summaryrefslogtreecommitdiff
path: root/storage/tokudb/ft-index/ft/tests/test-leafentry-nested.cc
blob: c60989097d20d8cb23eb2763b221435f818acd4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*
COPYING CONDITIONS NOTICE:

  This program is free software; you can redistribute it and/or modify
  it under the terms of version 2 of the GNU General Public License as
  published by the Free Software Foundation, and provided that the
  following conditions are met:

      * Redistributions of source code must retain this COPYING
        CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
        DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
        PATENT MARKING NOTICE (below), and the PATENT RIGHTS
        GRANT (below).

      * Redistributions in binary form must reproduce this COPYING
        CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
        DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
        PATENT MARKING NOTICE (below), and the PATENT RIGHTS
        GRANT (below) in the documentation and/or other materials
        provided with the distribution.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  02110-1335  USA.

COPYRIGHT NOTICE:

  TokuFT, Tokutek Fractal Tree Indexing Library.
  Copyright (C) 2007-2013 Tokutek, Inc.

DISCLAIMER:

  This program is distributed in the hope that it will be useful, but
  WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  General Public License for more details.

UNIVERSITY PATENT NOTICE:

  The technology is licensed by the Massachusetts Institute of
  Technology, Rutgers State University of New Jersey, and the Research
  Foundation of State University of New York at Stony Brook under
  United States of America Serial No. 11/760379 and to the patents
  and/or patent applications resulting from it.

PATENT MARKING NOTICE:

  This software is covered by US Patent No. 8,185,551.
  This software is covered by US Patent No. 8,489,638.

PATENT RIGHTS GRANT:

  "THIS IMPLEMENTATION" means the copyrightable works distributed by
  Tokutek as part of the Fractal Tree project.

  "PATENT CLAIMS" means the claims of patents that are owned or
  licensable by Tokutek, both currently or in the future; and that in
  the absence of this license would be infringed by THIS
  IMPLEMENTATION or by using or running THIS IMPLEMENTATION.

  "PATENT CHALLENGE" shall mean a challenge to the validity,
  patentability, enforceability and/or non-infringement of any of the
  PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.

  Tokutek hereby grants to you, for the term and geographical scope of
  the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
  irrevocable (except as stated in this section) patent license to
  make, have made, use, offer to sell, sell, import, transfer, and
  otherwise run, modify, and propagate the contents of THIS
  IMPLEMENTATION, where such license applies only to the PATENT
  CLAIMS.  This grant does not include claims that would be infringed
  only as a consequence of further modifications of THIS
  IMPLEMENTATION.  If you or your agent or licensee institute or order
  or agree to the institution of patent litigation against any entity
  (including a cross-claim or counterclaim in a lawsuit) alleging that
  THIS IMPLEMENTATION constitutes direct or contributory patent
  infringement, or inducement of patent infringement, then any rights
  granted to you under this License shall terminate as of the date
  such litigation is filed.  If you or your agent or exclusive
  licensee institute or order or agree to the institution of a PATENT
  CHALLENGE, then Tokutek may terminate any rights granted to you
  under this License.
*/

#ident "Copyright (c) 2007-2013 Tokutek Inc.  All rights reserved."
#include <toku_portability.h>
#include <string.h>

#include "test.h"

#include "ft/ule.h"
#include "ft/ule-internal.h"

enum {MAX_SIZE = 256};
static XIDS nested_xids[MAX_TRANSACTION_RECORDS];

static void
verify_ule_equal(ULE a, ULE b) {
    assert(a->num_cuxrs > 0);
    assert(a->num_puxrs < MAX_TRANSACTION_RECORDS);
    assert(a->num_cuxrs == b->num_cuxrs);
    assert(a->num_puxrs == b->num_puxrs);
    uint32_t i;
    for (i = 0; i < (a->num_cuxrs + a->num_puxrs); i++) {
        assert(a->uxrs[i].type == b->uxrs[i].type);
        assert(a->uxrs[i].xid  == b->uxrs[i].xid);
        if (a->uxrs[i].type == XR_INSERT) {
            assert(a->uxrs[i].vallen  == b->uxrs[i].vallen);
            assert(memcmp(a->uxrs[i].valp, b->uxrs[i].valp, a->uxrs[i].vallen) == 0);
        }
    }
}

static void
verify_le_equal(LEAFENTRY a, LEAFENTRY b) {
    if (a==NULL) assert(b==NULL);
    else {
        assert(b!=NULL);

        size_t size = leafentry_memsize(a);
        assert(size==leafentry_memsize(b));

        assert(memcmp(a, b, size) == 0);

        ULE_S ule_a;
        ULE_S ule_b;

        le_unpack(&ule_a, a);
        le_unpack(&ule_b, b);
        verify_ule_equal(&ule_a, &ule_b);
        ule_cleanup(&ule_a);
        ule_cleanup(&ule_b);
    }
}

static void
fillrandom(uint8_t buf[MAX_SIZE], uint32_t length) {
    assert(length < MAX_SIZE);
    uint32_t i;
    for (i = 0; i < length; i++) {
        buf[i] = random() & 0xFF;
    } 
}

static void
test_le_offset_is(LEAFENTRY le, void *field, size_t expected_offset) {
    size_t le_address    = (size_t) le;
    size_t field_address = (size_t) field;
    assert(field_address >= le_address);
    size_t actual_offset = field_address - le_address;
    assert(actual_offset == expected_offset);
}

//Fixed offsets in a packed leafentry.
enum {
    LE_OFFSET_NUM      = 0,
    LE_OFFSET_VARIABLE = 1+LE_OFFSET_NUM
};

static void
test_le_fixed_offsets (void) {
    LEAFENTRY XMALLOC(le);
    test_le_offset_is(le, &le->type,                       LE_OFFSET_NUM);
    toku_free(le);
}

//Fixed offsets in a leafentry with no uncommitted transaction records.
//(Note, there is no type required.) 
enum {
    LE_COMMITTED_OFFSET_VALLEN = LE_OFFSET_VARIABLE,
    LE_COMMITTED_OFFSET_VAL    = 4 + LE_COMMITTED_OFFSET_VALLEN
};

static void
test_le_committed_offsets (void) {
    LEAFENTRY XMALLOC(le);
    test_le_offset_is(le, &le->u.clean.vallen, LE_COMMITTED_OFFSET_VALLEN);
    test_le_offset_is(le, &le->u.clean.val, LE_COMMITTED_OFFSET_VAL);
    toku_free(le);
}

//Fixed offsets in a leafentry with uncommitted transaction records.
enum {
    LE_MVCC_OFFSET_NUM_CUXRS   =  LE_OFFSET_VARIABLE, //Type of innermost record
    LE_MVCC_OFFSET_NUM_PUXRS    = 4+LE_MVCC_OFFSET_NUM_CUXRS, //XID of outermost noncommitted record
    LE_MVCC_OFFSET_XRS    = 1+LE_MVCC_OFFSET_NUM_PUXRS
};

static void
test_le_provisional_offsets (void) {
    LEAFENTRY XMALLOC(le);
    test_le_offset_is(le, &le->u.mvcc.num_cxrs,            LE_MVCC_OFFSET_NUM_CUXRS);
    test_le_offset_is(le, &le->u.mvcc.num_pxrs, LE_MVCC_OFFSET_NUM_PUXRS);
    test_le_offset_is(le, &le->u.mvcc.xrs,               LE_MVCC_OFFSET_XRS);
    toku_free(le);
}

//We use a packed struct to represent a leafentry.
//We want to make sure the compiler correctly represents the offsets.
//This test verifies all offsets in a packed leafentry correspond to the required memory format.
static void
test_le_offsets (void) {
    test_le_fixed_offsets();
    test_le_committed_offsets();
    test_le_provisional_offsets();
}

static void
test_ule_packs_to_nothing (ULE ule) {
    LEAFENTRY le;
    int r = le_pack(ule, NULL, 0, NULL, 0, 0, 0, &le, nullptr);
    assert(r==0);
    assert(le==NULL);
}

//A leafentry must contain at least one 'insert' (all deletes means the leafentry
//should not exist).
//Verify that 'le_pack' of any set of all deletes ends up not creating a leafentry.
static void
test_le_empty_packs_to_nothing (void) {
    ULE_S ule;
    ule.uxrs = ule.uxrs_static;

    //Set up defaults.
    int committed;
    for (committed = 1; committed < MAX_TRANSACTION_RECORDS; committed++) {
        int32_t num_xrs;

        for (num_xrs = committed; num_xrs < MAX_TRANSACTION_RECORDS; num_xrs++) {
            ule.num_cuxrs = committed;
            ule.num_puxrs = num_xrs - committed;
            if (num_xrs == 1) {
                ule.uxrs[num_xrs-1].xid    = TXNID_NONE;
            }
            else {
                ule.uxrs[num_xrs-1].xid    = ule.uxrs[num_xrs-2].xid + (random() % 32 + 1); //Abitrary number, xids must be strictly increasing
            }
            ule.uxrs[num_xrs-1].type = XR_DELETE;
            test_ule_packs_to_nothing(&ule);
            if (num_xrs > 2 && num_xrs > committed && num_xrs % 4) {
                //Set some of them to placeholders instead of deletes
                ule.uxrs[num_xrs-2].type = XR_PLACEHOLDER;
            }
            test_ule_packs_to_nothing(&ule);
        }
    }

}

static void
le_verify_accessors(LEAFENTRY le, ULE ule, size_t pre_calculated_memsize) {
    assert(le);
    assert(ule->num_cuxrs > 0);
    assert(ule->num_puxrs <= MAX_TRANSACTION_RECORDS);
    assert(ule->uxrs[ule->num_cuxrs + ule->num_puxrs-1].type != XR_PLACEHOLDER);
    //Extract expected values from ULE
    size_t memsize  = le_memsize_from_ule(ule);
    size_t num_uxrs = ule->num_cuxrs + ule->num_puxrs;

    void *latest_val        = ule->uxrs[num_uxrs -1].type == XR_DELETE ? NULL : ule->uxrs[num_uxrs -1].valp;
    uint32_t latest_vallen = ule->uxrs[num_uxrs -1].type == XR_DELETE ? 0    : ule->uxrs[num_uxrs -1].vallen;
    {
        int i;
        for (i = num_uxrs - 1; i >= 0; i--) {
            if (ule->uxrs[i].type == XR_INSERT) {
                goto found_insert;
            }
        }
        assert(false);
    }
found_insert:;
    TXNID outermost_uncommitted_xid = ule->num_puxrs == 0 ? TXNID_NONE : ule->uxrs[ule->num_cuxrs].xid;
    int   is_provdel = ule->uxrs[num_uxrs-1].type == XR_DELETE;

    assert(le!=NULL);
    //Verify all accessors
    assert(memsize  == pre_calculated_memsize);
    assert(memsize  == leafentry_memsize(le));
    {
        uint32_t test_vallen;
        void*     test_valp = le_latest_val_and_len(le, &test_vallen);
        if (latest_val != NULL) assert(test_valp != latest_val);
        assert(test_vallen == latest_vallen);
        assert(memcmp(test_valp, latest_val, test_vallen) == 0);
        assert(le_latest_val(le)    == test_valp);
        assert(le_latest_vallen(le) == test_vallen);
    }
    {
        assert(le_outermost_uncommitted_xid(le) == outermost_uncommitted_xid);
    }
    {
        assert((le_latest_is_del(le)==0) == (is_provdel==0));
    }
}



static void
test_le_pack_committed (void) {
    ULE_S ule;
    ule.uxrs = ule.uxrs_static;

    uint8_t val[MAX_SIZE];
    uint32_t valsize;
    for (valsize = 0; valsize < MAX_SIZE; valsize += (random() % MAX_SIZE) + 1) {
        fillrandom(val, valsize);

        ule.num_cuxrs       = 1;
        ule.num_puxrs       = 0;
        ule.uxrs[0].type   = XR_INSERT;
        ule.uxrs[0].xid    = 0;
        ule.uxrs[0].valp   = val;
        ule.uxrs[0].vallen = valsize;

        size_t memsize;
        LEAFENTRY le;
        int r = le_pack(&ule, nullptr, 0, nullptr, 0, 0, 0, &le, nullptr);
        assert(r==0);
        assert(le!=NULL);
        memsize = le_memsize_from_ule(&ule);
        le_verify_accessors(le, &ule, memsize);
        ULE_S tmp_ule;
        le_unpack(&tmp_ule, le);
        verify_ule_equal(&ule, &tmp_ule);
        LEAFENTRY tmp_le;
        size_t    tmp_memsize;
        r = le_pack(&tmp_ule, nullptr, 0, nullptr, 0, 0, 0, &tmp_le, nullptr);
        tmp_memsize = le_memsize_from_ule(&tmp_ule);
        assert(r==0);
        assert(tmp_memsize == memsize);
        assert(memcmp(le, tmp_le, memsize) == 0);
        le_verify_accessors(tmp_le, &tmp_ule, tmp_memsize);

        toku_free(tmp_le);
        toku_free(le);
        ule_cleanup(&tmp_ule);
    }
}

static void
test_le_pack_uncommitted (uint8_t committed_type, uint8_t prov_type, int num_placeholders) {
    ULE_S ule;
    ule.uxrs = ule.uxrs_static;
    assert(num_placeholders >= 0);

    uint8_t cval[MAX_SIZE];
    uint8_t pval[MAX_SIZE];
    uint32_t cvalsize;
    uint32_t pvalsize;
    for (cvalsize = 0; cvalsize < MAX_SIZE; cvalsize += (random() % MAX_SIZE) + 1) {
        pvalsize = (cvalsize + random()) % MAX_SIZE;
        if (committed_type == XR_INSERT)
            fillrandom(cval, cvalsize);
        if (prov_type == XR_INSERT)
            fillrandom(pval, pvalsize);
        ule.uxrs[0].type   = committed_type;
        ule.uxrs[0].xid    = TXNID_NONE;
        ule.uxrs[0].vallen = cvalsize;
        ule.uxrs[0].valp   = cval;
        ule.num_cuxrs       = 1;
        ule.num_puxrs       = 1 + num_placeholders;

        uint32_t idx;
        for (idx = 1; idx <= (uint32_t)num_placeholders; idx++) {
            ule.uxrs[idx].type = XR_PLACEHOLDER;
            ule.uxrs[idx].xid  = ule.uxrs[idx-1].xid + (random() % 32 + 1); //Abitrary number, xids must be strictly increasing
        }
        ule.uxrs[idx].xid  = ule.uxrs[idx-1].xid + (random() % 32 + 1); //Abitrary number, xids must be strictly increasing
        ule.uxrs[idx].type   = prov_type;
        ule.uxrs[idx].vallen = pvalsize;
        ule.uxrs[idx].valp   = pval;

        size_t memsize;
        LEAFENTRY le;
        int r = le_pack(&ule, nullptr, 0, nullptr, 0, 0, 0, &le, nullptr);
        assert(r==0);
        assert(le!=NULL);
        memsize = le_memsize_from_ule(&ule);
        le_verify_accessors(le, &ule, memsize);
        ULE_S tmp_ule;
        le_unpack(&tmp_ule, le);
        verify_ule_equal(&ule, &tmp_ule);
        LEAFENTRY tmp_le;
        size_t    tmp_memsize;
        r = le_pack(&tmp_ule, nullptr, 0, nullptr, 0, 0, 0, &tmp_le, nullptr);
        tmp_memsize = le_memsize_from_ule(&tmp_ule);
        assert(r==0);
        assert(tmp_memsize == memsize);
        assert(memcmp(le, tmp_le, memsize) == 0);
        le_verify_accessors(tmp_le, &tmp_ule, tmp_memsize);

        toku_free(tmp_le);
        toku_free(le);
        ule_cleanup(&tmp_ule);
    }
}

static void
test_le_pack_provpair (int num_placeholders) {
    test_le_pack_uncommitted(XR_DELETE, XR_INSERT, num_placeholders);
}

static void
test_le_pack_provdel (int num_placeholders) {
    test_le_pack_uncommitted(XR_INSERT, XR_DELETE, num_placeholders);
}

static void
test_le_pack_both (int num_placeholders) {
    test_le_pack_uncommitted(XR_INSERT, XR_INSERT, num_placeholders);
}

//Test of PACK
//  Committed leafentry
//      delete -> nothing (le_empty_packs_to_nothing)
//      insert
//          make key/val have diff lengths/content
//  Uncommitted
//      committed delete
//          followed by placeholder*, delete (le_empty_packs_to_nothing)
//          followed by placeholder*, insert
//      committed insert
//          followed by placeholder*, delete
//          followed by placeholder*, insert
//          
//  placeholder* is 0,1, or 2 placeholders
static void
test_le_pack (void) {
    test_le_empty_packs_to_nothing();
    test_le_pack_committed();
    int i;
    for (i = 0; i < 3; i++) {
        test_le_pack_provpair(i);
        test_le_pack_provdel(i);
        test_le_pack_both(i);
    }
}

static void
test_le_apply(ULE ule_initial, const ft_msg &msg, ULE ule_expected) {
    int r;
    LEAFENTRY le_initial;
    LEAFENTRY le_expected;
    LEAFENTRY le_result;

    r = le_pack(ule_initial, nullptr, 0, nullptr, 0, 0, 0, &le_initial, nullptr);
    CKERR(r);

    size_t result_memsize = 0;
    int64_t ignoreme;
    txn_gc_info gc_info(nullptr, TXNID_NONE, TXNID_NONE, true);
    toku_le_apply_msg(msg,
                      le_initial,
                      nullptr,
                      0,
                      0,
                      &gc_info,
                      &le_result,
                      &ignoreme);
    if (le_result) {
        result_memsize = leafentry_memsize(le_result);
        le_verify_accessors(le_result, ule_expected, result_memsize);
    }

    size_t expected_memsize = 0;
    r = le_pack(ule_expected, nullptr, 0, nullptr, 0, 0, 0, &le_expected, nullptr);
    CKERR(r);
    if (le_expected) {
        expected_memsize = leafentry_memsize(le_expected);
    }


    verify_le_equal(le_result, le_expected);
    if (le_result && le_expected) {
        assert(result_memsize  == expected_memsize);
    }
    if (le_initial)  toku_free(le_initial);
    if (le_result)   toku_free(le_result);
    if (le_expected) toku_free(le_expected);
}

static const ULE_S ule_committed_delete = {
    .num_puxrs = 0,
    .num_cuxrs = 1,
    .uxrs_static = {{
        .type   = XR_DELETE,
        .vallen = 0,
        .valp   = NULL,
        .xid    = 0
    }},
    .uxrs = (UXR_S *)ule_committed_delete.uxrs_static
};

static uint32_t
next_nesting_level(uint32_t current) {
    uint32_t rval = current + 1;

    if (current > 3 && current < MAX_TRANSACTION_RECORDS - 1) {
        rval = current + random() % 100;
        if (rval >= MAX_TRANSACTION_RECORDS)
            rval = MAX_TRANSACTION_RECORDS - 1;
    }
    return rval;
}

static void
generate_committed_for(ULE ule, DBT *val) {
    ule->num_cuxrs = 1;
    ule->num_puxrs = 0;
    ule->uxrs = ule->uxrs_static;
    ule->uxrs[0].type   = XR_INSERT;
    ule->uxrs[0].vallen = val->size;
    ule->uxrs[0].valp   = val->data;
    ule->uxrs[0].xid    = 0;
}

static void
generate_provpair_for(ULE ule, const ft_msg &msg) {
    uint32_t level;
    XIDS xids = msg.xids();
    ule->uxrs = ule->uxrs_static;

    ule->num_cuxrs = 1;
    ule->num_puxrs = toku_xids_get_num_xids(xids);
    uint32_t num_uxrs = ule->num_cuxrs + ule->num_puxrs;
    ule->uxrs[0].type   = XR_DELETE;
    ule->uxrs[0].vallen = 0;
    ule->uxrs[0].valp   = NULL;
    ule->uxrs[0].xid    = TXNID_NONE;
    for (level = 1; level < num_uxrs - 1; level++) {
        ule->uxrs[level].type   = XR_PLACEHOLDER;
        ule->uxrs[level].vallen = 0;
        ule->uxrs[level].valp   = NULL;
        ule->uxrs[level].xid    = toku_xids_get_xid(xids, level-1);
    }
    ule->uxrs[num_uxrs - 1].type   = XR_INSERT;
    ule->uxrs[num_uxrs - 1].vallen = msg.vdbt()->size;
    ule->uxrs[num_uxrs - 1].valp   = msg.vdbt()->data;
    ule->uxrs[num_uxrs - 1].xid    = toku_xids_get_innermost_xid(xids);
}

//Test all the different things that can happen to a
//non-existent leafentry (logical equivalent of a committed delete).
static void
test_le_empty_apply(void) {
    ULE_S ule_initial        = ule_committed_delete;

    DBT key;
    DBT val;
    uint8_t keybuf[MAX_SIZE];
    uint8_t valbuf[MAX_SIZE];
    uint32_t keysize;
    uint32_t valsize;
    uint32_t  nesting_level;
    for (keysize = 0; keysize < MAX_SIZE; keysize += (random() % MAX_SIZE) + 1) {
        for (valsize = 0; valsize < MAX_SIZE; valsize += (random() % MAX_SIZE) + 1) {
            for (nesting_level = 0;
                 nesting_level < MAX_TRANSACTION_RECORDS;
                 nesting_level = next_nesting_level(nesting_level)) {
                XIDS msg_xids = nested_xids[nesting_level];
                fillrandom(keybuf, keysize);
                fillrandom(valbuf, valsize);
                toku_fill_dbt(&key, keybuf, keysize);
                toku_fill_dbt(&val, valbuf, valsize);

                //COMMIT/ABORT is illegal with TXNID 0
                if (nesting_level > 0) {
                    //Abort/commit of an empty le is an empty le
                    ULE_S ule_expected = ule_committed_delete;

                    {
                        ft_msg msg(&key, &val, FT_COMMIT_ANY, ZERO_MSN, msg_xids);
                        test_le_apply(&ule_initial, msg, &ule_expected);
                    }
                    {
                        ft_msg msg(&key, &val, FT_COMMIT_BROADCAST_TXN, ZERO_MSN, msg_xids);
                        test_le_apply(&ule_initial, msg, &ule_expected);
                    }
                    {
                        ft_msg msg(&key, &val, FT_ABORT_ANY, ZERO_MSN, msg_xids);
                        test_le_apply(&ule_initial, msg, &ule_expected);
                    }
                    {
                        ft_msg msg(&key, &val, FT_ABORT_BROADCAST_TXN, ZERO_MSN, msg_xids);
                        test_le_apply(&ule_initial, msg, &ule_expected);
                    }
                }
                {
                    //delete of an empty le is an empty le
                    ULE_S ule_expected = ule_committed_delete;

                    ft_msg msg(&key, &val, FT_DELETE_ANY, ZERO_MSN, msg_xids);
                    test_le_apply(&ule_initial, msg, &ule_expected);
                }
                {
                    ft_msg msg(&key, &val, FT_INSERT, ZERO_MSN, msg_xids);
                    ULE_S ule_expected;
                    generate_provpair_for(&ule_expected, msg);
                    test_le_apply(&ule_initial, msg, &ule_expected);
                }
                {
                    ft_msg msg(&key, &val, FT_INSERT_NO_OVERWRITE, ZERO_MSN, msg_xids);
                    ULE_S ule_expected;
                    generate_provpair_for(&ule_expected, msg);
                    test_le_apply(&ule_initial, msg, &ule_expected);
                }
            }
        }
    }
}

static void
generate_provdel_for(ULE ule, const ft_msg &msg) {
    uint32_t level;
    XIDS xids = msg.xids();

    ule->num_cuxrs = 1;
    ule->num_puxrs = toku_xids_get_num_xids(xids);
    uint32_t num_uxrs = ule->num_cuxrs + ule->num_puxrs;
    ule->uxrs[0].type   = XR_INSERT;
    ule->uxrs[0].vallen = msg.vdbt()->size;
    ule->uxrs[0].valp   = msg.vdbt()->data;
    ule->uxrs[0].xid    = TXNID_NONE;
    for (level = ule->num_cuxrs; level < ule->num_cuxrs + ule->num_puxrs - 1; level++) {
        ule->uxrs[level].type   = XR_PLACEHOLDER;
        ule->uxrs[level].vallen = 0;
        ule->uxrs[level].valp   = NULL;
        ule->uxrs[level].xid    = toku_xids_get_xid(xids, level-1);
    }
    ule->uxrs[num_uxrs - 1].type   = XR_DELETE;
    ule->uxrs[num_uxrs - 1].vallen = 0;
    ule->uxrs[num_uxrs - 1].valp   = NULL;
    ule->uxrs[num_uxrs - 1].xid    = toku_xids_get_innermost_xid(xids);
}

static void
generate_both_for(ULE ule, DBT *oldval, const ft_msg &msg) {
    uint32_t level;
    XIDS xids = msg.xids();

    ule->num_cuxrs = 1;
    ule->num_puxrs = toku_xids_get_num_xids(xids);
    uint32_t num_uxrs = ule->num_cuxrs + ule->num_puxrs;
    ule->uxrs[0].type   = XR_INSERT;
    ule->uxrs[0].vallen = oldval->size;
    ule->uxrs[0].valp   = oldval->data;
    ule->uxrs[0].xid    = TXNID_NONE;
    for (level = ule->num_cuxrs; level < ule->num_cuxrs + ule->num_puxrs - 1; level++) {
        ule->uxrs[level].type   = XR_PLACEHOLDER;
        ule->uxrs[level].vallen = 0;
        ule->uxrs[level].valp   = NULL;
        ule->uxrs[level].xid    = toku_xids_get_xid(xids, level-1);
    }
    ule->uxrs[num_uxrs - 1].type   = XR_INSERT;
    ule->uxrs[num_uxrs - 1].vallen = msg.vdbt()->size;
    ule->uxrs[num_uxrs - 1].valp   = msg.vdbt()->data;
    ule->uxrs[num_uxrs - 1].xid    = toku_xids_get_innermost_xid(xids);
}

//Test all the different things that can happen to a
//committed leafentry (logical equivalent of a committed insert).
static void
test_le_committed_apply(void) {
    ULE_S ule_initial;
    ule_initial.uxrs = ule_initial.uxrs_static;

    DBT key;
    DBT val;
    uint8_t valbuf[MAX_SIZE];
    uint32_t valsize;
    uint32_t  nesting_level;
    for (valsize = 0; valsize < MAX_SIZE; valsize += (random() % MAX_SIZE) + 1) {
        for (nesting_level = 0;
             nesting_level < MAX_TRANSACTION_RECORDS;
             nesting_level = next_nesting_level(nesting_level)) {
            XIDS msg_xids = nested_xids[nesting_level];
            fillrandom(valbuf, valsize);
            toku_fill_dbt(&val, valbuf, valsize);

            //Generate initial ule
            generate_committed_for(&ule_initial, &val);


            //COMMIT/ABORT is illegal with TXNID 0
            if (nesting_level > 0) {
                //Commit/abort will not change a committed le
                ULE_S ule_expected = ule_initial;
                {
                    ft_msg msg(&key, &val, FT_COMMIT_ANY, ZERO_MSN, msg_xids);
                    test_le_apply(&ule_initial, msg, &ule_expected);
                }
                {
                    ft_msg msg(&key, &val, FT_COMMIT_BROADCAST_TXN, ZERO_MSN, msg_xids);
                    test_le_apply(&ule_initial, msg, &ule_expected);
                }
                {
                    ft_msg msg(&key, &val, FT_ABORT_ANY, ZERO_MSN, msg_xids);
                    test_le_apply(&ule_initial, msg, &ule_expected);
                }
                {
                    ft_msg msg(&key, &val, FT_ABORT_BROADCAST_TXN, ZERO_MSN, msg_xids);
                    test_le_apply(&ule_initial, msg, &ule_expected);
                }
            }

            {
                ft_msg msg(&key, &val, FT_DELETE_ANY, ZERO_MSN, msg_xids);
                ULE_S ule_expected;
                ule_expected.uxrs = ule_expected.uxrs_static;
                generate_provdel_for(&ule_expected, msg);
                test_le_apply(&ule_initial, msg, &ule_expected);
            }

            {
                uint8_t valbuf2[MAX_SIZE];
                uint32_t valsize2 = random() % MAX_SIZE;
                fillrandom(valbuf2, valsize2);
                DBT val2;
                toku_fill_dbt(&val2, valbuf2, valsize2);
                ft_msg msg(&key, &val2, FT_INSERT, ZERO_MSN, msg_xids);
                ULE_S ule_expected;
                ule_expected.uxrs = ule_expected.uxrs_static;
                generate_both_for(&ule_expected, &val, msg);
                test_le_apply(&ule_initial, msg, &ule_expected);
            }
            {
                //INSERT_NO_OVERWRITE will not change a committed insert
                ULE_S ule_expected = ule_initial;
                uint8_t valbuf2[MAX_SIZE];
                uint32_t valsize2 = random() % MAX_SIZE;
                fillrandom(valbuf2, valsize2);
                DBT val2;
                toku_fill_dbt(&val2, valbuf2, valsize2);
                ft_msg msg(&key, &val2, FT_INSERT_NO_OVERWRITE, ZERO_MSN, msg_xids);
                test_le_apply(&ule_initial, msg, &ule_expected);
            }
        }
    }
}

static void
test_le_apply_messages(void) {
    test_le_empty_apply();
    test_le_committed_apply();
}

static bool ule_worth_running_garbage_collection(ULE ule, TXNID oldest_referenced_xid_known) {
    LEAFENTRY le;
    int r = le_pack(ule, nullptr, 0, nullptr, 0, 0, 0, &le, nullptr); CKERR(r);
    invariant_notnull(le);
    txn_gc_info gc_info(nullptr, oldest_referenced_xid_known, oldest_referenced_xid_known, true);
    bool worth_running = toku_le_worth_running_garbage_collection(le, &gc_info);
    toku_free(le);
    return worth_running;
}

static void test_le_garbage_collection_birdie(void) {
    DBT key;
    DBT val;
    ULE_S ule;
    uint8_t keybuf[MAX_SIZE];
    uint32_t keysize=8;
    uint8_t valbuf[MAX_SIZE];
    uint32_t valsize=8;
    bool do_garbage_collect;

    memset(&key, 0, sizeof(key));
    memset(&val, 0, sizeof(val));
    fillrandom(keybuf, keysize);
    fillrandom(valbuf, valsize);
    memset(&ule, 0, sizeof(ule));
    ule.uxrs = ule.uxrs_static;

    //
    // Test garbage collection "worth-doing" heurstic
    //

    // Garbage collection should not be worth doing on a clean leafentry.
    ule.num_cuxrs = 1;
    ule.num_puxrs = 0;
    ule.uxrs[0].xid = TXNID_NONE;
    ule.uxrs[0].type = XR_INSERT;
    do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
    invariant(!do_garbage_collect);
    
    // It is worth doing when there is more than one committed entry
    ule.num_cuxrs = 2;
    ule.num_puxrs = 1;
    ule.uxrs[1].xid = 500;
    do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
    invariant(do_garbage_collect);
    
    // It is not worth doing when there is one of each, when the
    // provisional entry is newer than the oldest known referenced xid
    ule.num_cuxrs = 1;
    ule.num_puxrs = 1;
    ule.uxrs[1].xid = 1500;
    do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
    invariant(!do_garbage_collect);
    ule.uxrs[1].xid = 200;
    do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
    invariant(!do_garbage_collect);

    // It is not worth doing when there is only one committed entry,
    // multiple provisional entries, but the outermost entry is newer.
    ule.num_cuxrs = 1;
    ule.num_puxrs = 3;
    ule.uxrs[1].xid = 201;
    ule.uxrs[2].xid = 206;
    ule.uxrs[3].xid = 215;
    do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
    invariant(!do_garbage_collect);

    // It is worth doing when the above scenario has an outermost entry
    // older than the oldest known, even if its children seem newer.
    // this children must have commit because the parent is not live.
    ule.num_cuxrs = 1;
    ule.num_puxrs = 3;
    ule.uxrs[1].xid = 190;
    ule.uxrs[2].xid = 206;
    ule.uxrs[3].xid = 215;
    do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
    invariant(do_garbage_collect);

    // It is worth doing when there is more than one committed entry,
    // even if a provisional entry exists that is newer than the
    // oldest known refrenced xid
    ule.num_cuxrs = 2;
    ule.num_puxrs = 1;
    ule.uxrs[1].xid = 499;
    ule.uxrs[2].xid = 500;
    do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
    invariant(do_garbage_collect);

    // It is worth doing when there is one of each, and the provisional
    // entry is older than the oldest known referenced xid
    ule.num_cuxrs = 1;
    ule.num_puxrs = 1;
    ule.uxrs[1].xid = 199;
    do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
    invariant(do_garbage_collect);

    // It is definately worth doing when the above case is true
    // and there is more than one provisional entry.
    ule.num_cuxrs = 1;
    ule.num_puxrs = 2;
    ule.uxrs[1].xid = 150;
    ule.uxrs[2].xid = 175;
    do_garbage_collect = ule_worth_running_garbage_collection(&ule, 200);
    invariant(do_garbage_collect);
}

static void test_le_optimize(void) {
    DBT key;
    DBT val;
    ULE_S ule_initial;
    ULE_S ule_expected;
    uint8_t keybuf[MAX_SIZE];
    uint32_t keysize=8;
    uint8_t valbuf[MAX_SIZE];
    uint32_t valsize=8;
    ule_initial.uxrs = ule_initial.uxrs_static;
    ule_expected.uxrs = ule_expected.uxrs_static;
    TXNID optimize_txnid = 1000;
    memset(&key, 0, sizeof(key));
    memset(&val, 0, sizeof(val));
    XIDS root_xids = toku_xids_get_root_xids();
    XIDS msg_xids; 
    int r = toku_xids_create_child(root_xids, &msg_xids, optimize_txnid);
    assert(r==0);
    ft_msg msg(&key, &val, FT_OPTIMIZE, ZERO_MSN, msg_xids);

    //
    // create the key
    //
    fillrandom(keybuf, keysize);
    fillrandom(valbuf, valsize);

    //
    // test a clean leafentry has no effect
    //
    ule_initial.num_cuxrs = 1;
    ule_initial.num_puxrs = 0;
    ule_initial.uxrs[0].type = XR_INSERT;
    ule_initial.uxrs[0].xid = TXNID_NONE;
    ule_initial.uxrs[0].vallen = valsize;
    ule_initial.uxrs[0].valp = valbuf;
    
    ule_expected.num_cuxrs = 1;
    ule_expected.num_puxrs = 0;
    ule_expected.uxrs[0].type = XR_INSERT;
    ule_expected.uxrs[0].xid = TXNID_NONE;
    ule_expected.uxrs[0].vallen = valsize;
    ule_expected.uxrs[0].valp = valbuf;

    test_msg_modify_ule(&ule_initial, msg);
    verify_ule_equal(&ule_initial, &ule_expected);

    //
    // add another committed entry and ensure no effect
    //
    ule_initial.num_cuxrs = 2;
    ule_initial.uxrs[1].type = XR_DELETE;
    ule_initial.uxrs[1].xid = 500;
    ule_initial.uxrs[1].vallen = 0;
    ule_initial.uxrs[1].valp = NULL;

    ule_expected.num_cuxrs = 2;
    ule_expected.uxrs[1].type = XR_DELETE;
    ule_expected.uxrs[1].xid = 500;
    ule_expected.uxrs[1].vallen = 0;
    ule_expected.uxrs[1].valp = NULL;
    
    test_msg_modify_ule(&ule_initial, msg);
    verify_ule_equal(&ule_initial, &ule_expected);

    //
    // now test when there is one provisional, three cases, after, equal, and before FT_OPTIMIZE's transaction
    //
    ule_initial.num_cuxrs = 1;
    ule_initial.num_puxrs = 1;
    ule_initial.uxrs[1].xid = 1500;

    ule_expected.num_cuxrs = 1;
    ule_expected.num_puxrs = 1;
    ule_expected.uxrs[1].xid = 1500;
    test_msg_modify_ule(&ule_initial, msg);
    verify_ule_equal(&ule_initial, &ule_expected);

    ule_initial.uxrs[1].xid = 1000;
    ule_expected.uxrs[1].xid = 1000;
    test_msg_modify_ule(&ule_initial, msg);
    verify_ule_equal(&ule_initial, &ule_expected);

    ule_initial.uxrs[1].xid = 500;
    ule_expected.uxrs[1].xid = 500;
    ule_expected.num_cuxrs = 2;
    ule_expected.num_puxrs = 0;
    test_msg_modify_ule(&ule_initial, msg);
    verify_ule_equal(&ule_initial, &ule_expected);

    //
    // now test cases with two provisional
    //
    ule_initial.num_cuxrs = 1;
    ule_initial.num_puxrs = 2;
    ule_expected.num_cuxrs = 1;
    ule_expected.num_puxrs = 2;

    ule_initial.uxrs[2].type = XR_INSERT;
    ule_initial.uxrs[2].xid = 1500;
    ule_initial.uxrs[2].vallen = valsize;
    ule_initial.uxrs[2].valp = valbuf;
    ule_initial.uxrs[1].xid = 1200;
    
    ule_expected.uxrs[2].type = XR_INSERT;
    ule_expected.uxrs[2].xid = 1500;
    ule_expected.uxrs[2].vallen = valsize;
    ule_expected.uxrs[2].valp = valbuf;
    ule_expected.uxrs[1].xid = 1200;
    test_msg_modify_ule(&ule_initial, msg);
    verify_ule_equal(&ule_initial, &ule_expected);

    ule_initial.uxrs[1].xid = 1000;
    ule_expected.uxrs[1].xid = 1000;
    test_msg_modify_ule(&ule_initial, msg);
    verify_ule_equal(&ule_initial, &ule_expected);

    ule_initial.uxrs[1].xid = 800;
    ule_expected.uxrs[1].xid = 800;
    ule_expected.num_cuxrs = 2;
    ule_expected.num_puxrs = 0;
    ule_expected.uxrs[1].type = ule_initial.uxrs[2].type;
    ule_expected.uxrs[1].valp = ule_initial.uxrs[2].valp;
    ule_expected.uxrs[1].vallen = ule_initial.uxrs[2].vallen;
    test_msg_modify_ule(&ule_initial, msg);
    verify_ule_equal(&ule_initial, &ule_expected);

    
    toku_xids_destroy(&msg_xids);
    toku_xids_destroy(&root_xids);
}

//TODO: #1125 tests:
//      Will probably have to expose ULE_S definition
//            - Check memsize function is correct
//             - Assert == disksize (almost useless, but go ahead)
//            - Check standard accessors
//             - le_latest_val_and_len
//             - le_latest_val 
//             - le_latest_vallen
//             - le_key_and_len
//             - le_innermost_inserted_val_and_len
//             - le_innermost_inserted_val 
//             - le_innermost_inserted_vallen
//            - Check le_outermost_uncommitted_xid
//            - Check le_latest_is_del
//            - Check unpack+pack memcmps equal
//            - Check exact memory expected (including size) for various leafentry types.
//            - Check apply_msg logic
//             - Known start, known expected.. various types.
//            - Go through test-leafentry10.c
//             - Verify we have tests for all analogous stuff.
//
//  PACK
//  UNPACK
//      verify pack+unpack is no-op
//      verify unpack+pack is no-op
//  accessors
//  Test apply_msg logic
//      i.e. start with LE, apply message
//          in parallel, construct the expected ULE manually, and pack that
//          Compare the two results
//  Test full_promote

static void
init_xids(void) {
    uint32_t i;
    nested_xids[0] = toku_xids_get_root_xids();
    for (i = 1; i < MAX_TRANSACTION_RECORDS; i++) {
        int r = toku_xids_create_child(nested_xids[i-1], &nested_xids[i], i * 37 + random() % 36);
        assert(r==0);
    }
}

static void
destroy_xids(void) {
    uint32_t i;
    for (i = 0; i < MAX_TRANSACTION_RECORDS; i++) {
        toku_xids_destroy(&nested_xids[i]);
    }
}

int
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
    srandom(7); //Arbitrary seed.
    init_xids();
    test_le_offsets();
    test_le_pack();
    test_le_apply_messages();
    test_le_optimize();
    test_le_garbage_collection_birdie();
    destroy_xids();
    return 0;
}