summaryrefslogtreecommitdiff
path: root/storage/tokudb/ft-index/ft/serialize/sub_block.cc
blob: 0172d58a4ca4468500c5d31b858395987ad2b135 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*
COPYING CONDITIONS NOTICE:

  This program is free software; you can redistribute it and/or modify
  it under the terms of version 2 of the GNU General Public License as
  published by the Free Software Foundation, and provided that the
  following conditions are met:

      * Redistributions of source code must retain this COPYING
        CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
        DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
        PATENT MARKING NOTICE (below), and the PATENT RIGHTS
        GRANT (below).

      * Redistributions in binary form must reproduce this COPYING
        CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
        DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
        PATENT MARKING NOTICE (below), and the PATENT RIGHTS
        GRANT (below) in the documentation and/or other materials
        provided with the distribution.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  02110-1301, USA.

COPYRIGHT NOTICE:

  TokuFT, Tokutek Fractal Tree Indexing Library.
  Copyright (C) 2007-2013 Tokutek, Inc.

DISCLAIMER:

  This program is distributed in the hope that it will be useful, but
  WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  General Public License for more details.

UNIVERSITY PATENT NOTICE:

  The technology is licensed by the Massachusetts Institute of
  Technology, Rutgers State University of New Jersey, and the Research
  Foundation of State University of New York at Stony Brook under
  United States of America Serial No. 11/760379 and to the patents
  and/or patent applications resulting from it.

PATENT MARKING NOTICE:

  This software is covered by US Patent No. 8,185,551.
  This software is covered by US Patent No. 8,489,638.

PATENT RIGHTS GRANT:

  "THIS IMPLEMENTATION" means the copyrightable works distributed by
  Tokutek as part of the Fractal Tree project.

  "PATENT CLAIMS" means the claims of patents that are owned or
  licensable by Tokutek, both currently or in the future; and that in
  the absence of this license would be infringed by THIS
  IMPLEMENTATION or by using or running THIS IMPLEMENTATION.

  "PATENT CHALLENGE" shall mean a challenge to the validity,
  patentability, enforceability and/or non-infringement of any of the
  PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.

  Tokutek hereby grants to you, for the term and geographical scope of
  the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
  irrevocable (except as stated in this section) patent license to
  make, have made, use, offer to sell, sell, import, transfer, and
  otherwise run, modify, and propagate the contents of THIS
  IMPLEMENTATION, where such license applies only to the PATENT
  CLAIMS.  This grant does not include claims that would be infringed
  only as a consequence of further modifications of THIS
  IMPLEMENTATION.  If you or your agent or licensee institute or order
  or agree to the institution of patent litigation against any entity
  (including a cross-claim or counterclaim in a lawsuit) alleging that
  THIS IMPLEMENTATION constitutes direct or contributory patent
  infringement, or inducement of patent infringement, then any rights
  granted to you under this License shall terminate as of the date
  such litigation is filed.  If you or your agent or exclusive
  licensee institute or order or agree to the institution of a PATENT
  CHALLENGE, then Tokutek may terminate any rights granted to you
  under this License.
*/

#ident "Copyright (c) 2007-2013 Tokutek Inc.  All rights reserved."
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."

#include <config.h>

#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <zlib.h>

#include "portability/memory.h"
#include "portability/toku_assert.h"
#include "portability/toku_portability.h"

#include "ft/serialize/compress.h"
#include "ft/serialize/sub_block.h"
#include "ft/serialize/quicklz.h"
#include "util/threadpool.h"
#include "util/x1764.h"

SUB_BLOCK sub_block_creat(void) {
    SUB_BLOCK XMALLOC(sb);
    sub_block_init(sb);
    return sb;
}
void sub_block_init(SUB_BLOCK sub_block) {
    sub_block->uncompressed_ptr = 0;
    sub_block->uncompressed_size = 0;

    sub_block->compressed_ptr = 0;
    sub_block->compressed_size_bound = 0;
    sub_block->compressed_size = 0;

    sub_block->xsum = 0;
}
    
// get the size of the compression header
size_t 
sub_block_header_size(int n_sub_blocks) {
    return sizeof (uint32_t) + n_sub_blocks * sizeof (struct stored_sub_block);
}

void
set_compressed_size_bound(struct sub_block *se, enum toku_compression_method method) {
    se->compressed_size_bound = toku_compress_bound(method, se->uncompressed_size);
}

// get the sum of the sub block compressed sizes 
size_t 
get_sum_compressed_size_bound(int n_sub_blocks, struct sub_block sub_block[], enum toku_compression_method method) {
    size_t compressed_size_bound = 0;
    for (int i = 0; i < n_sub_blocks; i++) {
        sub_block[i].compressed_size_bound = toku_compress_bound(method, sub_block[i].uncompressed_size);
        compressed_size_bound += sub_block[i].compressed_size_bound;
    }
    return compressed_size_bound;
}

// get the sum of the sub block uncompressed sizes 
size_t 
get_sum_uncompressed_size(int n_sub_blocks, struct sub_block sub_block[]) {
    size_t uncompressed_size = 0;
    for (int i = 0; i < n_sub_blocks; i++) 
        uncompressed_size += sub_block[i].uncompressed_size;
    return uncompressed_size;
}

// round up n
static inline int 
alignup32(int a, int b) {
    return ((a+b-1) / b) * b;
}

// Choose n_sub_blocks and sub_block_size such that the product is >= total_size and the sub_block_size is at
// least >= the target_sub_block_size.
int
choose_sub_block_size(int total_size, int n_sub_blocks_limit, int *sub_block_size_ret, int *n_sub_blocks_ret) {
    if (total_size < 0 || n_sub_blocks_limit < 1)
        return EINVAL;

    const int alignment = 32;

    int n_sub_blocks, sub_block_size;
    n_sub_blocks = total_size / target_sub_block_size;
    if (n_sub_blocks <= 1) {
        if (total_size > 0 && n_sub_blocks_limit > 0)
            n_sub_blocks = 1;
        sub_block_size = total_size;
    } else {
        if (n_sub_blocks > n_sub_blocks_limit) // limit the number of sub-blocks
            n_sub_blocks = n_sub_blocks_limit;
	sub_block_size = alignup32(total_size / n_sub_blocks, alignment);
        while (sub_block_size * n_sub_blocks < total_size) // round up the sub-block size until big enough
            sub_block_size += alignment;
    }

    *sub_block_size_ret = sub_block_size;
    *n_sub_blocks_ret = n_sub_blocks;

    return 0;
}

// Choose the right size of basement nodes.  For now, just align up to
// 256k blocks and hope it compresses well enough.
int
choose_basement_node_size(int total_size, int *sub_block_size_ret, int *n_sub_blocks_ret) {
    if (total_size < 0)
        return EINVAL;

    *n_sub_blocks_ret = (total_size + max_basement_node_uncompressed_size - 1) / max_basement_node_uncompressed_size;
    *sub_block_size_ret = max_basement_node_uncompressed_size;

    return 0;
}

void
set_all_sub_block_sizes(int total_size, int sub_block_size, int n_sub_blocks, struct sub_block sub_block[]) {
    int size_left = total_size;
    int i;
    for (i = 0; i < n_sub_blocks-1; i++) {
        sub_block[i].uncompressed_size = sub_block_size;
        size_left -= sub_block_size;
    }
    if (i == 0 || size_left > 0) 
        sub_block[i].uncompressed_size = size_left;
}

// find the index of the first sub block that contains offset
// Returns the sub block index, else returns -1
int
get_sub_block_index(int n_sub_blocks, struct sub_block sub_block[], size_t offset) {
    size_t start_offset = 0;
    for (int i = 0; i < n_sub_blocks; i++) {
        size_t size = sub_block[i].uncompressed_size;
        if (offset < start_offset + size)
            return i;
        start_offset += size;
    }
    return -1;
}

#include "workset.h"

void
compress_work_init(struct compress_work *w, enum toku_compression_method method, struct sub_block *sub_block) {
    w->method = method;
    w->sub_block = sub_block;
}

//
// takes the uncompressed contents of sub_block
// and compresses them into sb_compressed_ptr
// cs_bound is the compressed size bound
// Returns the size of the compressed data
//
uint32_t
compress_nocrc_sub_block(
    struct sub_block *sub_block,
    void* sb_compressed_ptr,
    uint32_t cs_bound,
    enum toku_compression_method method
    )
{
    // compress it
    Bytef *uncompressed_ptr = (Bytef *) sub_block->uncompressed_ptr;
    Bytef *compressed_ptr = (Bytef *) sb_compressed_ptr;
    uLongf uncompressed_len = sub_block->uncompressed_size;
    uLongf real_compressed_len = cs_bound;
    toku_compress(method,
                  compressed_ptr, &real_compressed_len,
                  uncompressed_ptr, uncompressed_len);
    return real_compressed_len;
}

void
compress_sub_block(struct sub_block *sub_block, enum toku_compression_method method) {
    sub_block->compressed_size = compress_nocrc_sub_block(
        sub_block,
        sub_block->compressed_ptr,
        sub_block->compressed_size_bound,
        method
        );
    // checksum it
    sub_block->xsum = toku_x1764_memory(sub_block->compressed_ptr, sub_block->compressed_size);
}

void *
compress_worker(void *arg) {
    struct workset *ws = (struct workset *) arg;
    while (1) {
        struct compress_work *w = (struct compress_work *) workset_get(ws);
        if (w == NULL)
            break;
        compress_sub_block(w->sub_block, w->method);
    }
    workset_release_ref(ws);
    return arg;
}

size_t
compress_all_sub_blocks(int n_sub_blocks, struct sub_block sub_block[], char *uncompressed_ptr, char *compressed_ptr, int num_cores, struct toku_thread_pool *pool, enum toku_compression_method method) {
    char *compressed_base_ptr = compressed_ptr;
    size_t compressed_len;

    // This is a complex way to write a parallel loop.  Cilk would be better.

    if (n_sub_blocks == 1) {
        // single sub-block 
        sub_block[0].uncompressed_ptr = uncompressed_ptr;
        sub_block[0].compressed_ptr = compressed_ptr;
        compress_sub_block(&sub_block[0], method);
        compressed_len = sub_block[0].compressed_size;
    } else {
        // multiple sub-blocks
        int T = num_cores; // T = min(num_cores, n_sub_blocks) - 1
        if (T > n_sub_blocks)
            T = n_sub_blocks;
        if (T > 0)
            T = T - 1;     // threads in addition to the running thread

        struct workset ws;
        ZERO_STRUCT(ws);
        workset_init(&ws);

        struct compress_work work[n_sub_blocks];
        workset_lock(&ws);
        for (int i = 0; i < n_sub_blocks; i++) {
            sub_block[i].uncompressed_ptr = uncompressed_ptr;
            sub_block[i].compressed_ptr = compressed_ptr;
            compress_work_init(&work[i], method, &sub_block[i]);
            workset_put_locked(&ws, &work[i].base);
            uncompressed_ptr += sub_block[i].uncompressed_size;
            compressed_ptr += sub_block[i].compressed_size_bound;
        }
        workset_unlock(&ws);

        // compress the sub-blocks
        if (0) printf("%s:%d T=%d N=%d\n", __FUNCTION__, __LINE__, T, n_sub_blocks);
        toku_thread_pool_run(pool, 0, &T, compress_worker, &ws);
        workset_add_ref(&ws, T);
        compress_worker(&ws);

        // wait for all of the work to complete
        workset_join(&ws);
        workset_destroy(&ws);

        // squeeze out the holes not used by the compress bound
        compressed_ptr = compressed_base_ptr + sub_block[0].compressed_size;
        for (int i = 1; i < n_sub_blocks; i++) {
            memmove(compressed_ptr, sub_block[i].compressed_ptr, sub_block[i].compressed_size);
            compressed_ptr += sub_block[i].compressed_size;
        }

        compressed_len = compressed_ptr - compressed_base_ptr;
    }
    return compressed_len;
}

// initialize the decompression work
void 
decompress_work_init(struct decompress_work *dw,
                     void *compress_ptr, uint32_t compress_size,
                     void *uncompress_ptr, uint32_t uncompress_size,
                     uint32_t xsum) {
    dw->compress_ptr = compress_ptr; 
    dw->compress_size = compress_size;
    dw->uncompress_ptr = uncompress_ptr; 
    dw->uncompress_size = uncompress_size;
    dw->xsum = xsum;
    dw->error = 0;
}

int verbose_decompress_sub_block = 1;

// decompress one block
int
decompress_sub_block(void *compress_ptr, uint32_t compress_size, void *uncompress_ptr, uint32_t uncompress_size, uint32_t expected_xsum) {
    int result = 0;

    // verify checksum
    uint32_t xsum = toku_x1764_memory(compress_ptr, compress_size);
    if (xsum != expected_xsum) {
        if (verbose_decompress_sub_block) fprintf(stderr, "%s:%d xsum %u expected %u\n", __FUNCTION__, __LINE__, xsum, expected_xsum);
        result = EINVAL;
    } else {
        // decompress
	toku_decompress((Bytef *) uncompress_ptr, uncompress_size, (Bytef *) compress_ptr, compress_size);
    }
    return result;
}

// decompress blocks until there is no more work to do
void *
decompress_worker(void *arg) {
    struct workset *ws = (struct workset *) arg;
    while (1) {
        struct decompress_work *dw = (struct decompress_work *) workset_get(ws);
        if (dw == NULL)
            break;
        dw->error = decompress_sub_block(dw->compress_ptr, dw->compress_size, dw->uncompress_ptr, dw->uncompress_size, dw->xsum);
    }
    workset_release_ref(ws);
    return arg;
}

int
decompress_all_sub_blocks(int n_sub_blocks, struct sub_block sub_block[], unsigned char *compressed_data, unsigned char *uncompressed_data, int num_cores, struct toku_thread_pool *pool) {
    int r;

    if (n_sub_blocks == 1) {
        r = decompress_sub_block(compressed_data, sub_block[0].compressed_size, uncompressed_data, sub_block[0].uncompressed_size, sub_block[0].xsum);
    } else {
        // compute the number of additional threads needed for decompressing this node
        int T = num_cores; // T = min(#cores, #blocks) - 1
        if (T > n_sub_blocks)
            T = n_sub_blocks;
        if (T > 0)
            T = T - 1;       // threads in addition to the running thread

        // init the decompression work set
        struct workset ws;
        ZERO_STRUCT(ws);
        workset_init(&ws);

        // initialize the decompression work and add to the work set
        struct decompress_work decompress_work[n_sub_blocks];
        workset_lock(&ws);
        for (int i = 0; i < n_sub_blocks; i++) {
            decompress_work_init(&decompress_work[i], compressed_data, sub_block[i].compressed_size, uncompressed_data, sub_block[i].uncompressed_size, sub_block[i].xsum);
            workset_put_locked(&ws, &decompress_work[i].base);

            uncompressed_data += sub_block[i].uncompressed_size;
            compressed_data += sub_block[i].compressed_size;
        }
        workset_unlock(&ws);
    
        // decompress the sub-blocks
        if (0) printf("%s:%d Cores=%d Blocks=%d T=%d\n", __FUNCTION__, __LINE__, num_cores, n_sub_blocks, T);
        toku_thread_pool_run(pool, 0, &T, decompress_worker, &ws);
        workset_add_ref(&ws, T);
        decompress_worker(&ws);

        // cleanup
        workset_join(&ws);
        workset_destroy(&ws);

        r = 0;
        for (int i = 0; i < n_sub_blocks; i++) {
            r = decompress_work[i].error;
            if (r != 0)
                break;
        }
    }

    return r;
}