summaryrefslogtreecommitdiff
path: root/storage/tokudb/tokudb_card.h
blob: 04eac731aeb4b367885259be773d8f40c2b67117 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of TokuDB


Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.

    TokuDBis is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License, version 2,
    as published by the Free Software Foundation.

    TokuDB is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with TokuDB.  If not, see <http://www.gnu.org/licenses/>.

======= */

#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."

namespace tokudb {
    uint compute_total_key_parts(TABLE_SHARE *table_share) {
        uint total_key_parts = 0;
        for (uint i = 0; i < table_share->keys; i++) {
            total_key_parts += get_key_parts(&table_share->key_info[i]);
        }
        return total_key_parts;
    }

    // Set the key_info cardinality counters for the table.
    void set_card_in_key_info(TABLE *table, uint rec_per_keys, uint64_t rec_per_key[]) {
        uint next_key_part = 0;
        for (uint i = 0; i < table->s->keys; i++) {
            bool is_unique_key = (i == table->s->primary_key) || (table->key_info[i].flags & HA_NOSAME);
            uint num_key_parts = get_key_parts(&table->key_info[i]);
            for (uint j = 0; j < num_key_parts; j++) {
                assert(next_key_part < rec_per_keys);
                ulong val = rec_per_key[next_key_part++];
                if (is_unique_key && j == num_key_parts-1)
                    val = 1;
                table->key_info[i].rec_per_key[j] = val;
            }
        }
    }
    
    // Put the cardinality counters into the status dictionary.
    int set_card_in_status(DB *status_db, DB_TXN *txn, uint rec_per_keys, uint64_t rec_per_key[]) {
        // encode cardinality into the buffer
        tokudb::buffer b;
        size_t s;
        s = b.append_ui<uint32_t>(rec_per_keys);
        assert(s > 0);
        for (uint i = 0; i < rec_per_keys; i++) {
            s = b.append_ui<uint64_t>(rec_per_key[i]);
            assert(s > 0);
        }
        // write cardinality to status
        int error = write_to_status(status_db, hatoku_cardinality, b.data(), b.size(), txn);
        return error;
    }

    // Get the cardinality counters from the status dictionary.
    int get_card_from_status(DB *status_db, DB_TXN *txn, uint rec_per_keys, uint64_t rec_per_key[]) {
        // read cardinality from status
        void *buf = 0; size_t buf_size = 0;
        int error = get_status_realloc(status_db, txn, hatoku_cardinality, &buf, &buf_size);
        if (error == 0) {
            // decode cardinality from the buffer
            tokudb::buffer b(buf, 0, buf_size);
            size_t s;
            uint32_t num_parts;
            s = b.consume_ui<uint32_t>(&num_parts);
            if (s == 0 || num_parts != rec_per_keys) 
                error = EINVAL;
            if (error == 0) {
                for (uint i = 0; i < rec_per_keys; i++) {
                    s = b.consume_ui<uint64_t>(&rec_per_key[i]);
                    if (s == 0) {
                        error = EINVAL;
                        break;
                    }
                }
            }
        }
        // cleanup
        free(buf);
        return error;
    }

    // Delete the cardinality counters from the status dictionary.
    int delete_card_from_status(DB *status_db, DB_TXN *txn) {
        int error = remove_from_status(status_db, hatoku_cardinality, txn);
        return error;
    }

    bool find_index_of_key(const char *key_name, TABLE_SHARE *table_share, uint *index_offset_ptr) {
        for (uint i = 0; i < table_share->keys; i++) {
            if (strcmp(key_name, table_share->key_info[i].name) == 0) {
                *index_offset_ptr = i;
                return true;
            }
        }
        return false;
    }

    static void copy_card(uint64_t *dest, uint64_t *src, size_t n) {
        for (size_t i = 0; i < n; i++)
            dest[i] = src[i];
    }

    // Altered table cardinality = select cardinality data from current table cardinality for keys that exist 
    // in the altered table and the current table.
    int alter_card(DB *status_db, DB_TXN *txn, TABLE_SHARE *table_share, TABLE_SHARE *altered_table_share) {
        int error;
        // read existing cardinality data from status
        uint table_total_key_parts = tokudb::compute_total_key_parts(table_share);
        uint64_t rec_per_key[table_total_key_parts];
        error = get_card_from_status(status_db, txn, table_total_key_parts, rec_per_key);
        // set altered records per key to unknown
        uint altered_table_total_key_parts = tokudb::compute_total_key_parts(altered_table_share);
        uint64_t altered_rec_per_key[altered_table_total_key_parts];
        for (uint i = 0; i < altered_table_total_key_parts; i++)
            altered_rec_per_key[i] = 0;
        // compute the beginning of the key offsets in the original table
        uint orig_key_offset[table_share->keys];
        uint orig_key_parts = 0;
        for (uint i = 0; i < table_share->keys; i++) {
            orig_key_offset[i] = orig_key_parts;
            orig_key_parts += get_key_parts(&table_share->key_info[i]);
        }
        // if orig card data exists, then use it to compute new card data
        if (error == 0) {
            uint next_key_parts = 0;
            for (uint i = 0; error == 0 && i < altered_table_share->keys; i++) {
                uint ith_key_parts = get_key_parts(&altered_table_share->key_info[i]);
                uint orig_key_index;
                if (find_index_of_key(altered_table_share->key_info[i].name, table_share, &orig_key_index)) {
                    copy_card(&altered_rec_per_key[next_key_parts], &rec_per_key[orig_key_offset[orig_key_index]], ith_key_parts);
                }
                next_key_parts += ith_key_parts;
            }
        }
        if (error == 0)
            error = set_card_in_status(status_db, txn, altered_table_total_key_parts, altered_rec_per_key);
        else
            error = delete_card_from_status(status_db, txn);
        return error;
    }

    struct analyze_card_cursor_callback_extra {
        int (*analyze_progress)(void *extra, uint64_t rows);
        void *analyze_extra;
        uint64_t *rows;
        uint64_t *deleted_rows;
    };

    bool analyze_card_cursor_callback(void *extra, uint64_t deleted_rows) {
        analyze_card_cursor_callback_extra *a_extra = static_cast<analyze_card_cursor_callback_extra *>(extra);
        *a_extra->deleted_rows += deleted_rows;
        int r = a_extra->analyze_progress(a_extra->analyze_extra, *a_extra->rows);
        sql_print_information("tokudb analyze_card_cursor_callback %u %" PRIu64 " %" PRIu64, r, *a_extra->deleted_rows, deleted_rows);
        return r != 0;
    }

    // Compute records per key for all key parts of the ith key of the table.
    // For each key part, put records per key part in *rec_per_key_part[key_part_index].
    // Returns 0 if success, otherwise an error number.
    // TODO statistical dives into the FT
    int analyze_card(DB *db, DB_TXN *txn, bool is_unique, uint64_t num_key_parts, uint64_t *rec_per_key_part,
                     int (*key_compare)(DB *, const DBT *, const DBT *, uint),
                     int (*analyze_progress)(void *extra, uint64_t rows), void *progress_extra,
                     uint64_t *return_rows, uint64_t *return_deleted_rows) {
        int error = 0;
        uint64_t rows = 0;
        uint64_t deleted_rows = 0;
        uint64_t unique_rows[num_key_parts];
        if (is_unique && num_key_parts == 1) {
            // dont compute for unique keys with a single part.  we already know the answer.
            rows = unique_rows[0] = 1;
        } else {
            DBC *cursor = NULL;
            error = db->cursor(db, txn, &cursor, 0);
            if (error == 0) {
                analyze_card_cursor_callback_extra e = { analyze_progress, progress_extra, &rows, &deleted_rows };
                cursor->c_set_check_interrupt_callback(cursor, analyze_card_cursor_callback, &e);
                for (uint64_t i = 0; i < num_key_parts; i++)
                    unique_rows[i] = 1;
                // stop looking when the entire dictionary was analyzed, or a cap on execution time was reached, or the analyze was killed.
                DBT key = {}; key.flags = DB_DBT_REALLOC;
                DBT prev_key = {}; prev_key.flags = DB_DBT_REALLOC;
                while (1) {
                    error = cursor->c_get(cursor, &key, 0, DB_NEXT);
                    if (error != 0) {
                        if (error == DB_NOTFOUND || error == TOKUDB_INTERRUPTED)
                            error = 0; // not an error
                        break;
                    }
                    rows++;
                    // first row is a unique row, otherwise compare with the previous key
                    bool copy_key = false;
                    if (rows == 1) {
                        copy_key = true;
                    } else {
                        // compare this key with the previous key.  ignore appended PK for SK's.
                        // TODO if a prefix is different, then all larger keys that include the prefix are also different.
                        // TODO if we are comparing the entire primary key or the entire unique secondary key, then the cardinality must be 1,
                        // so we can avoid computing it.
                        for (uint64_t i = 0; i < num_key_parts; i++) {
                            int cmp = key_compare(db, &prev_key, &key, i+1);
                            if (cmp != 0) {
                                unique_rows[i]++;
                                copy_key = true;
                            }
                        }
                    }
                    // prev_key = key
                    if (copy_key) {
                        prev_key.data = realloc(prev_key.data, key.size);
                        assert(prev_key.data);
                        prev_key.size = key.size;
                        memcpy(prev_key.data, key.data, prev_key.size);
                    }
                    // check for limit
                    if (analyze_progress && (rows % 1000) == 0) {
                        error = analyze_progress(progress_extra, rows);
                        if (error)
                            break;
                    }
                }
                // cleanup
                free(key.data);
                free(prev_key.data);
                int close_error = cursor->c_close(cursor);
                assert(close_error == 0);
            }
        }
        // return cardinality
        if (return_rows)
            *return_rows = rows;
        if (return_deleted_rows)
            *return_deleted_rows = deleted_rows;
        for (uint64_t i = 0; i < num_key_parts; i++)
            rec_per_key_part[i]  = rows / unique_rows[i];
        return error;
    }
}