summaryrefslogtreecommitdiff
path: root/storage/tokudb/ft-index/ft/tests/test3884.cc
blob: a4a9e8568cf4883f4f488b4b38b2bd4a2cd15ea4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*
COPYING CONDITIONS NOTICE:

  This program is free software; you can redistribute it and/or modify
  it under the terms of version 2 of the GNU General Public License as
  published by the Free Software Foundation, and provided that the
  following conditions are met:

      * Redistributions of source code must retain this COPYING
        CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
        DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
        PATENT MARKING NOTICE (below), and the PATENT RIGHTS
        GRANT (below).

      * Redistributions in binary form must reproduce this COPYING
        CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
        DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
        PATENT MARKING NOTICE (below), and the PATENT RIGHTS
        GRANT (below) in the documentation and/or other materials
        provided with the distribution.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  02110-1301, USA.

COPYRIGHT NOTICE:

  TokuFT, Tokutek Fractal Tree Indexing Library.
  Copyright (C) 2007-2013 Tokutek, Inc.

DISCLAIMER:

  This program is distributed in the hope that it will be useful, but
  WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  General Public License for more details.

UNIVERSITY PATENT NOTICE:

  The technology is licensed by the Massachusetts Institute of
  Technology, Rutgers State University of New Jersey, and the Research
  Foundation of State University of New York at Stony Brook under
  United States of America Serial No. 11/760379 and to the patents
  and/or patent applications resulting from it.

PATENT MARKING NOTICE:

  This software is covered by US Patent No. 8,185,551.
  This software is covered by US Patent No. 8,489,638.

PATENT RIGHTS GRANT:

  "THIS IMPLEMENTATION" means the copyrightable works distributed by
  Tokutek as part of the Fractal Tree project.

  "PATENT CLAIMS" means the claims of patents that are owned or
  licensable by Tokutek, both currently or in the future; and that in
  the absence of this license would be infringed by THIS
  IMPLEMENTATION or by using or running THIS IMPLEMENTATION.

  "PATENT CHALLENGE" shall mean a challenge to the validity,
  patentability, enforceability and/or non-infringement of any of the
  PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.

  Tokutek hereby grants to you, for the term and geographical scope of
  the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
  irrevocable (except as stated in this section) patent license to
  make, have made, use, offer to sell, sell, import, transfer, and
  otherwise run, modify, and propagate the contents of THIS
  IMPLEMENTATION, where such license applies only to the PATENT
  CLAIMS.  This grant does not include claims that would be infringed
  only as a consequence of further modifications of THIS
  IMPLEMENTATION.  If you or your agent or licensee institute or order
  or agree to the institution of patent litigation against any entity
  (including a cross-claim or counterclaim in a lawsuit) alleging that
  THIS IMPLEMENTATION constitutes direct or contributory patent
  infringement, or inducement of patent infringement, then any rights
  granted to you under this License shall terminate as of the date
  such litigation is filed.  If you or your agent or exclusive
  licensee institute or order or agree to the institution of a PATENT
  CHALLENGE, then Tokutek may terminate any rights granted to you
  under this License.
*/

#ident "Copyright (c) 2007-2013 Tokutek Inc.  All rights reserved."

// it used to be the case that we copied the left and right keys of a
// range to be prelocked but never freed them, this test checks that they
// are freed (as of this time, this happens in ftnode_fetch_extra::destroy())

#include "test.h"


#include <ft-cachetable-wrappers.h>
#include <ft-flusher.h>

// Some constants to be used in calculations below
static const int nodesize = 1024; // Target max node size
static const int eltsize = 64;    // Element size (for most elements)
static const int bnsize = 256;    // Target basement node size
static const int eltsperbn = 256 / 64;  // bnsize / eltsize
static const int keylen = sizeof(long);
// vallen is eltsize - keylen and leafentry overhead
static const int vallen = 64 - sizeof(long) - (sizeof(((LEAFENTRY)NULL)->type)  // overhead from LE_CLEAN_MEMSIZE
                                               +sizeof(uint32_t)
                                               +sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
#define dummy_msn_3884 ((MSN) { (uint64_t) 3884 * MIN_MSN.msn })

static TOKUTXN const null_txn = 0;
static const char *fname = TOKU_TEST_FILENAME;

static void
le_add_to_bn(bn_data* bn, uint32_t idx, const  char *key, int keysize, const char *val, int valsize)
{
    LEAFENTRY r = NULL;
    uint32_t size_needed = LE_CLEAN_MEMSIZE(valsize);
    void *maybe_free = nullptr;
    bn->get_space_for_insert(
        idx, 
        key,
        keysize,
        size_needed,
        &r,
        &maybe_free
        );
    if (maybe_free) {
        toku_free(maybe_free);
    }
    resource_assert(r);
    r->type = LE_CLEAN;
    r->u.clean.vallen = valsize;
    memcpy(r->u.clean.val, val, valsize);
}


static size_t
insert_dummy_value(FTNODE node, int bn, long k, uint32_t idx)
{
    char val[vallen];
    memset(val, k, sizeof val);
    le_add_to_bn(BLB_DATA(node, bn), idx,(char *) &k, keylen, val, vallen);
    return LE_CLEAN_MEMSIZE(vallen) + keylen + sizeof(uint32_t);
}

// TODO: this stuff should be in ft/ft-ops.cc, not in a test.
// it makes it incredibly hard to add things to an ftnode
// when tests hard code initializations...
static void
setup_ftnode_header(struct ftnode *node)
{
    node->flags = 0x11223344;
    node->blocknum.b = 20;
    node->layout_version = FT_LAYOUT_VERSION;
    node->layout_version_original = FT_LAYOUT_VERSION;
    node->height = 0;
    node->dirty = 1;
    node->oldest_referenced_xid_known = TXNID_NONE;
}

static void
setup_ftnode_partitions(struct ftnode *node, int n_children, const MSN msn, size_t maxbnsize UU())
{
    node->n_children = n_children;
    node->max_msn_applied_to_node_on_disk = msn;
    MALLOC_N(node->n_children, node->bp);
    for (int bn = 0; bn < node->n_children; ++bn) {
        BP_STATE(node, bn) = PT_AVAIL;
        set_BLB(node, bn, toku_create_empty_bn());
        BLB_MAX_MSN_APPLIED(node, bn) = msn;
    }
    node->pivotkeys.create_empty();
}

static void
verify_basement_node_msns(FTNODE node, MSN expected)
{
    for(int i = 0; i < node->n_children; ++i) {
        assert(expected.msn == BLB_MAX_MSN_APPLIED(node, i).msn);
    }
}

//
// Maximum node size according to the FT: 1024 (expected node size after split)
// Maximum basement node size: 256
// Actual node size before split: 2048
// Actual basement node size before split: 256
// Start by creating 8 basements, then split node, expected result of two nodes with 4 basements each.
static void
test_split_on_boundary(void)
{
    struct ftnode sn;

    int fd = open(fname, O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);

    int r;

    setup_ftnode_header(&sn);
    const int nelts = 2 * nodesize / eltsize;
    setup_ftnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, bnsize);
    for (int bn = 0; bn < sn.n_children; ++bn) {
        long k;
        for (int i = 0; i < eltsperbn; ++i) {
            k = bn * eltsperbn + i;
            insert_dummy_value(&sn, bn, k, i);
        }
        if (bn < sn.n_children - 1) {
            DBT pivotkey;
            sn.pivotkeys.insert_at(toku_fill_dbt(&pivotkey, &k, sizeof(k)), bn);
        }
    }

    unlink(fname);
    CACHETABLE ct;
    FT_HANDLE ft;
    toku_cachetable_create(&ct, 0, ZERO_LSN, nullptr);
    r = toku_open_ft_handle(fname, 1, &ft, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0);

    FTNODE nodea, nodeb;
    DBT splitk;
    // if we haven't done it right, we should hit the assert in the top of move_leafentries
    ftleaf_split(ft->ft, &sn, &nodea, &nodeb, &splitk, true, SPLIT_EVENLY, 0, NULL);

    verify_basement_node_msns(nodea, dummy_msn_3884);
    verify_basement_node_msns(nodeb, dummy_msn_3884);

    toku_unpin_ftnode(ft->ft, nodeb);
    r = toku_close_ft_handle_nolsn(ft, NULL); assert(r == 0);
    toku_cachetable_close(&ct);

    toku_destroy_dbt(&splitk);
    toku_destroy_ftnode_internals(&sn);
}

//
// Maximum node size according to the FT: 1024 (expected node size after split)
// Maximum basement node size: 256 (except the last)
// Actual node size before split: 4095
// Actual basement node size before split: 256 (except the last, of size 2K)
// 
// Start by creating 9 basements, the first 8 being of 256 bytes each,
// and the last with one row of size 2047 bytes.  Then split node,
// expected result is two nodes, one with 8 basement nodes and one
// with 1 basement node.
static void
test_split_with_everything_on_the_left(void)
{
    struct ftnode sn;

    int fd = open(fname, O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);

    int r;

    setup_ftnode_header(&sn);
    const int nelts = 2 * nodesize / eltsize;
    setup_ftnode_partitions(&sn, nelts * eltsize / bnsize + 1, dummy_msn_3884, 2 * nodesize);
    size_t big_val_size = 0;
    for (int bn = 0; bn < sn.n_children; ++bn) {
        long k;
        if (bn < sn.n_children - 1) {
            for (int i = 0; i < eltsperbn; ++i) {
                k = bn * eltsperbn + i;
                big_val_size += insert_dummy_value(&sn, bn, k, i);
            }
            DBT pivotkey;
            sn.pivotkeys.insert_at(toku_fill_dbt(&pivotkey, &k, sizeof(k)), bn);
        } else {
            k = bn * eltsperbn;
            // we want this to be as big as the rest of our data and a
            // little bigger, so the halfway mark will land inside this
            // value and it will be split to the left
            big_val_size += 100;
            char * XMALLOC_N(big_val_size, big_val);
            memset(big_val, k, big_val_size);
            le_add_to_bn(BLB_DATA(&sn, bn), 0, (char *) &k, keylen, big_val, big_val_size);
            toku_free(big_val);
        }
    }

    unlink(fname);
    CACHETABLE ct;
    FT_HANDLE ft;
    toku_cachetable_create(&ct, 0, ZERO_LSN, nullptr);
    r = toku_open_ft_handle(fname, 1, &ft, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0);

    FTNODE nodea, nodeb;
    DBT splitk;
    // if we haven't done it right, we should hit the assert in the top of move_leafentries
    ftleaf_split(ft->ft, &sn, &nodea, &nodeb, &splitk, true, SPLIT_EVENLY, 0, NULL);

    toku_unpin_ftnode(ft->ft, nodeb);
    r = toku_close_ft_handle_nolsn(ft, NULL); assert(r == 0);
    toku_cachetable_close(&ct);

    toku_destroy_dbt(&splitk);
    toku_destroy_ftnode_internals(&sn);
}


//
// Maximum node size according to the FT: 1024 (expected node size after split)
// Maximum basement node size: 256 (except the last)
// Actual node size before split: 4095
// Actual basement node size before split: 256 (except the last, of size 2K)
// 
// Start by creating 9 basements, the first 8 being of 256 bytes each,
// and the last with one row of size 2047 bytes.  Then split node,
// expected result is two nodes, one with 8 basement nodes and one
// with 1 basement node.
static void
test_split_on_boundary_of_last_node(void)
{
    struct ftnode sn;

    int fd = open(fname, O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);

    int r;

    setup_ftnode_header(&sn);
    const int nelts = 2 * nodesize / eltsize;
    const size_t maxbnsize = 2 * nodesize;
    setup_ftnode_partitions(&sn, nelts * eltsize / bnsize + 1, dummy_msn_3884, maxbnsize);
    size_t big_val_size = 0;
    for (int bn = 0; bn < sn.n_children; ++bn) {
        long k;
        if (bn < sn.n_children - 1) {
            for (int i = 0; i < eltsperbn; ++i) {
                k = bn * eltsperbn + i;
                big_val_size += insert_dummy_value(&sn, bn, k, i);
            }
            DBT pivotkey;
            sn.pivotkeys.insert_at(toku_fill_dbt(&pivotkey, &k, sizeof(k)), bn);
        } else {
            k = bn * eltsperbn;
            // we want this to be slightly smaller than all the rest of
            // the data combined, so the halfway mark will be just to its
            // left and just this element will end up on the right of the split
            big_val_size -= 1 + (sizeof(((LEAFENTRY)NULL)->type)  // overhead from LE_CLEAN_MEMSIZE
                                 +sizeof(uint32_t) // sizeof(keylen)
                                 +sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
            invariant(big_val_size <= maxbnsize);
            char * XMALLOC_N(big_val_size, big_val);
            memset(big_val, k, big_val_size);
            le_add_to_bn(BLB_DATA(&sn, bn), 0, (char *) &k, keylen, big_val, big_val_size);
            toku_free(big_val);
        }
    }

    unlink(fname);
    CACHETABLE ct;
    FT_HANDLE ft;
    toku_cachetable_create(&ct, 0, ZERO_LSN, nullptr);
    r = toku_open_ft_handle(fname, 1, &ft, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0);

    FTNODE nodea, nodeb;
    DBT splitk;
    // if we haven't done it right, we should hit the assert in the top of move_leafentries
    ftleaf_split(ft->ft, &sn, &nodea, &nodeb, &splitk, true, SPLIT_EVENLY, 0, NULL);

    toku_unpin_ftnode(ft->ft, nodeb);
    r = toku_close_ft_handle_nolsn(ft, NULL); assert(r == 0);
    toku_cachetable_close(&ct);

    toku_destroy_dbt(&splitk);
    toku_destroy_ftnode_internals(&sn);
}

static void
test_split_at_begin(void)
{
    struct ftnode sn;

    int fd = open(fname, O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);

    int r;

    setup_ftnode_header(&sn);
    const int nelts = 2 * nodesize / eltsize;
    const size_t maxbnsize = 2 * nodesize;
    setup_ftnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, maxbnsize);
    size_t totalbytes = 0;
    for (int bn = 0; bn < sn.n_children; ++bn) {
        long k;
        for (int i = 0; i < eltsperbn; ++i) {
            k = bn * eltsperbn + i;
            if (bn == 0 && i == 0) {
                // we'll add the first element later when we know how big
                // to make it
                continue;
            }
            totalbytes += insert_dummy_value(&sn, bn, k, i-1);
        }
        if (bn < sn.n_children - 1) {
            DBT pivotkey;
            sn.pivotkeys.insert_at(toku_fill_dbt(&pivotkey, &k, sizeof(k)), bn);
        }
    }
    {  // now add the first element
        int bn = 0; long k = 0;
        // add a few bytes so the halfway mark is definitely inside this
        // val, which will make it go to the left and everything else to
        // the right
        char val[totalbytes + 3];
        invariant(totalbytes + 3 <= maxbnsize);
        memset(val, k, sizeof val);
        le_add_to_bn(BLB_DATA(&sn, bn), 0, (char *) &k, keylen, val, totalbytes + 3);
        totalbytes += LE_CLEAN_MEMSIZE(totalbytes + 3) + keylen + sizeof(uint32_t);
    }

    unlink(fname);
    CACHETABLE ct;
    FT_HANDLE ft;
    toku_cachetable_create(&ct, 0, ZERO_LSN, nullptr);
    r = toku_open_ft_handle(fname, 1, &ft, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0);

    FTNODE nodea, nodeb;
    DBT splitk;
    // if we haven't done it right, we should hit the assert in the top of move_leafentries
    ftleaf_split(ft->ft, &sn, &nodea, &nodeb, &splitk, true, SPLIT_EVENLY, 0, NULL);

    toku_unpin_ftnode(ft->ft, nodeb);
    r = toku_close_ft_handle_nolsn(ft, NULL); assert(r == 0);
    toku_cachetable_close(&ct);

    toku_destroy_dbt(&splitk);
    toku_destroy_ftnode_internals(&sn);
}

static void
test_split_at_end(void)
{
    struct ftnode sn;

    int fd = open(fname, O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);

    int r;

    setup_ftnode_header(&sn);
    const int nelts = 2 * nodesize / eltsize;
    const size_t maxbnsize = 2 * nodesize;
    setup_ftnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, maxbnsize);
    long totalbytes = 0;
    int bn, i;
    for (bn = 0; bn < sn.n_children; ++bn) {
        long k;
        for (i = 0; i < eltsperbn; ++i) {
            k = bn * eltsperbn + i;
            if (bn == sn.n_children - 1 && i == eltsperbn - 1) {
                // add a few bytes so the halfway mark is definitely inside this
                // val, which will make it go to the left and everything else to
                // the right, which is nothing, so we actually split at the very end
                char val[totalbytes + 3];
                invariant(totalbytes + 3 <= (long) maxbnsize);
                memset(val, k, sizeof val);
                le_add_to_bn(BLB_DATA(&sn, bn), i, (char *) &k, keylen, val, totalbytes + 3);
                totalbytes += LE_CLEAN_MEMSIZE(totalbytes + 3) + keylen + sizeof(uint32_t);
            } else {
                totalbytes += insert_dummy_value(&sn, bn, k, i);
            }
        }
        if (bn < sn.n_children - 1) {
            DBT pivotkey;
            sn.pivotkeys.insert_at(toku_fill_dbt(&pivotkey, &k, sizeof(k)), bn);
        }
    }

    unlink(fname);
    CACHETABLE ct;
    FT_HANDLE ft;
    toku_cachetable_create(&ct, 0, ZERO_LSN, nullptr);
    r = toku_open_ft_handle(fname, 1, &ft, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0);

    FTNODE nodea, nodeb;
    DBT splitk;
    // if we haven't done it right, we should hit the assert in the top of move_leafentries
    ftleaf_split(ft->ft, &sn, &nodea, &nodeb, &splitk, true, SPLIT_EVENLY, 0, NULL);

    toku_unpin_ftnode(ft->ft, nodeb);
    r = toku_close_ft_handle_nolsn(ft, NULL); assert(r == 0);
    toku_cachetable_close(&ct);

    toku_destroy_dbt(&splitk);
    toku_destroy_ftnode_internals(&sn);
}

// Maximum node size according to the FT: 1024 (expected node size after split)
// Maximum basement node size: 256
// Actual node size before split: 2048
// Actual basement node size before split: 256
// Start by creating 9 basements, then split node.
// Expected result of two nodes with 5 basements each.
static void
test_split_odd_nodes(void)
{
    struct ftnode sn;

    int fd = open(fname, O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO);
    assert(fd >= 0);

    int r;

    setup_ftnode_header(&sn);
    // This will give us 9 children.
    const int nelts = 2 * (nodesize + 128) / eltsize;
    setup_ftnode_partitions(&sn, nelts * eltsize / bnsize, dummy_msn_3884, bnsize);
    for (int bn = 0; bn < sn.n_children; ++bn) {
        long k;
        for (int i = 0; i < eltsperbn; ++i) {
            k = bn * eltsperbn + i;
            insert_dummy_value(&sn, bn, k, i);
        }
        if (bn < sn.n_children - 1) {
            DBT pivotkey;
            sn.pivotkeys.insert_at(toku_fill_dbt(&pivotkey, &k, sizeof(k)), bn);
        }
    }

    unlink(fname);
    CACHETABLE ct;
    FT_HANDLE ft;
    toku_cachetable_create(&ct, 0, ZERO_LSN, nullptr);
    r = toku_open_ft_handle(fname, 1, &ft, nodesize, bnsize, TOKU_DEFAULT_COMPRESSION_METHOD, ct, null_txn, toku_builtin_compare_fun); assert(r==0);

    FTNODE nodea, nodeb;
    DBT splitk;
    // if we haven't done it right, we should hit the assert in the top of move_leafentries
    ftleaf_split(ft->ft, &sn, &nodea, &nodeb, &splitk, true, SPLIT_EVENLY, 0, NULL);

    verify_basement_node_msns(nodea, dummy_msn_3884);
    verify_basement_node_msns(nodeb, dummy_msn_3884);

    toku_unpin_ftnode(ft->ft, nodeb);
    r = toku_close_ft_handle_nolsn(ft, NULL); assert(r == 0);
    toku_cachetable_close(&ct);

    toku_destroy_dbt(&splitk);
    toku_destroy_ftnode_internals(&sn);
}

int
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {

    test_split_on_boundary();
    test_split_with_everything_on_the_left();
    test_split_on_boundary_of_last_node();
    test_split_at_begin();
    test_split_at_end();
    test_split_odd_nodes();

    return 0;
}