfe->h->blocktable, 
        node->thisnodename, 
        &node_offset, 
        &total_node_disk_size
        );

    uint32_t curr_offset = BP_START(ndd, childnum);
    uint32_t curr_size   = BP_SIZE (ndd, childnum);
    struct rbuf rb = {.buf = NULL, .size = 0, .ndone = 0};

    uint32_t pad_at_beginning = (node_offset+curr_offset)%512;
    uint32_t padded_size = roundup_to_multiple(512, pad_at_beginning + curr_size);

    toku::scoped_malloc_aligned raw_block_buf(padded_size, 512);
    uint8_t *raw_block = reinterpret_cast<uint8_t *>(raw_block_buf.get());
    rbuf_init(&rb, pad_at_beginning+raw_block, curr_size);
    tokutime_t t0 = toku_time_now();

    // read the block
    assert(0==((unsigned long long)raw_block)%512); // for O_DIRECT
    assert(0==(padded_size)%512);
    assert(0==(node_offset+curr_offset-pad_at_beginning)%512);
    ssize_t rlen = toku_os_pread(fd, raw_block, padded_size, node_offset+curr_offset-pad_at_beginning);
    assert((DISKOFF)rlen >= pad_at_beginning + curr_size); // we read in at least enough to get what we wanted
    assert((DISKOFF)rlen <= padded_size);                  // we didn't read in too much.

    tokutime_t t1 = toku_time_now();

    // read sub block
    struct sub_block curr_sb;
    sub_block_init(&curr_sb);
    r = read_compressed_sub_block(&rb, &curr_sb);
    if (r != 0) {
        return r;
    }
    invariant(curr_sb.compressed_ptr != NULL);

    // decompress
    toku::scoped_malloc uncompressed_buf(curr_sb.uncompressed_size);
    curr_sb.uncompressed_ptr = uncompressed_buf.get();
    toku_decompress((Bytef *) curr_sb.uncompressed_ptr, curr_sb.uncompressed_size,
                    (Bytef *) curr_sb.compressed_ptr, curr_sb.compressed_size);

    // deserialize
    tokutime_t t2 = toku_time_now();

    r = deserialize_ftnode_partition(&curr_sb, node, childnum, &bfe->h->cmp_descriptor, bfe->h->compare_fun);

    tokutime_t t3 = toku_time_now();

    // capture stats
    tokutime_t io_time = t1 - t0;
    tokutime_t decompress_time = t2 - t1;
    tokutime_t deserialize_time = t3 - t2;
    bfe->deserialize_time += deserialize_time;
    bfe->decompress_time += decompress_time;
    toku_ft_status_update_deserialize_times(node, deserialize_time, decompress_time);

    bfe->bytes_read = rlen;
    bfe->io_time = io_time;

    return r;
}

// Take a ftnode partition that is in the compressed state, and make it avail
int
toku_deserialize_bp_from_compressed(FTNODE node, int childnum, struct ftnode_fetch_extra *bfe) {
    int r = 0;
    assert(BP_STATE(node, childnum) == PT_COMPRESSED);
    SUB_BLOCK curr_sb = BSB(node, childnum);

    toku::scoped_malloc uncompressed_buf(curr_sb->uncompressed_size);
    assert(curr_sb->uncompressed_ptr == NULL);
    curr_sb->uncompressed_ptr = uncompressed_buf.get();

    setup_available_ftnode_partition(node, childnum);
    BP_STATE(node,childnum) = PT_AVAIL;

    // decompress the sub_block
    tokutime_t t0 = toku_time_now();

    toku_decompress(
        (Bytef *) curr_sb->uncompressed_ptr,
        curr_sb->uncompressed_size,
        (Bytef *) curr_sb->compressed_ptr,
        curr_sb->compressed_size
        );

    tokutime_t t1 = toku_time_now();

    r = deserialize_ftnode_partition(curr_sb, node, childnum, &bfe->h->cmp_descriptor, bfe->h->compare_fun);

    tokutime_t t2 = toku_time_now();

    tokutime_t decompress_time = t1 - t0;
    tokutime_t deserialize_time = t2 - t1;
    bfe->deserialize_time += deserialize_time;
    bfe->decompress_time += decompress_time;
    toku_ft_status_update_deserialize_times(node, deserialize_time, decompress_time);

    toku_free(curr_sb->compressed_ptr);
    toku_free(curr_sb);
    return r;
}

static int
deserialize_ftnode_from_fd(int fd,
                            BLOCKNUM blocknum,
                            uint32_t fullhash,
                            FTNODE *ftnode,
                            FTNODE_DISK_DATA *ndd,
                            struct ftnode_fetch_extra *bfe,
                            STAT64INFO info)
{
    struct rbuf rb = RBUF_INITIALIZER;

    tokutime_t t0 = toku_time_now();
    read_block_from_fd_into_rbuf(fd, blocknum, bfe->h, &rb); 
    tokutime_t t1 = toku_time_now();

    // Decompress and deserialize the ftnode. Time statistics
    // are taken inside this function.
    int r = deserialize_ftnode_from_rbuf(ftnode, ndd, blocknum, fullhash, bfe, info, &rb, fd);
    if (r != 0) {
        dump_bad_block(rb.buf,rb.size);
    }

    bfe->bytes_read = rb.size;
    bfe->io_time = t1 - t0;
    toku_free(rb.buf);
    return r;
}

// Read ftnode from file into struct.  Perform version upgrade if necessary.
int
toku_deserialize_ftnode_from (int fd,
                               BLOCKNUM blocknum,
                               uint32_t fullhash,
                               FTNODE *ftnode,
                               FTNODE_DISK_DATA* ndd,
                               struct ftnode_fetch_extra* bfe
    )
// Effect: Read a node in.  If possible, read just the header.
{
    int r = 0;
    struct rbuf rb = RBUF_INITIALIZER;

    // each function below takes the appropriate io/decompression/deserialize statistics

    if (!bfe->read_all_partitions) {
        read_ftnode_header_from_fd_into_rbuf_if_small_enough(fd, blocknum, bfe->h, &rb, bfe);
        r = deserialize_ftnode_header_from_rbuf_if_small_enough(ftnode, ndd, blocknum, fullhash, bfe, &rb, fd);
    } else {
        // force us to do it the old way
        r = -1;
    }
    if (r != 0) {
        // Something went wrong, go back to doing it the old way.
        r = deserialize_ftnode_from_fd(fd, blocknum, fullhash, ftnode, ndd, bfe, NULL);
    }

    toku_free(rb.buf);
    return r;
}

void
toku_verify_or_set_counts(FTNODE UU(node)) {
}

int 
toku_db_badformat(void) {
    return DB_BADFORMAT;
}

static size_t
serialize_rollback_log_size(ROLLBACK_LOG_NODE log) {
    size_t size = node_header_overhead //8 "tokuroll", 4 version, 4 version_original, 4 build_id
                 +16 //TXNID_PAIR
                 +8 //sequence
                 +8 //blocknum
                 +8 //previous (blocknum)
                 +8 //resident_bytecount
                 +8 //memarena size
                 +log->rollentry_resident_bytecount;
    return size;
}

static void
serialize_rollback_log_node_to_buf(ROLLBACK_LOG_NODE log, char *buf, size_t calculated_size, int UU(n_sub_blocks), struct sub_block UU(sub_block[])) {
    struct wbuf wb;
    wbuf_init(&wb, buf, calculated_size);
    {   //Serialize rollback log to local wbuf
        wbuf_nocrc_literal_bytes(&wb, "tokuroll", 8);
        lazy_assert(log->layout_version == FT_LAYOUT_VERSION);
        wbuf_nocrc_int(&wb, log->layout_version);
        wbuf_nocrc_int(&wb, log->layout_version_original);
        wbuf_nocrc_uint(&wb, BUILD_ID);
        wbuf_nocrc_TXNID_PAIR(&wb, log->txnid);
        wbuf_nocrc_ulonglong(&wb, log->sequence);
        wbuf_nocrc_BLOCKNUM(&wb, log->blocknum);
        wbuf_nocrc_BLOCKNUM(&wb, log->previous);
        wbuf_nocrc_ulonglong(&wb, log->rollentry_resident_bytecount);
        //Write down memarena size needed to restore
        wbuf_nocrc_ulonglong(&wb, toku_memarena_total_size_in_use(log->rollentry_arena));

        {
            //Store rollback logs
            struct roll_entry *item;
            size_t done_before = wb.ndone;
            for (item = log->newest_logentry; item; item = item->prev) {
                toku_logger_rollback_wbuf_nocrc_write(&wb, item);
            }
            lazy_assert(done_before + log->rollentry_resident_bytecount == wb.ndone);
        }
    }
    lazy_assert(wb.ndone == wb.size);
    lazy_assert(calculated_size==wb.ndone);
}

static void
serialize_uncompressed_block_to_memory(char * uncompressed_buf,
                                       int n_sub_blocks,
                                       struct sub_block sub_block[/*n_sub_blocks*/],
                                       enum toku_compression_method method,
                               /*out*/ size_t *n_bytes_to_write,
                               /*out*/ char  **bytes_to_write)
// Guarantees that the malloc'd BYTES_TO_WRITE is 512-byte aligned (so that O_DIRECT will work)
{
    // allocate space for the compressed uncompressed_buf
    size_t compressed_len = get_sum_compressed_size_bound(n_sub_blocks, sub_block, method);
    size_t sub_block_header_len = sub_block_header_size(n_sub_blocks);
    size_t header_len = node_header_overhead + sub_block_header_len + sizeof (uint32_t); // node + sub_block + checksum
    char *XMALLOC_N_ALIGNED(512, roundup_to_multiple(512, header_len + compressed_len), compressed_buf);

    // copy the header
    memcpy(compressed_buf, uncompressed_buf, node_header_overhead);
    if (0) printf("First 4 bytes before compressing data are %02x%02x%02x%02x\n",
                  uncompressed_buf[node_header_overhead],   uncompressed_buf[node_header_overhead+1],
                  uncompressed_buf[node_header_overhead+2], uncompressed_buf[node_header_overhead+3]);

    // compress all of the sub blocks
    char *uncompressed_ptr = uncompressed_buf + node_header_overhead;
    char *compressed_ptr = compressed_buf + header_len;
    compressed_len = compress_all_sub_blocks(n_sub_blocks, sub_block, uncompressed_ptr, compressed_ptr, num_cores, ft_pool, method);

    //if (0) printf("Block %" PRId64 " Size before compressing %u, after compression %" PRIu64 "\n", blocknum.b, calculated_size-node_header_overhead, (uint64_t) compressed_len);

    // serialize the sub block header
    uint32_t *ptr = (uint32_t *)(compressed_buf + node_header_overhead);
    *ptr++ = toku_htod32(n_sub_blocks);
    for (int i=0; i<n_sub_blocks; i++) {
        ptr[0] = toku_htod32(sub_block[i].compressed_size);
        ptr[1] = toku_htod32(sub_block[i].uncompressed_size);
        ptr[2] = toku_htod32(sub_block[i].xsum);
        ptr += 3;
    }

    // compute the header checksum and serialize it
    uint32_t header_length = (char *)ptr - (char *)compressed_buf;
    uint32_t xsum = toku_x1764_memory(compressed_buf, header_length);
    *ptr = toku_htod32(xsum);

    uint32_t padded_len = roundup_to_multiple(512, header_len + compressed_len);
    // Zero out padding.
    for (uint32_t i = header_len+compressed_len; i < padded_len; i++) {
        compressed_buf[i] = 0;
    }
    *n_bytes_to_write = padded_len;
    *bytes_to_write   = compressed_buf;
}

void
toku_serialize_rollback_log_to_memory_uncompressed(ROLLBACK_LOG_NODE log, SERIALIZED_ROLLBACK_LOG_NODE serialized) {
    // get the size of the serialized node
    size_t calculated_size = serialize_rollback_log_size(log);

    serialized->len = calculated_size;
    serialized->n_sub_blocks = 0;
    // choose sub block parameters
    int sub_block_size = 0;
    size_t data_size = calculated_size - node_header_overhead;
    choose_sub_block_size(data_size, max_sub_blocks, &sub_block_size, &serialized->n_sub_blocks);
    lazy_assert(0 < serialized->n_sub_blocks && serialized->n_sub_blocks <= max_sub_blocks);
    lazy_assert(sub_block_size > 0);

    // set the initial sub block size for all of the sub blocks
    for (int i = 0; i < serialized->n_sub_blocks; i++) 
        sub_block_init(&serialized->sub_block[i]);
    set_all_sub_block_sizes(data_size, sub_block_size, serialized->n_sub_blocks, serialized->sub_block);

    // allocate space for the serialized node
    XMALLOC_N(calculated_size, serialized->data);
    // serialize the node into buf
    serialize_rollback_log_node_to_buf(log, serialized->data, calculated_size, serialized->n_sub_blocks, serialized->sub_block);
    serialized->blocknum = log->blocknum;
}

int
toku_serialize_rollback_log_to (int fd, ROLLBACK_LOG_NODE log, SERIALIZED_ROLLBACK_LOG_NODE serialized_log, bool is_serialized,
                                FT h, bool for_checkpoint) {
    size_t n_to_write;
    char *compressed_buf;
    struct serialized_rollback_log_node serialized_local;

    if (is_serialized) {
        invariant_null(log);
    } else {
        invariant_null(serialized_log);
        serialized_log = &serialized_local;
        toku_serialize_rollback_log_to_memory_uncompressed(log, serialized_log);
    }
    BLOCKNUM blocknum = serialized_log->blocknum;

    //Compress and malloc buffer to write
    serialize_uncompressed_block_to_memory(serialized_log->data,
            serialized_log->n_sub_blocks, serialized_log->sub_block,
            h->h->compression_method, &n_to_write, &compressed_buf);

    {
        lazy_assert(blocknum.b>=0);
        DISKOFF offset;
        toku_blocknum_realloc_on_disk(h->blocktable, blocknum, n_to_write, &offset,
                                      h, fd, for_checkpoint); //dirties h
        toku_os_full_pwrite(fd, compressed_buf, n_to_write, offset);
    }
    toku_free(compressed_buf);
    if (!is_serialized) {
        toku_static_serialized_rollback_log_destroy(&serialized_local);
        log->dirty = 0;  // See #1957.   Must set the node to be clean after serializing it so that it doesn't get written again on the next checkpoint or eviction.
    }
    return 0;
}

static int
deserialize_rollback_log_from_rbuf (BLOCKNUM blocknum, ROLLBACK_LOG_NODE *log_p, struct rbuf *rb) {
    ROLLBACK_LOG_NODE MALLOC(result);
    int r;
    if (result==NULL) {
	r=get_error_errno();
	if (0) { died0: toku_free(result); }
	return r;
    }

    //printf("Deserializing %lld datasize=%d\n", off, datasize);
    bytevec magic;
    rbuf_literal_bytes(rb, &magic, 8);
    lazy_assert(!memcmp(magic, "tokuroll", 8));

    result->layout_version    = rbuf_int(rb);
    lazy_assert(result->layout_version == FT_LAYOUT_VERSION);
    result->layout_version_original = rbuf_int(rb);
    result->layout_version_read_from_disk = result->layout_version;
    result->build_id = rbuf_int(rb);
    result->dirty = false;
    //TODO: Maybe add descriptor (or just descriptor version) here eventually?
    //TODO: This is hard.. everything is shared in a single dictionary.
    rbuf_TXNID_PAIR(rb, &result->txnid);
    result->sequence = rbuf_ulonglong(rb);
    result->blocknum = rbuf_blocknum(rb);
    if (result->blocknum.b != blocknum.b) {
        r = toku_db_badformat();
        goto died0;
    }
    result->previous       = rbuf_blocknum(rb);
    result->rollentry_resident_bytecount = rbuf_ulonglong(rb);

    size_t arena_initial_size = rbuf_ulonglong(rb);
    result->rollentry_arena = toku_memarena_create_presized(arena_initial_size);
    if (0) { died1: toku_memarena_destroy(&result->rollentry_arena); goto died0; }

    //Load rollback entries
    lazy_assert(rb->size > 4);
    //Start with empty list
    result->oldest_logentry = result->newest_logentry = NULL;
    while (rb->ndone < rb->size) {
        struct roll_entry *item;
        uint32_t rollback_fsize = rbuf_int(rb); //Already read 4.  Rest is 4 smaller
        bytevec item_vec;
        rbuf_literal_bytes(rb, &item_vec, rollback_fsize-4);
        unsigned char* item_buf = (unsigned char*)item_vec;
        r = toku_parse_rollback(item_buf, rollback_fsize-4, &item, result->rollentry_arena);
        if (r!=0) {
            r = toku_db_badformat();
            goto died1;
        }
        //Add to head of list
        if (result->oldest_logentry) {
            result->oldest_logentry->prev = item;
            result->oldest_logentry       = item;
            item->prev = NULL;
        }
        else {
            result->oldest_logentry = result->newest_logentry = item;
            item->prev = NULL;
        }
    }

    toku_free(rb->buf);
    rb->buf = NULL;
    *log_p = result;
    return 0;
}

static int
deserialize_rollback_log_from_rbuf_versioned (uint32_t version, BLOCKNUM blocknum,
                                              ROLLBACK_LOG_NODE *log,
                                              struct rbuf *rb) {
    int r = 0;
    ROLLBACK_LOG_NODE rollback_log_node = NULL;
    invariant(version==FT_LAYOUT_VERSION); //Rollback log nodes do not survive version changes.
    r = deserialize_rollback_log_from_rbuf(blocknum, &rollback_log_node, rb);
    if (r==0) {
        *log = rollback_log_node;
    }
    return r;
}

int
decompress_from_raw_block_into_rbuf(uint8_t *raw_block, size_t raw_block_size, struct rbuf *rb, BLOCKNUM blocknum) {
    int r = 0;
    // get the number of compressed sub blocks
    int n_sub_blocks;
    n_sub_blocks = toku_dtoh32(*(uint32_t*)(&raw_block[node_header_overhead]));

    // verify the number of sub blocks
    invariant(0 <= n_sub_blocks);
    invariant(n_sub_blocks <= max_sub_blocks);

    { // verify the header checksum
        uint32_t header_length = node_header_overhead + sub_block_header_size(n_sub_blocks);
        invariant(header_length <= raw_block_size);
        uint32_t xsum = toku_x1764_memory(raw_block, header_length);
        uint32_t stored_xsum = toku_dtoh32(*(uint32_t *)(raw_block + header_length));
        if (xsum != stored_xsum) {
            r = TOKUDB_BAD_CHECKSUM;
        }
    }

    // deserialize the sub block header
    struct sub_block sub_block[n_sub_blocks];
    uint32_t *sub_block_header = (uint32_t *) &raw_block[node_header_overhead+4];
    for (int i = 0; i < n_sub_blocks; i++) {
        sub_block_init(&sub_block[i]);
        sub_block[i].compressed_size = toku_dtoh32(sub_block_header[0]);
        sub_block[i].uncompressed_size = toku_dtoh32(sub_block_header[1]);
        sub_block[i].xsum = toku_dtoh32(sub_block_header[2]);
        sub_block_header += 3;
    }

    // This predicate needs to be here and instead of where it is set
    // for the compiler.
    if (r == TOKUDB_BAD_CHECKSUM) {
        goto exit;
    }

    // verify sub block sizes
    for (int i = 0; i < n_sub_blocks; i++) {
        uint32_t compressed_size = sub_block[i].compressed_size;
        if (compressed_size<=0   || compressed_size>(1<<30)) { 
            r = toku_db_badformat(); 
            goto exit;
        }

        uint32_t uncompressed_size = sub_block[i].uncompressed_size;
        if (0) printf("Block %" PRId64 " Compressed size = %u, uncompressed size=%u\n", blocknum.b, compressed_size, uncompressed_size);
        if (uncompressed_size<=0 || uncompressed_size>(1<<30)) { 
            r = toku_db_badformat();
            goto exit;
        }
    }

    // sum up the uncompressed size of the sub blocks
    size_t uncompressed_size;
    uncompressed_size = get_sum_uncompressed_size(n_sub_blocks, sub_block);

    // allocate the uncompressed buffer
    size_t size;
    size = node_header_overhead + uncompressed_size;
    unsigned char *buf;
    XMALLOC_N(size, buf);
    rbuf_init(rb, buf, size);

    // copy the uncompressed node header to the uncompressed buffer
    memcpy(rb->buf, raw_block, node_header_overhead);

    // point at the start of the compressed data (past the node header, the sub block header, and the header checksum)
    unsigned char *compressed_data;
    compressed_data = raw_block + node_header_overhead + sub_block_header_size(n_sub_blocks) + sizeof (uint32_t);

    // point at the start of the uncompressed data
    unsigned char *uncompressed_data;
    uncompressed_data = rb->buf + node_header_overhead;    

    // decompress all the compressed sub blocks into the uncompressed buffer
    r = decompress_all_sub_blocks(n_sub_blocks, sub_block, compressed_data, uncompressed_data, num_cores, ft_pool);
    if (r != 0) {
        fprintf(stderr, "%s:%d block %" PRId64 " failed %d at %p size %lu\n", __FUNCTION__, __LINE__, blocknum.b, r, raw_block, raw_block_size);
        dump_bad_block(raw_block, raw_block_size);
        goto exit;
    }

    rb->ndone=0;
exit:
    return r;
}

static int
decompress_from_raw_block_into_rbuf_versioned(uint32_t version, uint8_t *raw_block, size_t raw_block_size, struct rbuf *rb, BLOCKNUM blocknum) {
    // This function exists solely to accomodate future changes in compression.
    int r = 0;
    switch (version) {
        case FT_LAYOUT_VERSION_13:
        case FT_LAYOUT_VERSION_14:
        case FT_LAYOUT_VERSION:
            r = decompress_from_raw_block_into_rbuf(raw_block, raw_block_size, rb, blocknum);
            break;
        default:
            abort();
    }
    return r;
}

static int
read_and_decompress_block_from_fd_into_rbuf(int fd, BLOCKNUM blocknum,
                                            DISKOFF offset, DISKOFF size,
                                            FT h,
                                            struct rbuf *rb,
                                  /* out */ int *layout_version_p) {
    int r = 0;
    if (0) printf("Deserializing Block %" PRId64 "\n", blocknum.b);

    DISKOFF size_aligned = roundup_to_multiple(512, size);
    uint8_t *XMALLOC_N_ALIGNED(512, size_aligned, raw_block);
    {
        // read the (partially compressed) block
        ssize_t rlen = toku_os_pread(fd, raw_block, size_aligned, offset);
        lazy_assert((DISKOFF)rlen >= size);
        lazy_assert((DISKOFF)rlen <= size_aligned);
    }
    // get the layout_version
    int layout_version;
    {
        uint8_t *magic = raw_block + uncompressed_magic_offset;
        if (memcmp(magic, "tokuleaf", 8)!=0 &&
            memcmp(magic, "tokunode", 8)!=0 &&
            memcmp(magic, "tokuroll", 8)!=0) {
            r = toku_db_badformat();
            goto cleanup;
        }
        uint8_t *version = raw_block + uncompressed_version_offset;
        layout_version = toku_dtoh32(*(uint32_t*)version);
        if (layout_version < FT_LAYOUT_MIN_SUPPORTED_VERSION || layout_version > FT_LAYOUT_VERSION) {
            r = toku_db_badformat();
            goto cleanup;
        }
    }

    r = decompress_from_raw_block_into_rbuf_versioned(layout_version, raw_block, size, rb, blocknum);
    if (r != 0) {
        // We either failed the checksome, or there is a bad format in
        // the buffer.
        if (r == TOKUDB_BAD_CHECKSUM) {
            fprintf(stderr,
                    "Checksum failure while reading raw block in file %s.\n",
                    toku_cachefile_fname_in_env(h->cf));
            abort();
        } else {
            r = toku_db_badformat();
            goto cleanup;
        }
    }

    *layout_version_p = layout_version;
cleanup:
    if (r!=0) {
        if (rb->buf) toku_free(rb->buf);
        rb->buf = NULL;
    }
    if (raw_block) {
        toku_free(raw_block);
    }
    return r;
}

// Read rollback log node from file into struct.  Perform version upgrade if necessary.
int
toku_deserialize_rollback_log_from (int fd, BLOCKNUM blocknum, ROLLBACK_LOG_NODE *logp, FT h) {
    int layout_version = 0;
    int r;
    struct rbuf rb = {.buf = NULL, .size = 0, .ndone = 0};

    // get the file offset and block size for the block
    DISKOFF offset, size;
    toku_translate_blocknum_to_offset_size(h->blocktable, blocknum, &offset, &size);
    // if the size is 0, then the blocknum is unused
    if (size == 0) {
        // blocknum is unused, just create an empty one and get out
        ROLLBACK_LOG_NODE XMALLOC(log);
        rollback_empty_log_init(log);
        log->blocknum.b = blocknum.b;
        r = 0;
        *logp = log;
        goto cleanup;
    }

    r = read_and_decompress_block_from_fd_into_rbuf(fd, blocknum, offset, size, h, &rb, &layout_version);
    if (r!=0) goto cleanup;

    {
        uint8_t *magic = rb.buf + uncompressed_magic_offset;
        if (memcmp(magic, "tokuroll", 8)!=0) {
            r = toku_db_badformat();
            goto cleanup;
        }
    }

    r = deserialize_rollback_log_from_rbuf_versioned(layout_version, blocknum, logp, &rb);

cleanup:
    if (rb.buf) toku_free(rb.buf);
    return r;
}

int
toku_upgrade_subtree_estimates_to_stat64info(int fd, FT h)
{
    int r = 0;
    // 15 was the last version with subtree estimates
    invariant(h->layout_version_read_from_disk <= FT_LAYOUT_VERSION_15);

    FTNODE unused_node = NULL;
    FTNODE_DISK_DATA unused_ndd = NULL;
    struct ftnode_fetch_extra bfe;
    fill_bfe_for_min_read(&bfe, h);
    r = deserialize_ftnode_from_fd(fd, h->h->root_blocknum, 0, &unused_node, &unused_ndd,
                                   &bfe, &h->h->on_disk_stats);
    h->in_memory_stats = h->h->on_disk_stats;

    if (unused_node) {
        toku_ftnode_free(&unused_node);
    }
    if (unused_ndd) {
        toku_free(unused_ndd);
    }
    return r;
}

int
toku_upgrade_msn_from_root_to_header(int fd, FT h)
{
    int r;
    // 21 was the first version with max_msn_in_ft in the header
    invariant(h->layout_version_read_from_disk <= FT_LAYOUT_VERSION_20);

    FTNODE node;
    FTNODE_DISK_DATA ndd;
    struct ftnode_fetch_extra bfe;
    fill_bfe_for_min_read(&bfe, h);
    r = deserialize_ftnode_from_fd(fd, h->h->root_blocknum, 0, &node, &ndd, &bfe, nullptr);
    if (r != 0) {
        goto exit;
    }

    h->h->max_msn_in_ft = node->max_msn_applied_to_node_on_disk;
    toku_ftnode_free(&node);
    toku_free(ndd);
 exit:
    return r;
}

#undef UPGRADE_STATUS_VALUE