1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
|
/*****************************************************************************
Copyright (c) 1995, 2011, Oracle and/or its affiliates. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
*****************************************************************************/
/**************************************************//**
@file buf/buf0flu.c
The database buffer buf_pool flush algorithm
Created 11/11/1995 Heikki Tuuri
*******************************************************/
#include "buf0flu.h"
#ifdef UNIV_NONINL
#include "buf0flu.ic"
#endif
#include "buf0buf.h"
#include "srv0srv.h"
#include "page0zip.h"
#ifndef UNIV_HOTBACKUP
#include "ut0byte.h"
#include "ut0lst.h"
#include "page0page.h"
#include "fil0fil.h"
#include "buf0lru.h"
#include "buf0rea.h"
#include "ibuf0ibuf.h"
#include "log0log.h"
#include "os0file.h"
#include "trx0sys.h"
#include "mysql/plugin.h"
#include "mysql/service_thd_wait.h"
/**********************************************************************
These statistics are generated for heuristics used in estimating the
rate at which we should flush the dirty blocks to avoid bursty IO
activity. Note that the rate of flushing not only depends on how many
dirty pages we have in the buffer pool but it is also a fucntion of
how much redo the workload is generating and at what rate. */
/* @{ */
/** Number of intervals for which we keep the history of these stats.
Each interval is 1 second, defined by the rate at which
srv_error_monitor_thread() calls buf_flush_stat_update(). */
#define BUF_FLUSH_STAT_N_INTERVAL 20
/** Sampled values buf_flush_stat_cur.
Not protected by any mutex. Updated by buf_flush_stat_update(). */
static buf_flush_stat_t buf_flush_stat_arr[BUF_FLUSH_STAT_N_INTERVAL];
/** Cursor to buf_flush_stat_arr[]. Updated in a round-robin fashion. */
static ulint buf_flush_stat_arr_ind;
/** Values at start of the current interval. Reset by
buf_flush_stat_update(). */
static buf_flush_stat_t buf_flush_stat_cur;
/** Running sum of past values of buf_flush_stat_cur.
Updated by buf_flush_stat_update(). Not protected by any mutex. */
static buf_flush_stat_t buf_flush_stat_sum;
/** Number of pages flushed through non flush_list flushes. */
// static ulint buf_lru_flush_page_count = 0;
/* @} */
/******************************************************************//**
Increases flush_list size in bytes with zip_size for compressed page,
UNIV_PAGE_SIZE for uncompressed page in inline function */
static inline
void
incr_flush_list_size_in_bytes(
/*==========================*/
buf_block_t* block, /*!< in: control block */
buf_pool_t* buf_pool) /*!< in: buffer pool instance */
{
ulint zip_size;
ut_ad(buf_flush_list_mutex_own(buf_pool));
zip_size = page_zip_get_size(&block->page.zip);
buf_pool->stat.flush_list_bytes += zip_size ? zip_size : UNIV_PAGE_SIZE;
ut_ad(buf_pool->stat.flush_list_bytes <= buf_pool->curr_pool_size);
}
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
/******************************************************************//**
Validates the flush list.
@return TRUE if ok */
static
ibool
buf_flush_validate_low(
/*===================*/
buf_pool_t* buf_pool); /*!< in: Buffer pool instance */
/******************************************************************//**
Validates the flush list some of the time.
@return TRUE if ok or the check was skipped */
static
ibool
buf_flush_validate_skip(
/*====================*/
buf_pool_t* buf_pool) /*!< in: Buffer pool instance */
{
/** Try buf_flush_validate_low() every this many times */
# define BUF_FLUSH_VALIDATE_SKIP 23
/** The buf_flush_validate_low() call skip counter.
Use a signed type because of the race condition below. */
static int buf_flush_validate_count = BUF_FLUSH_VALIDATE_SKIP;
/* There is a race condition below, but it does not matter,
because this call is only for heuristic purposes. We want to
reduce the call frequency of the costly buf_flush_validate_low()
check in debug builds. */
if (--buf_flush_validate_count > 0) {
return(TRUE);
}
buf_flush_validate_count = BUF_FLUSH_VALIDATE_SKIP;
return(buf_flush_validate_low(buf_pool));
}
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
/******************************************************************//**
Insert a block in the flush_rbt and returns a pointer to its
predecessor or NULL if no predecessor. The ordering is maintained
on the basis of the <oldest_modification, space, offset> key.
@return pointer to the predecessor or NULL if no predecessor. */
static
buf_page_t*
buf_flush_insert_in_flush_rbt(
/*==========================*/
buf_page_t* bpage) /*!< in: bpage to be inserted. */
{
const ib_rbt_node_t* c_node;
const ib_rbt_node_t* p_node;
buf_page_t* prev = NULL;
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
ut_ad(buf_flush_list_mutex_own(buf_pool));
/* Insert this buffer into the rbt. */
c_node = rbt_insert(buf_pool->flush_rbt, &bpage, &bpage);
ut_a(c_node != NULL);
/* Get the predecessor. */
p_node = rbt_prev(buf_pool->flush_rbt, c_node);
if (p_node != NULL) {
buf_page_t** value;
value = rbt_value(buf_page_t*, p_node);
prev = *value;
ut_a(prev != NULL);
}
return(prev);
}
/*********************************************************//**
Delete a bpage from the flush_rbt. */
static
void
buf_flush_delete_from_flush_rbt(
/*============================*/
buf_page_t* bpage) /*!< in: bpage to be removed. */
{
#ifdef UNIV_DEBUG
ibool ret = FALSE;
#endif /* UNIV_DEBUG */
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
ut_ad(buf_flush_list_mutex_own(buf_pool));
#ifdef UNIV_DEBUG
ret =
#endif /* UNIV_DEBUG */
rbt_delete(buf_pool->flush_rbt, &bpage);
ut_ad(ret);
}
/*****************************************************************//**
Compare two modified blocks in the buffer pool. The key for comparison
is:
key = <oldest_modification, space, offset>
This comparison is used to maintian ordering of blocks in the
buf_pool->flush_rbt.
Note that for the purpose of flush_rbt, we only need to order blocks
on the oldest_modification. The other two fields are used to uniquely
identify the blocks.
@return < 0 if b2 < b1, 0 if b2 == b1, > 0 if b2 > b1 */
static
int
buf_flush_block_cmp(
/*================*/
const void* p1, /*!< in: block1 */
const void* p2) /*!< in: block2 */
{
int ret;
const buf_page_t* b1 = *(const buf_page_t**) p1;
const buf_page_t* b2 = *(const buf_page_t**) p2;
#ifdef UNIV_DEBUG
buf_pool_t* buf_pool = buf_pool_from_bpage(b1);
#endif /* UNIV_DEBUG */
ut_ad(b1 != NULL);
ut_ad(b2 != NULL);
ut_ad(buf_flush_list_mutex_own(buf_pool));
ut_ad(b1->in_flush_list);
ut_ad(b2->in_flush_list);
if (b2->oldest_modification > b1->oldest_modification) {
return(1);
} else if (b2->oldest_modification < b1->oldest_modification) {
return(-1);
}
/* If oldest_modification is same then decide on the space. */
ret = (int)(b2->space - b1->space);
/* Or else decide ordering on the offset field. */
return(ret ? ret : (int)(b2->offset - b1->offset));
}
/********************************************************************//**
Initialize the red-black tree to speed up insertions into the flush_list
during recovery process. Should be called at the start of recovery
process before any page has been read/written. */
UNIV_INTERN
void
buf_flush_init_flush_rbt(void)
/*==========================*/
{
ulint i;
for (i = 0; i < srv_buf_pool_instances; i++) {
buf_pool_t* buf_pool;
buf_pool = buf_pool_from_array(i);
buf_flush_list_mutex_enter(buf_pool);
/* Create red black tree for speedy insertions in flush list. */
buf_pool->flush_rbt = rbt_create(
sizeof(buf_page_t*), buf_flush_block_cmp);
buf_flush_list_mutex_exit(buf_pool);
}
}
/********************************************************************//**
Frees up the red-black tree. */
UNIV_INTERN
void
buf_flush_free_flush_rbt(void)
/*==========================*/
{
ulint i;
for (i = 0; i < srv_buf_pool_instances; i++) {
buf_pool_t* buf_pool;
buf_pool = buf_pool_from_array(i);
buf_flush_list_mutex_enter(buf_pool);
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
ut_a(buf_flush_validate_low(buf_pool));
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
rbt_free(buf_pool->flush_rbt);
buf_pool->flush_rbt = NULL;
buf_flush_list_mutex_exit(buf_pool);
}
}
/********************************************************************//**
Inserts a modified block into the flush list. */
UNIV_INTERN
void
buf_flush_insert_into_flush_list(
/*=============================*/
buf_pool_t* buf_pool, /*!< buffer pool instance */
buf_block_t* block, /*!< in/out: block which is modified */
ib_uint64_t lsn) /*!< in: oldest modification */
{
ut_ad(!buf_pool_mutex_own(buf_pool));
ut_ad(log_flush_order_mutex_own());
ut_ad(mutex_own(&block->mutex));
buf_flush_list_mutex_enter(buf_pool);
ut_ad((UT_LIST_GET_FIRST(buf_pool->flush_list) == NULL)
|| (UT_LIST_GET_FIRST(buf_pool->flush_list)->oldest_modification
<= lsn));
/* If we are in the recovery then we need to update the flush
red-black tree as well. */
if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) {
buf_flush_list_mutex_exit(buf_pool);
buf_flush_insert_sorted_into_flush_list(buf_pool, block, lsn);
return;
}
ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE);
ut_ad(!block->page.in_flush_list);
ut_d(block->page.in_flush_list = TRUE);
block->page.oldest_modification = lsn;
UT_LIST_ADD_FIRST(flush_list, buf_pool->flush_list, &block->page);
incr_flush_list_size_in_bytes(block, buf_pool);
#ifdef UNIV_DEBUG_VALGRIND
{
ulint zip_size = buf_block_get_zip_size(block);
if (UNIV_UNLIKELY(zip_size)) {
UNIV_MEM_ASSERT_RW(block->page.zip.data, zip_size);
} else {
UNIV_MEM_ASSERT_RW(block->frame, UNIV_PAGE_SIZE);
}
}
#endif /* UNIV_DEBUG_VALGRIND */
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
ut_a(buf_flush_validate_skip(buf_pool));
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
buf_flush_list_mutex_exit(buf_pool);
}
/********************************************************************//**
Inserts a modified block into the flush list in the right sorted position.
This function is used by recovery, because there the modifications do not
necessarily come in the order of lsn's. */
UNIV_INTERN
void
buf_flush_insert_sorted_into_flush_list(
/*====================================*/
buf_pool_t* buf_pool, /*!< in: buffer pool instance */
buf_block_t* block, /*!< in/out: block which is modified */
ib_uint64_t lsn) /*!< in: oldest modification */
{
buf_page_t* prev_b;
buf_page_t* b;
ut_ad(!buf_pool_mutex_own(buf_pool));
ut_ad(log_flush_order_mutex_own());
ut_ad(mutex_own(&block->mutex));
ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE);
buf_flush_list_mutex_enter(buf_pool);
/* The field in_LRU_list is protected by buf_pool->mutex, which
we are not holding. However, while a block is in the flush
list, it is dirty and cannot be discarded, not from the
page_hash or from the LRU list. At most, the uncompressed
page frame of a compressed block may be discarded or created
(copying the block->page to or from a buf_page_t that is
dynamically allocated from buf_buddy_alloc()). Because those
transitions hold block->mutex and the flush list mutex (via
buf_flush_relocate_on_flush_list()), there is no possibility
of a race condition in the assertions below. */
ut_ad(block->page.in_LRU_list);
ut_ad(block->page.in_page_hash);
/* buf_buddy_block_register() will take a block in the
BUF_BLOCK_MEMORY state, not a file page. */
ut_ad(!block->page.in_zip_hash);
ut_ad(!block->page.in_flush_list);
ut_d(block->page.in_flush_list = TRUE);
block->page.oldest_modification = lsn;
#ifdef UNIV_DEBUG_VALGRIND
{
ulint zip_size = buf_block_get_zip_size(block);
if (UNIV_UNLIKELY(zip_size)) {
UNIV_MEM_ASSERT_RW(block->page.zip.data, zip_size);
} else {
UNIV_MEM_ASSERT_RW(block->frame, UNIV_PAGE_SIZE);
}
}
#endif /* UNIV_DEBUG_VALGRIND */
prev_b = NULL;
/* For the most part when this function is called the flush_rbt
should not be NULL. In a very rare boundary case it is possible
that the flush_rbt has already been freed by the recovery thread
before the last page was hooked up in the flush_list by the
io-handler thread. In that case we'll just do a simple
linear search in the else block. */
if (buf_pool->flush_rbt) {
prev_b = buf_flush_insert_in_flush_rbt(&block->page);
} else {
b = UT_LIST_GET_FIRST(buf_pool->flush_list);
while (b && b->oldest_modification
> block->page.oldest_modification) {
ut_ad(b->in_flush_list);
prev_b = b;
b = UT_LIST_GET_NEXT(flush_list, b);
}
}
if (prev_b == NULL) {
UT_LIST_ADD_FIRST(flush_list, buf_pool->flush_list, &block->page);
} else {
UT_LIST_INSERT_AFTER(flush_list, buf_pool->flush_list,
prev_b, &block->page);
}
incr_flush_list_size_in_bytes(block, buf_pool);
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
ut_a(buf_flush_validate_low(buf_pool));
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
buf_flush_list_mutex_exit(buf_pool);
}
/********************************************************************//**
Returns TRUE if the file page block is immediately suitable for replacement,
i.e., the transition FILE_PAGE => NOT_USED allowed.
@return TRUE if can replace immediately */
UNIV_INTERN
ibool
buf_flush_ready_for_replace(
/*========================*/
buf_page_t* bpage) /*!< in: buffer control block, must be
buf_page_in_file(bpage) and in the LRU list */
{
#ifdef UNIV_DEBUG
//buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
//ut_ad(buf_pool_mutex_own(buf_pool));
#endif
ut_ad(mutex_own(buf_page_get_mutex(bpage)));
//ut_ad(bpage->in_LRU_list);
if (UNIV_LIKELY(bpage->in_LRU_list && buf_page_in_file(bpage))) {
return((bpage->oldest_modification == 0 || bpage->space_was_being_deleted)
&& buf_page_get_io_fix(bpage) == BUF_IO_NONE
&& bpage->buf_fix_count == 0);
}
/* permited not to own LRU_mutex.. */
/*
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: Error: buffer block state %lu"
" in the LRU list!\n",
(ulong) buf_page_get_state(bpage));
ut_print_buf(stderr, bpage, sizeof(buf_page_t));
putc('\n', stderr);
*/
return(FALSE);
}
/********************************************************************//**
Returns TRUE if the block is modified and ready for flushing.
@return TRUE if can flush immediately */
UNIV_INLINE
ibool
buf_flush_ready_for_flush(
/*======================*/
buf_page_t* bpage, /*!< in: buffer control block, must be
buf_page_in_file(bpage) */
enum buf_flush flush_type)/*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */
{
#ifdef UNIV_DEBUG
//buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
//ut_ad(buf_pool_mutex_own(buf_pool));
#endif
//ut_a(buf_page_in_file(bpage));
ut_ad(mutex_own(buf_page_get_mutex(bpage)));
ut_ad(flush_type == BUF_FLUSH_LRU || BUF_FLUSH_LIST);
if (buf_page_in_file(bpage) && bpage->oldest_modification != 0
&& buf_page_get_io_fix(bpage) == BUF_IO_NONE) {
ut_ad(bpage->in_flush_list);
if (bpage->space_was_being_deleted) {
/* should be removed from flush_list here */
/* because buf_flush_try_neighbors() cannot flush without fil_space_get_size(space) */
buf_flush_remove(bpage);
return(FALSE);
}
if (flush_type != BUF_FLUSH_LRU) {
return(TRUE);
} else if (bpage->buf_fix_count == 0) {
/* If we are flushing the LRU list, to avoid deadlocks
we require the block not to be bufferfixed, and hence
not latched. */
return(TRUE);
}
}
return(FALSE);
}
/********************************************************************//**
Remove a block from the flush list of modified blocks. */
UNIV_INTERN
void
buf_flush_remove(
/*=============*/
buf_page_t* bpage) /*!< in: pointer to the block in question */
{
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
ulint zip_size;
//ut_ad(buf_pool_mutex_own(buf_pool));
ut_ad(mutex_own(buf_page_get_mutex(bpage)));
ut_ad(bpage->in_flush_list);
buf_flush_list_mutex_enter(buf_pool);
switch (buf_page_get_state(bpage)) {
case BUF_BLOCK_ZIP_PAGE:
/* Clean compressed pages should not be on the flush list */
case BUF_BLOCK_ZIP_FREE:
case BUF_BLOCK_NOT_USED:
case BUF_BLOCK_READY_FOR_USE:
case BUF_BLOCK_MEMORY:
case BUF_BLOCK_REMOVE_HASH:
ut_error;
return;
case BUF_BLOCK_ZIP_DIRTY:
buf_page_set_state(bpage, BUF_BLOCK_ZIP_PAGE);
UT_LIST_REMOVE(flush_list, buf_pool->flush_list, bpage);
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
buf_LRU_insert_zip_clean(bpage);
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
break;
case BUF_BLOCK_FILE_PAGE:
UT_LIST_REMOVE(flush_list, buf_pool->flush_list, bpage);
break;
}
/* If the flush_rbt is active then delete from there as well. */
if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) {
buf_flush_delete_from_flush_rbt(bpage);
}
/* Must be done after we have removed it from the flush_rbt
because we assert on in_flush_list in comparison function. */
ut_d(bpage->in_flush_list = FALSE);
zip_size = page_zip_get_size(&bpage->zip);
buf_pool->stat.flush_list_bytes -= zip_size ? zip_size : UNIV_PAGE_SIZE;
bpage->oldest_modification = 0;
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
ut_a(buf_flush_validate_skip(buf_pool));
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
buf_flush_list_mutex_exit(buf_pool);
}
/*******************************************************************//**
Relocates a buffer control block on the flush_list.
Note that it is assumed that the contents of bpage have already been
copied to dpage.
IMPORTANT: When this function is called bpage and dpage are not
exact copies of each other. For example, they both will have different
::state. Also the ::list pointers in dpage may be stale. We need to
use the current list node (bpage) to do the list manipulation because
the list pointers could have changed between the time that we copied
the contents of bpage to the dpage and the flush list manipulation
below. */
UNIV_INTERN
void
buf_flush_relocate_on_flush_list(
/*=============================*/
buf_page_t* bpage, /*!< in/out: control block being moved */
buf_page_t* dpage) /*!< in/out: destination block */
{
buf_page_t* prev;
buf_page_t* prev_b = NULL;
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
//ut_ad(buf_pool_mutex_own(buf_pool));
/* Must reside in the same buffer pool. */
ut_ad(buf_pool == buf_pool_from_bpage(dpage));
ut_ad(mutex_own(buf_page_get_mutex(bpage)));
buf_flush_list_mutex_enter(buf_pool);
/* FIXME: At this point we have both buf_pool and flush_list
mutexes. Theoretically removal of a block from flush list is
only covered by flush_list mutex but currently we do
have buf_pool mutex in buf_flush_remove() therefore this block
is guaranteed to be in the flush list. We need to check if
this will work without the assumption of block removing code
having the buf_pool mutex. */
ut_ad(bpage->in_flush_list);
ut_ad(dpage->in_flush_list);
/* If recovery is active we must swap the control blocks in
the flush_rbt as well. */
if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) {
buf_flush_delete_from_flush_rbt(bpage);
prev_b = buf_flush_insert_in_flush_rbt(dpage);
}
/* Must be done after we have removed it from the flush_rbt
because we assert on in_flush_list in comparison function. */
ut_d(bpage->in_flush_list = FALSE);
prev = UT_LIST_GET_PREV(flush_list, bpage);
UT_LIST_REMOVE(flush_list, buf_pool->flush_list, bpage);
if (prev) {
ut_ad(prev->in_flush_list);
UT_LIST_INSERT_AFTER(
flush_list,
buf_pool->flush_list,
prev, dpage);
} else {
UT_LIST_ADD_FIRST(
flush_list,
buf_pool->flush_list,
dpage);
}
/* Just an extra check. Previous in flush_list
should be the same control block as in flush_rbt. */
ut_a(!buf_pool->flush_rbt || prev_b == prev);
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
ut_a(buf_flush_validate_low(buf_pool));
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
buf_flush_list_mutex_exit(buf_pool);
}
/********************************************************************//**
Updates the flush system data structures when a write is completed. */
UNIV_INTERN
void
buf_flush_write_complete(
/*=====================*/
buf_page_t* bpage) /*!< in: pointer to the block in question */
{
enum buf_flush flush_type;
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
ut_ad(bpage);
buf_flush_remove(bpage);
flush_type = buf_page_get_flush_type(bpage);
buf_pool->n_flush[flush_type]--;
if (flush_type == BUF_FLUSH_LRU) {
/* Put the block to the end of the LRU list to wait to be
moved to the free list */
buf_LRU_make_block_old(bpage);
buf_pool->LRU_flush_ended++;
}
/* fprintf(stderr, "n pending flush %lu\n",
buf_pool->n_flush[flush_type]); */
if (buf_pool->n_flush[flush_type] == 0
&& buf_pool->init_flush[flush_type] == FALSE) {
/* The running flush batch has ended */
os_event_set(buf_pool->no_flush[flush_type]);
}
}
/********************************************************************//**
Flush a batch of writes to the datafiles that have already been
written by the OS. */
static
void
buf_flush_sync_datafiles(void)
/*==========================*/
{
/* Wake possible simulated aio thread to actually post the
writes to the operating system */
os_aio_simulated_wake_handler_threads();
/* Wait that all async writes to tablespaces have been posted to
the OS */
os_aio_wait_until_no_pending_writes();
/* Now we flush the data to disk (for example, with fsync) */
fil_flush_file_spaces(FIL_TABLESPACE);
return;
}
/********************************************************************//**
Flushes possible buffered writes from the doublewrite memory buffer to disk,
and also wakes up the aio thread if simulated aio is used. It is very
important to call this function after a batch of writes has been posted,
and also when we may have to wait for a page latch! Otherwise a deadlock
of threads can occur. */
static
void
buf_flush_buffered_writes(void)
/*===========================*/
{
byte* write_buf;
ulint len;
ulint len2;
ulint i;
if (!srv_use_doublewrite_buf || trx_doublewrite == NULL) {
/* Sync the writes to the disk. */
buf_flush_sync_datafiles();
return;
}
mutex_enter(&(trx_doublewrite->mutex));
/* Write first to doublewrite buffer blocks. We use synchronous
aio and thus know that file write has been completed when the
control returns. */
if (trx_doublewrite->first_free == 0) {
mutex_exit(&(trx_doublewrite->mutex));
return;
}
for (i = 0; i < trx_doublewrite->first_free; i++) {
const buf_block_t* block;
block = (buf_block_t*) trx_doublewrite->buf_block_arr[i];
if (buf_block_get_state(block) != BUF_BLOCK_FILE_PAGE
|| block->page.zip.data) {
/* No simple validate for compressed pages exists. */
continue;
}
if (UNIV_UNLIKELY
(memcmp(block->frame + (FIL_PAGE_LSN + 4),
block->frame + (UNIV_PAGE_SIZE
- FIL_PAGE_END_LSN_OLD_CHKSUM + 4),
4))) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: ERROR: The page to be written"
" seems corrupt!\n"
"InnoDB: The lsn fields do not match!"
" Noticed in the buffer pool\n"
"InnoDB: before posting to the"
" doublewrite buffer.\n");
}
if (!block->check_index_page_at_flush) {
} else if (page_is_comp(block->frame)) {
if (UNIV_UNLIKELY
(!page_simple_validate_new(block->frame))) {
corrupted_page:
buf_page_print(block->frame, 0,
BUF_PAGE_PRINT_NO_CRASH);
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: Apparent corruption of an"
" index page n:o %lu in space %lu\n"
"InnoDB: to be written to data file."
" We intentionally crash server\n"
"InnoDB: to prevent corrupt data"
" from ending up in data\n"
"InnoDB: files.\n",
(ulong) buf_block_get_page_no(block),
(ulong) buf_block_get_space(block));
ut_error;
}
} else if (UNIV_UNLIKELY
(!page_simple_validate_old(block->frame))) {
goto corrupted_page;
}
}
/* increment the doublewrite flushed pages counter */
srv_dblwr_pages_written+= trx_doublewrite->first_free;
srv_dblwr_writes++;
len = ut_min(TRX_SYS_DOUBLEWRITE_BLOCK_SIZE,
trx_doublewrite->first_free) * UNIV_PAGE_SIZE;
write_buf = trx_doublewrite->write_buf;
i = 0;
fil_io(OS_FILE_WRITE, TRUE,
(srv_doublewrite_file ? TRX_DOUBLEWRITE_SPACE : TRX_SYS_SPACE), 0,
trx_doublewrite->block1, 0, len,
(void*) write_buf, NULL);
for (len2 = 0; len2 + UNIV_PAGE_SIZE <= len;
len2 += UNIV_PAGE_SIZE, i++) {
const buf_block_t* block = (buf_block_t*)
trx_doublewrite->buf_block_arr[i];
if (UNIV_LIKELY(!block->page.zip.data)
&& UNIV_LIKELY(buf_block_get_state(block)
== BUF_BLOCK_FILE_PAGE)
&& UNIV_UNLIKELY
(memcmp(write_buf + len2 + (FIL_PAGE_LSN + 4),
write_buf + len2
+ (UNIV_PAGE_SIZE
- FIL_PAGE_END_LSN_OLD_CHKSUM + 4), 4))) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: ERROR: The page to be written"
" seems corrupt!\n"
"InnoDB: The lsn fields do not match!"
" Noticed in the doublewrite block1.\n");
}
}
if (trx_doublewrite->first_free <= TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) {
goto flush;
}
len = (trx_doublewrite->first_free - TRX_SYS_DOUBLEWRITE_BLOCK_SIZE)
* UNIV_PAGE_SIZE;
write_buf = trx_doublewrite->write_buf
+ TRX_SYS_DOUBLEWRITE_BLOCK_SIZE * UNIV_PAGE_SIZE;
ut_ad(i == TRX_SYS_DOUBLEWRITE_BLOCK_SIZE);
fil_io(OS_FILE_WRITE, TRUE,
(srv_doublewrite_file ? TRX_DOUBLEWRITE_SPACE : TRX_SYS_SPACE), 0,
trx_doublewrite->block2, 0, len,
(void*) write_buf, NULL);
for (len2 = 0; len2 + UNIV_PAGE_SIZE <= len;
len2 += UNIV_PAGE_SIZE, i++) {
const buf_block_t* block = (buf_block_t*)
trx_doublewrite->buf_block_arr[i];
if (UNIV_LIKELY(!block->page.zip.data)
&& UNIV_LIKELY(buf_block_get_state(block)
== BUF_BLOCK_FILE_PAGE)
&& UNIV_UNLIKELY
(memcmp(write_buf + len2 + (FIL_PAGE_LSN + 4),
write_buf + len2
+ (UNIV_PAGE_SIZE
- FIL_PAGE_END_LSN_OLD_CHKSUM + 4), 4))) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: ERROR: The page to be"
" written seems corrupt!\n"
"InnoDB: The lsn fields do not match!"
" Noticed in"
" the doublewrite block2.\n");
}
}
flush:
/* Now flush the doublewrite buffer data to disk */
fil_flush(srv_doublewrite_file ? TRX_DOUBLEWRITE_SPACE : TRX_SYS_SPACE, FALSE);
/* We know that the writes have been flushed to disk now
and in recovery we will find them in the doublewrite buffer
blocks. Next do the writes to the intended positions. */
for (i = 0; i < trx_doublewrite->first_free; i++) {
const buf_block_t* block = (buf_block_t*)
trx_doublewrite->buf_block_arr[i];
ut_a(buf_page_in_file(&block->page));
if (UNIV_LIKELY_NULL(block->page.zip.data)) {
fil_io(OS_FILE_WRITE | OS_AIO_SIMULATED_WAKE_LATER,
FALSE, buf_page_get_space(&block->page),
buf_page_get_zip_size(&block->page),
buf_page_get_page_no(&block->page), 0,
buf_page_get_zip_size(&block->page),
(void*)block->page.zip.data,
(void*)block);
/* Increment the counter of I/O operations used
for selecting LRU policy. */
buf_LRU_stat_inc_io();
continue;
}
ut_a(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE);
if (UNIV_UNLIKELY(memcmp(block->frame + (FIL_PAGE_LSN + 4),
block->frame
+ (UNIV_PAGE_SIZE
- FIL_PAGE_END_LSN_OLD_CHKSUM + 4),
4))) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: ERROR: The page to be written"
" seems corrupt!\n"
"InnoDB: The lsn fields do not match!"
" Noticed in the buffer pool\n"
"InnoDB: after posting and flushing"
" the doublewrite buffer.\n"
"InnoDB: Page buf fix count %lu,"
" io fix %lu, state %lu\n",
(ulong)block->page.buf_fix_count,
(ulong)buf_block_get_io_fix_unlocked(block),
(ulong)buf_block_get_state(block));
}
fil_io(OS_FILE_WRITE | OS_AIO_SIMULATED_WAKE_LATER,
FALSE, buf_block_get_space(block), 0,
buf_block_get_page_no(block), 0, UNIV_PAGE_SIZE,
(void*)block->frame, (void*)block);
/* Increment the counter of I/O operations used
for selecting LRU policy. */
buf_LRU_stat_inc_io();
}
/* Sync the writes to the disk. */
buf_flush_sync_datafiles();
/* We can now reuse the doublewrite memory buffer: */
trx_doublewrite->first_free = 0;
mutex_exit(&(trx_doublewrite->mutex));
}
/********************************************************************//**
Posts a buffer page for writing. If the doublewrite memory buffer is
full, calls buf_flush_buffered_writes and waits for for free space to
appear. */
static
void
buf_flush_post_to_doublewrite_buf(
/*==============================*/
buf_page_t* bpage) /*!< in: buffer block to write */
{
ulint zip_size;
try_again:
mutex_enter(&(trx_doublewrite->mutex));
ut_a(buf_page_in_file(bpage));
if (trx_doublewrite->first_free
>= 2 * TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) {
mutex_exit(&(trx_doublewrite->mutex));
buf_flush_buffered_writes();
goto try_again;
}
zip_size = buf_page_get_zip_size(bpage);
if (UNIV_UNLIKELY(zip_size)) {
UNIV_MEM_ASSERT_RW(bpage->zip.data, zip_size);
/* Copy the compressed page and clear the rest. */
memcpy(trx_doublewrite->write_buf
+ UNIV_PAGE_SIZE * trx_doublewrite->first_free,
bpage->zip.data, zip_size);
memset(trx_doublewrite->write_buf
+ UNIV_PAGE_SIZE * trx_doublewrite->first_free
+ zip_size, 0, UNIV_PAGE_SIZE - zip_size);
} else {
ut_a(buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE);
UNIV_MEM_ASSERT_RW(((buf_block_t*) bpage)->frame,
UNIV_PAGE_SIZE);
memcpy(trx_doublewrite->write_buf
+ UNIV_PAGE_SIZE * trx_doublewrite->first_free,
((buf_block_t*) bpage)->frame, UNIV_PAGE_SIZE);
}
trx_doublewrite->buf_block_arr[trx_doublewrite->first_free] = bpage;
trx_doublewrite->first_free++;
if (trx_doublewrite->first_free
>= 2 * TRX_SYS_DOUBLEWRITE_BLOCK_SIZE) {
mutex_exit(&(trx_doublewrite->mutex));
buf_flush_buffered_writes();
return;
}
mutex_exit(&(trx_doublewrite->mutex));
}
#endif /* !UNIV_HOTBACKUP */
/********************************************************************//**
Initializes a page for writing to the tablespace. */
UNIV_INTERN
void
buf_flush_init_for_writing(
/*=======================*/
byte* page, /*!< in/out: page */
void* page_zip_, /*!< in/out: compressed page, or NULL */
ib_uint64_t newest_lsn) /*!< in: newest modification lsn
to the page */
{
ut_ad(page);
if (page_zip_) {
page_zip_des_t* page_zip = page_zip_;
ulint zip_size = page_zip_get_size(page_zip);
ut_ad(zip_size);
ut_ad(ut_is_2pow(zip_size));
ut_ad(zip_size <= UNIV_PAGE_SIZE);
switch (UNIV_EXPECT(fil_page_get_type(page), FIL_PAGE_INDEX)) {
case FIL_PAGE_TYPE_ALLOCATED:
case FIL_PAGE_INODE:
case FIL_PAGE_IBUF_BITMAP:
case FIL_PAGE_TYPE_FSP_HDR:
case FIL_PAGE_TYPE_XDES:
/* These are essentially uncompressed pages. */
memcpy(page_zip->data, page, zip_size);
/* fall through */
case FIL_PAGE_TYPE_ZBLOB:
case FIL_PAGE_TYPE_ZBLOB2:
case FIL_PAGE_INDEX:
mach_write_to_8(page_zip->data
+ FIL_PAGE_LSN, newest_lsn);
memset(page_zip->data + FIL_PAGE_FILE_FLUSH_LSN, 0, 8);
mach_write_to_4(page_zip->data
+ FIL_PAGE_SPACE_OR_CHKSUM,
srv_use_checksums
? page_zip_calc_checksum(
page_zip->data, zip_size)
: BUF_NO_CHECKSUM_MAGIC);
return;
}
ut_print_timestamp(stderr);
fputs(" InnoDB: ERROR: The compressed page to be written"
" seems corrupt:", stderr);
ut_print_buf(stderr, page, zip_size);
fputs("\nInnoDB: Possibly older version of the page:", stderr);
ut_print_buf(stderr, page_zip->data, zip_size);
putc('\n', stderr);
ut_error;
}
/* Write the newest modification lsn to the page header and trailer */
mach_write_to_8(page + FIL_PAGE_LSN, newest_lsn);
mach_write_to_8(page + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM,
newest_lsn);
/* Store the new formula checksum */
mach_write_to_4(page + FIL_PAGE_SPACE_OR_CHKSUM,
srv_use_checksums
? (!srv_fast_checksum
? buf_calc_page_new_checksum(page)
: buf_calc_page_new_checksum_32(page))
: BUF_NO_CHECKSUM_MAGIC);
/* We overwrite the first 4 bytes of the end lsn field to store
the old formula checksum. Since it depends also on the field
FIL_PAGE_SPACE_OR_CHKSUM, it has to be calculated after storing the
new formula checksum. */
mach_write_to_4(page + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM,
srv_use_checksums
? buf_calc_page_old_checksum(page)
: BUF_NO_CHECKSUM_MAGIC);
}
#ifndef UNIV_HOTBACKUP
/********************************************************************//**
Does an asynchronous write of a buffer page. NOTE: in simulated aio and
also when the doublewrite buffer is used, we must call
buf_flush_buffered_writes after we have posted a batch of writes! */
static
void
buf_flush_write_block_low(
/*======================*/
buf_page_t* bpage) /*!< in: buffer block to write */
{
ulint zip_size = buf_page_get_zip_size(bpage);
page_t* frame = NULL;
#ifdef UNIV_DEBUG
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
//ut_ad(!buf_pool_mutex_own(buf_pool));
#endif
#ifdef UNIV_LOG_DEBUG
static ibool univ_log_debug_warned;
#endif /* UNIV_LOG_DEBUG */
ut_ad(buf_page_in_file(bpage));
/* We are not holding buf_pool->mutex or block_mutex here.
Nevertheless, it is safe to access bpage, because it is
io_fixed and oldest_modification != 0. Thus, it cannot be
relocated in the buffer pool or removed from flush_list or
LRU_list. */
//ut_ad(!buf_pool_mutex_own(buf_pool));
ut_ad(!mutex_own(&buf_pool->LRU_list_mutex));
ut_ad(!buf_flush_list_mutex_own(buf_pool));
ut_ad(!mutex_own(buf_page_get_mutex(bpage)));
ut_ad(buf_page_get_io_fix_unlocked(bpage) == BUF_IO_WRITE);
ut_ad(bpage->oldest_modification != 0);
#ifdef UNIV_IBUF_COUNT_DEBUG
ut_a(ibuf_count_get(bpage->space, bpage->offset) == 0);
#endif
ut_ad(bpage->newest_modification != 0);
#ifdef UNIV_LOG_DEBUG
if (!univ_log_debug_warned) {
univ_log_debug_warned = TRUE;
fputs("Warning: cannot force log to disk if"
" UNIV_LOG_DEBUG is defined!\n"
"Crash recovery will not work!\n",
stderr);
}
#else
/* Force the log to the disk before writing the modified block */
log_write_up_to(bpage->newest_modification, LOG_WAIT_ALL_GROUPS, TRUE);
#endif
switch (buf_page_get_state(bpage)) {
case BUF_BLOCK_ZIP_FREE:
case BUF_BLOCK_ZIP_PAGE: /* The page should be dirty. */
case BUF_BLOCK_NOT_USED:
case BUF_BLOCK_READY_FOR_USE:
case BUF_BLOCK_MEMORY:
case BUF_BLOCK_REMOVE_HASH:
ut_error;
break;
case BUF_BLOCK_ZIP_DIRTY:
frame = bpage->zip.data;
if (UNIV_LIKELY(srv_use_checksums)) {
ut_a(mach_read_from_4(frame + FIL_PAGE_SPACE_OR_CHKSUM)
== page_zip_calc_checksum(frame, zip_size));
}
mach_write_to_8(frame + FIL_PAGE_LSN,
bpage->newest_modification);
memset(frame + FIL_PAGE_FILE_FLUSH_LSN, 0, 8);
break;
case BUF_BLOCK_FILE_PAGE:
frame = bpage->zip.data;
if (!frame) {
frame = ((buf_block_t*) bpage)->frame;
}
buf_flush_init_for_writing(((buf_block_t*) bpage)->frame,
bpage->zip.data
? &bpage->zip : NULL,
bpage->newest_modification);
break;
}
if (!srv_use_doublewrite_buf || !trx_doublewrite) {
fil_io(OS_FILE_WRITE | OS_AIO_SIMULATED_WAKE_LATER,
FALSE, buf_page_get_space(bpage), zip_size,
buf_page_get_page_no(bpage), 0,
zip_size ? zip_size : UNIV_PAGE_SIZE,
frame, bpage);
} else {
buf_flush_post_to_doublewrite_buf(bpage);
}
}
# if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG
/********************************************************************//**
Writes a flushable page asynchronously from the buffer pool to a file.
NOTE: block->mutex must be held upon entering this function, and it will be
released by this function after flushing.
This is loosely based on buf_flush_batch() and buf_flush_page().
@return TRUE if the page was flushed and the mutex released */
UNIV_INTERN
ibool
buf_flush_page_try(
/*===============*/
buf_pool_t* buf_pool, /*!< in/out: buffer pool instance */
buf_block_t* block) /*!< in/out: buffer control block */
{
//ut_ad(buf_pool_mutex_own(buf_pool));
ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE);
ut_ad(mutex_own(&block->mutex));
if (!buf_flush_ready_for_flush(&block->page, BUF_FLUSH_LRU)) {
return(FALSE);
}
buf_pool_mutex_enter(buf_pool);
if (buf_pool->n_flush[BUF_FLUSH_LRU] > 0
|| buf_pool->init_flush[BUF_FLUSH_LRU]) {
buf_pool_mutex_exit(buf_pool);
/* There is already a flush batch of the same type running */
return(FALSE);
}
buf_pool->init_flush[BUF_FLUSH_LRU] = TRUE;
buf_page_set_io_fix(&block->page, BUF_IO_WRITE);
buf_page_set_flush_type(&block->page, BUF_FLUSH_LRU);
if (buf_pool->n_flush[BUF_FLUSH_LRU]++ == 0) {
os_event_reset(buf_pool->no_flush[BUF_FLUSH_LRU]);
}
/* VERY IMPORTANT:
Because any thread may call the LRU flush, even when owning
locks on pages, to avoid deadlocks, we must make sure that the
s-lock is acquired on the page without waiting: this is
accomplished because buf_flush_ready_for_flush() must hold,
and that requires the page not to be bufferfixed. */
rw_lock_s_lock_gen(&block->lock, BUF_IO_WRITE);
/* Note that the s-latch is acquired before releasing the
buf_pool mutex: this ensures that the latch is acquired
immediately. */
mutex_exit(&block->mutex);
buf_pool_mutex_exit(buf_pool);
/* Even though block is not protected by any mutex at this
point, it is safe to access block, because it is io_fixed and
oldest_modification != 0. Thus, it cannot be relocated in the
buffer pool or removed from flush_list or LRU_list. */
buf_flush_write_block_low(&block->page);
buf_pool_mutex_enter(buf_pool);
buf_pool->init_flush[BUF_FLUSH_LRU] = FALSE;
if (buf_pool->n_flush[BUF_FLUSH_LRU] == 0) {
/* The running flush batch has ended */
os_event_set(buf_pool->no_flush[BUF_FLUSH_LRU]);
}
buf_pool_mutex_exit(buf_pool);
buf_flush_buffered_writes();
return(TRUE);
}
# endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */
/********************************************************************//**
Writes a flushable page asynchronously from the buffer pool to a file.
NOTE: in simulated aio we must call
os_aio_simulated_wake_handler_threads after we have posted a batch of
writes! NOTE: buf_pool->mutex and buf_page_get_mutex(bpage) must be
held upon entering this function, and they will be released by this
function. */
static
void
buf_flush_page(
/*===========*/
buf_pool_t* buf_pool, /*!< in: buffer pool instance */
buf_page_t* bpage, /*!< in: buffer control block */
enum buf_flush flush_type) /*!< in: BUF_FLUSH_LRU
or BUF_FLUSH_LIST */
{
mutex_t* block_mutex;
ibool is_uncompressed;
ut_ad(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST);
//ut_ad(buf_pool_mutex_own(buf_pool));
#ifdef UNIV_SYNC_DEBUG
ut_ad(rw_lock_own(&buf_pool->page_hash_latch, RW_LOCK_SHARED));
#endif
ut_ad(buf_page_in_file(bpage));
block_mutex = buf_page_get_mutex(bpage);
ut_ad(mutex_own(block_mutex));
buf_pool_mutex_enter(buf_pool);
rw_lock_s_unlock(&buf_pool->page_hash_latch);
ut_ad(buf_flush_ready_for_flush(bpage, flush_type));
buf_page_set_io_fix(bpage, BUF_IO_WRITE);
buf_page_set_flush_type(bpage, flush_type);
if (buf_pool->n_flush[flush_type] == 0) {
os_event_reset(buf_pool->no_flush[flush_type]);
}
buf_pool->n_flush[flush_type]++;
is_uncompressed = (buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE);
ut_ad(is_uncompressed == (block_mutex != &buf_pool->zip_mutex));
switch (flush_type) {
ibool is_s_latched;
case BUF_FLUSH_LIST:
/* If the simulated aio thread is not running, we must
not wait for any latch, as we may end up in a deadlock:
if buf_fix_count == 0, then we know we need not wait */
is_s_latched = (bpage->buf_fix_count == 0);
if (is_s_latched && is_uncompressed) {
rw_lock_s_lock_gen(&((buf_block_t*) bpage)->lock,
BUF_IO_WRITE);
}
mutex_exit(block_mutex);
buf_pool_mutex_exit(buf_pool);
/* Even though bpage is not protected by any mutex at
this point, it is safe to access bpage, because it is
io_fixed and oldest_modification != 0. Thus, it
cannot be relocated in the buffer pool or removed from
flush_list or LRU_list. */
if (!is_s_latched) {
buf_flush_buffered_writes();
if (is_uncompressed) {
rw_lock_s_lock_gen(&((buf_block_t*) bpage)
->lock, BUF_IO_WRITE);
}
}
break;
case BUF_FLUSH_LRU:
/* VERY IMPORTANT:
Because any thread may call the LRU flush, even when owning
locks on pages, to avoid deadlocks, we must make sure that the
s-lock is acquired on the page without waiting: this is
accomplished because buf_flush_ready_for_flush() must hold,
and that requires the page not to be bufferfixed. */
if (is_uncompressed) {
rw_lock_s_lock_gen(&((buf_block_t*) bpage)->lock,
BUF_IO_WRITE);
}
/* Note that the s-latch is acquired before releasing the
buf_pool mutex: this ensures that the latch is acquired
immediately. */
mutex_exit(block_mutex);
buf_pool_mutex_exit(buf_pool);
break;
default:
ut_error;
}
/* Even though bpage is not protected by any mutex at this
point, it is safe to access bpage, because it is io_fixed and
oldest_modification != 0. Thus, it cannot be relocated in the
buffer pool or removed from flush_list or LRU_list. */
#ifdef UNIV_DEBUG
if (buf_debug_prints) {
fprintf(stderr,
"Flushing %u space %u page %u\n",
flush_type, bpage->space, bpage->offset);
}
#endif /* UNIV_DEBUG */
buf_flush_write_block_low(bpage);
}
/***********************************************************//**
Flushes to disk all flushable pages within the flush area.
@return number of pages flushed */
static
ulint
buf_flush_try_neighbors(
/*====================*/
ulint space, /*!< in: space id */
ulint offset, /*!< in: page offset */
enum buf_flush flush_type, /*!< in: BUF_FLUSH_LRU or
BUF_FLUSH_LIST */
ulint n_flushed, /*!< in: number of pages
flushed so far in this batch */
ulint n_to_flush) /*!< in: maximum number of pages
we are allowed to flush */
{
ulint i;
ulint low;
ulint high;
ulint count = 0;
buf_pool_t* buf_pool = buf_pool_get(space, offset);
ibool is_forward_scan;
ut_ad(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST);
if (UT_LIST_GET_LEN(buf_pool->LRU) < BUF_LRU_OLD_MIN_LEN || !srv_flush_neighbor_pages) {
/* If there is little space, it is better not to flush
any block except from the end of the LRU list */
low = offset;
high = offset + 1;
} else {
/* When flushed, dirty blocks are searched in
neighborhoods of this size, and flushed along with the
original page. */
ulint buf_flush_area;
buf_flush_area = ut_min(
BUF_READ_AHEAD_AREA(buf_pool),
buf_pool->curr_size / 16);
low = (offset / buf_flush_area) * buf_flush_area;
high = (offset / buf_flush_area + 1) * buf_flush_area;
}
/* fprintf(stderr, "Flush area: low %lu high %lu\n", low, high); */
if (high > fil_space_get_size(space)) {
high = fil_space_get_size(space);
}
if (srv_flush_neighbor_pages == 2) {
/* In the case of contiguous flush where the requested page
does not fall at the start of flush area, first scan backward
from the page and later forward from it. */
is_forward_scan = (offset == low);
}
else {
is_forward_scan = TRUE;
}
scan:
if (srv_flush_neighbor_pages == 2) {
if (is_forward_scan) {
i = offset;
}
else {
i = offset - 1;
}
}
else {
i = low;
}
for (; is_forward_scan ? (i < high) : (i >= low);
is_forward_scan ? i++ : i--) {
buf_page_t* bpage;
if ((count + n_flushed) >= n_to_flush) {
/* We have already flushed enough pages and
should call it a day. There is, however, one
exception. If the page whose neighbors we
are flushing has not been flushed yet then
we'll try to flush the victim that we
selected originally. */
if (i <= offset) {
i = offset;
} else {
break;
}
}
buf_pool = buf_pool_get(space, i);
//buf_pool_mutex_enter(buf_pool);
rw_lock_s_lock(&buf_pool->page_hash_latch);
/* We only want to flush pages from this buffer pool. */
bpage = buf_page_hash_get(buf_pool, space, i);
if (!bpage) {
//buf_pool_mutex_exit(buf_pool);
rw_lock_s_unlock(&buf_pool->page_hash_latch);
if (srv_flush_neighbor_pages == 2) {
/* This is contiguous neighbor page flush and
the pages here are not contiguous. */
break;
}
continue;
}
ut_a(buf_page_in_file(bpage));
/* We avoid flushing 'non-old' blocks in an LRU flush,
because the flushed blocks are soon freed */
if (flush_type != BUF_FLUSH_LRU
|| i == offset
|| buf_page_is_old(bpage)) {
mutex_t* block_mutex = buf_page_get_mutex_enter(bpage);
if (block_mutex && buf_flush_ready_for_flush(bpage, flush_type)
&& (i == offset || !bpage->buf_fix_count)) {
/* We only try to flush those
neighbors != offset where the buf fix
count is zero, as we then know that we
probably can latch the page without a
semaphore wait. Semaphore waits are
expensive because we must flush the
doublewrite buffer before we start
waiting. */
buf_flush_page(buf_pool, bpage, flush_type);
ut_ad(!mutex_own(block_mutex));
ut_ad(!buf_pool_mutex_own(buf_pool));
count++;
continue;
} else if (block_mutex) {
mutex_exit(block_mutex);
}
}
//buf_pool_mutex_exit(buf_pool);
rw_lock_s_unlock(&buf_pool->page_hash_latch);
if (srv_flush_neighbor_pages == 2) {
/* We are trying to do the contiguous neighbor page
flush, but the last page we checked was unflushable,
making a "hole" in the flush, so stop this attempt. */
break;
}
}
if (!is_forward_scan) {
/* Backward scan done, now do the forward scan */
ut_a (srv_flush_neighbor_pages == 2);
is_forward_scan = TRUE;
goto scan;
}
return(count);
}
/********************************************************************//**
Check if the block is modified and ready for flushing. If the the block
is ready to flush then flush the page and try o flush its neighbors.
@return TRUE if LRU list mutex was not released during this function.
This does not guarantee that some pages were written as well.
Number of pages written are incremented to the count. */
static
ibool
buf_flush_page_and_try_neighbors(
/*=============================*/
buf_page_t* bpage, /*!< in: buffer control block */
enum buf_flush flush_type, /*!< in: BUF_FLUSH_LRU
or BUF_FLUSH_LIST */
ulint n_to_flush, /*!< in: number of pages to
flush */
ulint* count) /*!< in/out: number of pages
flushed */
{
mutex_t* block_mutex;
ibool flushed = FALSE;
#ifdef UNIV_DEBUG
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
#endif /* UNIV_DEBUG */
//ut_ad(buf_pool_mutex_own(buf_pool));
ut_ad(flush_type != BUF_FLUSH_LRU
|| mutex_own(&buf_pool->LRU_list_mutex));
block_mutex = buf_page_get_mutex_enter(bpage);
//ut_a(buf_page_in_file(bpage));
if (block_mutex && buf_flush_ready_for_flush(bpage, flush_type)) {
ulint space;
ulint offset;
buf_pool_t* buf_pool;
buf_pool = buf_pool_from_bpage(bpage);
//buf_pool_mutex_exit(buf_pool);
if (flush_type == BUF_FLUSH_LRU) {
mutex_exit(&buf_pool->LRU_list_mutex);
}
/* These fields are protected by both the
buffer pool mutex and block mutex. */
space = buf_page_get_space(bpage);
offset = buf_page_get_page_no(bpage);
mutex_exit(block_mutex);
/* Try to flush also all the neighbors */
*count += buf_flush_try_neighbors(space,
offset,
flush_type,
*count,
n_to_flush);
//buf_pool_mutex_enter(buf_pool);
if (flush_type == BUF_FLUSH_LRU) {
mutex_enter(&buf_pool->LRU_list_mutex);
}
flushed = TRUE;
} else if (block_mutex) {
mutex_exit(block_mutex);
}
//ut_ad(buf_pool_mutex_own(buf_pool));
ut_ad(flush_type != BUF_FLUSH_LRU
|| mutex_own(&buf_pool->LRU_list_mutex));
return(flushed);
}
/*******************************************************************//**
This utility flushes dirty blocks from the end of the LRU list.
In the case of an LRU flush the calling thread may own latches to
pages: to avoid deadlocks, this function must be written so that it
cannot end up waiting for these latches!
@return number of blocks for which the write request was queued. */
static
ulint
buf_flush_LRU_list_batch(
/*=====================*/
buf_pool_t* buf_pool, /*!< in: buffer pool instance */
ulint max) /*!< in: max of blocks to flush */
{
buf_page_t* bpage;
ulint count = 0;
//ut_ad(buf_pool_mutex_own(buf_pool));
ut_ad(mutex_own(&buf_pool->LRU_list_mutex));
do {
/* Start from the end of the list looking for a
suitable block to be flushed. */
bpage = UT_LIST_GET_LAST(buf_pool->LRU);
/* Iterate backwards over the flush list till we find
a page that isn't ready for flushing. */
while (bpage != NULL
&& !buf_flush_page_and_try_neighbors(
bpage, BUF_FLUSH_LRU, max, &count)) {
bpage = UT_LIST_GET_PREV(LRU, bpage);
}
} while (bpage != NULL && count < max);
/* We keep track of all flushes happening as part of LRU
flush. When estimating the desired rate at which flush_list
should be flushed, we factor in this value. */
buf_lru_flush_page_count += count;
//ut_ad(buf_pool_mutex_own(buf_pool));
ut_ad(mutex_own(&buf_pool->LRU_list_mutex));
return(count);
}
/*******************************************************************//**
This utility flushes dirty blocks from the end of the flush_list.
the calling thread is not allowed to own any latches on pages!
@return number of blocks for which the write request was queued;
ULINT_UNDEFINED if there was a flush of the same type already
running */
static
ulint
buf_flush_flush_list_batch(
/*=======================*/
buf_pool_t* buf_pool, /*!< in: buffer pool instance */
ulint min_n, /*!< in: wished minimum mumber
of blocks flushed (it is not
guaranteed that the actual
number is that big, though) */
ib_uint64_t lsn_limit) /*!< all blocks whose
oldest_modification is smaller
than this should be flushed (if
their number does not exceed
min_n) */
{
ulint len;
buf_page_t* bpage;
buf_page_t* prev_bpage = NULL;
ulint count = 0;
//ut_ad(buf_pool_mutex_own(buf_pool));
/* If we have flushed enough, leave the loop */
do {
/* Start from the end of the list looking for a suitable
block to be flushed. */
buf_flush_list_mutex_enter(buf_pool);
/* We use len here because theoretically insertions can
happen in the flush_list below while we are traversing
it for a suitable candidate for flushing. We'd like to
set a limit on how farther we are willing to traverse
the list. */
len = UT_LIST_GET_LEN(buf_pool->flush_list);
bpage = UT_LIST_GET_LAST(buf_pool->flush_list);
if (bpage) {
ut_a(bpage->oldest_modification > 0);
prev_bpage = UT_LIST_GET_PREV(flush_list, bpage);
}
if (!bpage || bpage->oldest_modification >= lsn_limit) {
/* We have flushed enough */
buf_flush_list_mutex_exit(buf_pool);
break;
}
ut_a(bpage->oldest_modification > 0);
ut_ad(bpage->in_flush_list);
buf_flush_list_mutex_exit(buf_pool);
/* The list may change during the flushing and we cannot
safely preserve within this function a pointer to a
block in the list! */
while (bpage != NULL
&& len > 0
&& !buf_flush_page_and_try_neighbors(
bpage, BUF_FLUSH_LIST, min_n, &count)) {
buf_flush_list_mutex_enter(buf_pool);
/* If we are here that means that buf_pool->mutex
was not released in buf_flush_page_and_try_neighbors()
above and this guarantees that bpage didn't get
relocated since we released the flush_list
mutex above. There is a chance, however, that
the bpage got removed from flush_list (not
currently possible because flush_list_remove()
also obtains buf_pool mutex but that may change
in future). To avoid this scenario we check
the oldest_modification and if it is zero
we start all over again. */
if (bpage->oldest_modification == 0) {
buf_flush_list_mutex_exit(buf_pool);
break;
}
bpage = UT_LIST_GET_PREV(flush_list, bpage);
//ut_ad(!bpage || bpage->in_flush_list);
if (bpage != prev_bpage) {
/* the search might warp.. retrying */
buf_flush_list_mutex_exit(buf_pool);
break;
}
if (bpage) {
prev_bpage = UT_LIST_GET_PREV(flush_list, bpage);
}
buf_flush_list_mutex_exit(buf_pool);
--len;
}
} while (count < min_n && bpage != NULL && len > 0);
//ut_ad(buf_pool_mutex_own(buf_pool));
return(count);
}
/*******************************************************************//**
This utility flushes dirty blocks from the end of the LRU list or flush_list.
NOTE 1: in the case of an LRU flush the calling thread may own latches to
pages: to avoid deadlocks, this function must be written so that it cannot
end up waiting for these latches! NOTE 2: in the case of a flush list flush,
the calling thread is not allowed to own any latches on pages!
@return number of blocks for which the write request was queued;
ULINT_UNDEFINED if there was a flush of the same type already running */
static
ulint
buf_flush_batch(
/*============*/
buf_pool_t* buf_pool, /*!< in: buffer pool instance */
enum buf_flush flush_type, /*!< in: BUF_FLUSH_LRU or
BUF_FLUSH_LIST; if BUF_FLUSH_LIST,
then the caller must not own any
latches on pages */
ulint min_n, /*!< in: wished minimum mumber of blocks
flushed (it is not guaranteed that the
actual number is that big, though) */
ib_uint64_t lsn_limit) /*!< in: in the case of BUF_FLUSH_LIST
all blocks whose oldest_modification is
smaller than this should be flushed
(if their number does not exceed
min_n), otherwise ignored */
{
ulint count = 0;
ut_ad(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST);
#ifdef UNIV_SYNC_DEBUG
ut_ad((flush_type != BUF_FLUSH_LIST)
|| sync_thread_levels_empty_except_dict());
#endif /* UNIV_SYNC_DEBUG */
//buf_pool_mutex_enter(buf_pool);
/* Note: The buffer pool mutex is released and reacquired within
the flush functions. */
switch(flush_type) {
case BUF_FLUSH_LRU:
mutex_enter(&buf_pool->LRU_list_mutex);
count = buf_flush_LRU_list_batch(buf_pool, min_n);
mutex_exit(&buf_pool->LRU_list_mutex);
break;
case BUF_FLUSH_LIST:
count = buf_flush_flush_list_batch(buf_pool, min_n, lsn_limit);
break;
default:
ut_error;
}
//buf_pool_mutex_exit(buf_pool);
buf_flush_buffered_writes();
#ifdef UNIV_DEBUG
if (buf_debug_prints && count > 0) {
fprintf(stderr, flush_type == BUF_FLUSH_LRU
? "Flushed %lu pages in LRU flush\n"
: "Flushed %lu pages in flush list flush\n",
(ulong) count);
}
#endif /* UNIV_DEBUG */
return(count);
}
/******************************************************************//**
Gather the aggregated stats for both flush list and LRU list flushing */
static
void
buf_flush_common(
/*=============*/
enum buf_flush flush_type, /*!< in: type of flush */
ulint page_count) /*!< in: number of pages flushed */
{
buf_flush_buffered_writes();
ut_a(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST);
#ifdef UNIV_DEBUG
if (buf_debug_prints && page_count > 0) {
fprintf(stderr, flush_type == BUF_FLUSH_LRU
? "Flushed %lu pages in LRU flush\n"
: "Flushed %lu pages in flush list flush\n",
(ulong) page_count);
}
#endif /* UNIV_DEBUG */
srv_buf_pool_flushed += page_count;
}
/******************************************************************//**
Start a buffer flush batch for LRU or flush list */
static
ibool
buf_flush_start(
/*============*/
buf_pool_t* buf_pool, /*!< buffer pool instance */
enum buf_flush flush_type) /*!< in: BUF_FLUSH_LRU
or BUF_FLUSH_LIST */
{
buf_pool_mutex_enter(buf_pool);
if (buf_pool->n_flush[flush_type] > 0
|| buf_pool->init_flush[flush_type] == TRUE) {
/* There is already a flush batch of the same type running */
buf_pool_mutex_exit(buf_pool);
return(FALSE);
}
buf_pool->init_flush[flush_type] = TRUE;
buf_pool_mutex_exit(buf_pool);
return(TRUE);
}
/******************************************************************//**
End a buffer flush batch for LRU or flush list */
static
void
buf_flush_end(
/*==========*/
buf_pool_t* buf_pool, /*!< buffer pool instance */
enum buf_flush flush_type) /*!< in: BUF_FLUSH_LRU
or BUF_FLUSH_LIST */
{
buf_pool_mutex_enter(buf_pool);
buf_pool->init_flush[flush_type] = FALSE;
if (buf_pool->n_flush[flush_type] == 0) {
/* The running flush batch has ended */
os_event_set(buf_pool->no_flush[flush_type]);
}
buf_pool_mutex_exit(buf_pool);
}
/******************************************************************//**
Waits until a flush batch of the given type ends */
UNIV_INTERN
void
buf_flush_wait_batch_end(
/*=====================*/
buf_pool_t* buf_pool, /*!< buffer pool instance */
enum buf_flush type) /*!< in: BUF_FLUSH_LRU
or BUF_FLUSH_LIST */
{
ut_ad(type == BUF_FLUSH_LRU || type == BUF_FLUSH_LIST);
if (buf_pool == NULL) {
ulint i;
for (i = 0; i < srv_buf_pool_instances; ++i) {
buf_pool_t* buf_pool;
buf_pool = buf_pool_from_array(i);
thd_wait_begin(NULL, THD_WAIT_DISKIO);
os_event_wait(buf_pool->no_flush[type]);
thd_wait_end(NULL);
}
} else {
thd_wait_begin(NULL, THD_WAIT_DISKIO);
os_event_wait(buf_pool->no_flush[type]);
thd_wait_end(NULL);
}
}
/*******************************************************************//**
This utility flushes dirty blocks from the end of the LRU list.
NOTE: The calling thread may own latches to pages: to avoid deadlocks,
this function must be written so that it cannot end up waiting for these
latches!
@return number of blocks for which the write request was queued;
ULINT_UNDEFINED if there was a flush of the same type already running */
UNIV_INTERN
ulint
buf_flush_LRU(
/*==========*/
buf_pool_t* buf_pool, /*!< in: buffer pool instance */
ulint min_n) /*!< in: wished minimum mumber of blocks
flushed (it is not guaranteed that the
actual number is that big, though) */
{
ulint page_count;
if (!buf_flush_start(buf_pool, BUF_FLUSH_LRU)) {
return(ULINT_UNDEFINED);
}
page_count = buf_flush_batch(buf_pool, BUF_FLUSH_LRU, min_n, 0);
buf_flush_end(buf_pool, BUF_FLUSH_LRU);
buf_flush_common(BUF_FLUSH_LRU, page_count);
return(page_count);
}
/*******************************************************************//**
This utility flushes dirty blocks from the end of the flush list of
all buffer pool instances.
NOTE: The calling thread is not allowed to own any latches on pages!
@return number of blocks for which the write request was queued;
ULINT_UNDEFINED if there was a flush of the same type already running */
UNIV_INTERN
ulint
buf_flush_list(
/*===========*/
ulint min_n, /*!< in: wished minimum mumber of blocks
flushed (it is not guaranteed that the
actual number is that big, though) */
ib_uint64_t lsn_limit) /*!< in the case BUF_FLUSH_LIST all
blocks whose oldest_modification is
smaller than this should be flushed
(if their number does not exceed
min_n), otherwise ignored */
{
ulint i;
ulint total_page_count = 0;
ibool skipped = FALSE;
if (min_n != ULINT_MAX) {
/* Ensure that flushing is spread evenly amongst the
buffer pool instances. When min_n is ULINT_MAX
we need to flush everything up to the lsn limit
so no limit here. */
min_n = (min_n + srv_buf_pool_instances - 1)
/ srv_buf_pool_instances;
}
/* Flush to lsn_limit in all buffer pool instances */
for (i = 0; i < srv_buf_pool_instances; i++) {
buf_pool_t* buf_pool;
ulint page_count = 0;
buf_pool = buf_pool_from_array(i);
if (!buf_flush_start(buf_pool, BUF_FLUSH_LIST)) {
/* We have two choices here. If lsn_limit was
specified then skipping an instance of buffer
pool means we cannot guarantee that all pages
up to lsn_limit has been flushed. We can
return right now with failure or we can try
to flush remaining buffer pools up to the
lsn_limit. We attempt to flush other buffer
pools based on the assumption that it will
help in the retry which will follow the
failure. */
skipped = TRUE;
continue;
}
page_count = buf_flush_batch(
buf_pool, BUF_FLUSH_LIST, min_n, lsn_limit);
buf_flush_end(buf_pool, BUF_FLUSH_LIST);
buf_flush_common(BUF_FLUSH_LIST, page_count);
total_page_count += page_count;
}
return(lsn_limit != IB_ULONGLONG_MAX && skipped
? ULINT_UNDEFINED : total_page_count);
}
/******************************************************************//**
Gives a recommendation of how many blocks should be flushed to establish
a big enough margin of replaceable blocks near the end of the LRU list
and in the free list.
@return number of blocks which should be flushed from the end of the
LRU list */
static
ulint
buf_flush_LRU_recommendation(
/*=========================*/
buf_pool_t* buf_pool) /*!< in: Buffer pool instance */
{
buf_page_t* bpage;
ulint n_replaceable;
ulint distance = 0;
ibool have_LRU_mutex = FALSE;
if(UT_LIST_GET_LEN(buf_pool->unzip_LRU))
have_LRU_mutex = TRUE;
retry:
//buf_pool_mutex_enter(buf_pool);
if (have_LRU_mutex)
mutex_enter(&buf_pool->LRU_list_mutex);
n_replaceable = UT_LIST_GET_LEN(buf_pool->free);
bpage = UT_LIST_GET_LAST(buf_pool->LRU);
while ((bpage != NULL)
&& (n_replaceable < BUF_FLUSH_FREE_BLOCK_MARGIN(buf_pool)
+ BUF_FLUSH_EXTRA_MARGIN(buf_pool))
&& (distance < BUF_LRU_FREE_SEARCH_LEN(buf_pool))) {
mutex_t* block_mutex;
if (!bpage->in_LRU_list) {
/* reatart. but it is very optimistic */
bpage = UT_LIST_GET_LAST(buf_pool->LRU);
continue;
}
block_mutex = buf_page_get_mutex_enter(bpage);
if (block_mutex && buf_flush_ready_for_replace(bpage)) {
n_replaceable++;
}
if (block_mutex) {
mutex_exit(block_mutex);
}
distance++;
bpage = UT_LIST_GET_PREV(LRU, bpage);
}
//buf_pool_mutex_exit(buf_pool);
if (have_LRU_mutex)
mutex_exit(&buf_pool->LRU_list_mutex);
if (n_replaceable >= BUF_FLUSH_FREE_BLOCK_MARGIN(buf_pool)) {
return(0);
} else if (!have_LRU_mutex) {
/* confirm it again with LRU_mutex for exactness */
have_LRU_mutex = TRUE;
distance = 0;
goto retry;
}
return(BUF_FLUSH_FREE_BLOCK_MARGIN(buf_pool)
+ BUF_FLUSH_EXTRA_MARGIN(buf_pool)
- n_replaceable);
}
/*********************************************************************//**
Flushes pages from the end of the LRU list if there is too small a margin
of replaceable pages there or in the free list. VERY IMPORTANT: this function
is called also by threads which have locks on pages. To avoid deadlocks, we
flush only pages such that the s-lock required for flushing can be acquired
immediately, without waiting. */
UNIV_INTERN
void
buf_flush_free_margin(
/*==================*/
buf_pool_t* buf_pool, /*!< in: Buffer pool instance */
ibool wait)
{
ulint n_to_flush;
n_to_flush = buf_flush_LRU_recommendation(buf_pool);
if (n_to_flush > 0) {
ulint n_flushed;
n_flushed = buf_flush_LRU(buf_pool, n_to_flush);
if (wait && n_flushed == ULINT_UNDEFINED) {
/* There was an LRU type flush batch already running;
let us wait for it to end */
buf_flush_wait_batch_end(buf_pool, BUF_FLUSH_LRU);
}
}
}
/*********************************************************************//**
Flushes pages from the end of all the LRU lists. */
UNIV_INTERN
void
buf_flush_free_margins(
/*========================*/
ibool wait)
{
ulint i;
for (i = 0; i < srv_buf_pool_instances; i++) {
buf_pool_t* buf_pool;
buf_pool = buf_pool_from_array(i);
buf_flush_free_margin(buf_pool, wait);
}
}
/*********************************************************************
Update the historical stats that we are collecting for flush rate
heuristics at the end of each interval.
Flush rate heuristic depends on (a) rate of redo log generation and
(b) the rate at which LRU flush is happening. */
UNIV_INTERN
void
buf_flush_stat_update(void)
/*=======================*/
{
buf_flush_stat_t* item;
ib_uint64_t lsn_diff;
ib_uint64_t lsn;
ulint n_flushed;
lsn = log_get_lsn();
if (buf_flush_stat_cur.redo == 0) {
/* First time around. Just update the current LSN
and return. */
buf_flush_stat_cur.redo = lsn;
return;
}
item = &buf_flush_stat_arr[buf_flush_stat_arr_ind];
/* values for this interval */
lsn_diff = lsn - buf_flush_stat_cur.redo;
n_flushed = buf_lru_flush_page_count
- buf_flush_stat_cur.n_flushed;
/* add the current value and subtract the obsolete entry. */
buf_flush_stat_sum.redo += lsn_diff - item->redo;
buf_flush_stat_sum.n_flushed += n_flushed - item->n_flushed;
/* put current entry in the array. */
item->redo = lsn_diff;
item->n_flushed = n_flushed;
/* update the index */
buf_flush_stat_arr_ind++;
buf_flush_stat_arr_ind %= BUF_FLUSH_STAT_N_INTERVAL;
/* reset the current entry. */
buf_flush_stat_cur.redo = lsn;
buf_flush_stat_cur.n_flushed = buf_lru_flush_page_count;
}
/*********************************************************************
Determines the fraction of dirty pages that need to be flushed based
on the speed at which we generate redo log. Note that if redo log
is generated at a significant rate without corresponding increase
in the number of dirty pages (for example, an in-memory workload)
it can cause IO bursts of flushing. This function implements heuristics
to avoid this burstiness.
@return number of dirty pages to be flushed / second */
UNIV_INTERN
ulint
buf_flush_get_desired_flush_rate(void)
/*==================================*/
{
ulint i;
lint rate;
ulint redo_avg;
ulint n_dirty = 0;
ulint n_flush_req;
ulint lru_flush_avg;
ib_uint64_t lsn = log_get_lsn();
ulint log_capacity = log_get_capacity();
/* log_capacity should never be zero after the initialization
of log subsystem. */
ut_ad(log_capacity != 0);
/* Get total number of dirty pages. It is OK to access
flush_list without holding any mutex as we are using this
only for heuristics. */
for (i = 0; i < srv_buf_pool_instances; i++) {
buf_pool_t* buf_pool;
buf_pool = buf_pool_from_array(i);
n_dirty += UT_LIST_GET_LEN(buf_pool->flush_list);
}
/* An overflow can happen if we generate more than 2^32 bytes
of redo in this interval i.e.: 4G of redo in 1 second. We can
safely consider this as infinity because if we ever come close
to 4G we'll start a synchronous flush of dirty pages. */
/* redo_avg below is average at which redo is generated in
past BUF_FLUSH_STAT_N_INTERVAL + redo generated in the current
interval. */
redo_avg = (ulint) (buf_flush_stat_sum.redo
/ BUF_FLUSH_STAT_N_INTERVAL
+ (lsn - buf_flush_stat_cur.redo));
/* An overflow can happen possibly if we flush more than 2^32
pages in BUF_FLUSH_STAT_N_INTERVAL. This is a very very
unlikely scenario. Even when this happens it means that our
flush rate will be off the mark. It won't affect correctness
of any subsystem. */
/* lru_flush_avg below is rate at which pages are flushed as
part of LRU flush in past BUF_FLUSH_STAT_N_INTERVAL + the
number of pages flushed in the current interval. */
lru_flush_avg = buf_flush_stat_sum.n_flushed
/ BUF_FLUSH_STAT_N_INTERVAL
+ (buf_lru_flush_page_count
- buf_flush_stat_cur.n_flushed);
n_flush_req = (n_dirty * redo_avg) / log_capacity;
/* The number of pages that we want to flush from the flush
list is the difference between the required rate and the
number of pages that we are historically flushing from the
LRU list */
rate = n_flush_req - lru_flush_avg;
return(rate > 0 ? (ulint) rate : 0);
}
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
/******************************************************************//**
Validates the flush list.
@return TRUE if ok */
static
ibool
buf_flush_validate_low(
/*===================*/
buf_pool_t* buf_pool) /*!< in: Buffer pool instance */
{
buf_page_t* bpage;
const ib_rbt_node_t* rnode = NULL;
ut_ad(buf_flush_list_mutex_own(buf_pool));
UT_LIST_VALIDATE(flush_list, buf_page_t, buf_pool->flush_list,
ut_ad(ut_list_node_313->in_flush_list));
bpage = UT_LIST_GET_FIRST(buf_pool->flush_list);
/* If we are in recovery mode i.e.: flush_rbt != NULL
then each block in the flush_list must also be present
in the flush_rbt. */
if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) {
rnode = rbt_first(buf_pool->flush_rbt);
}
while (bpage != NULL) {
const ib_uint64_t om = bpage->oldest_modification;
ut_ad(buf_pool_from_bpage(bpage) == buf_pool);
ut_ad(bpage->in_flush_list);
/* A page in buf_pool->flush_list can be in
BUF_BLOCK_REMOVE_HASH state. This happens when a page
is in the middle of being relocated. In that case the
original descriptor can have this state and still be
in the flush list waiting to acquire the
buf_pool->flush_list_mutex to complete the relocation. */
ut_a(buf_page_in_file(bpage)
|| buf_page_get_state(bpage) == BUF_BLOCK_REMOVE_HASH);
ut_a(om > 0);
if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) {
buf_page_t** prpage;
ut_a(rnode);
prpage = rbt_value(buf_page_t*, rnode);
ut_a(*prpage);
ut_a(*prpage == bpage);
rnode = rbt_next(buf_pool->flush_rbt, rnode);
}
bpage = UT_LIST_GET_NEXT(flush_list, bpage);
ut_a(!bpage || om >= bpage->oldest_modification);
}
/* By this time we must have exhausted the traversal of
flush_rbt (if active) as well. */
ut_a(rnode == NULL);
return(TRUE);
}
/******************************************************************//**
Validates the flush list.
@return TRUE if ok */
UNIV_INTERN
ibool
buf_flush_validate(
/*===============*/
buf_pool_t* buf_pool) /*!< buffer pool instance */
{
ibool ret;
buf_flush_list_mutex_enter(buf_pool);
ret = buf_flush_validate_low(buf_pool);
buf_flush_list_mutex_exit(buf_pool);
return(ret);
}
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
#endif /* !UNIV_HOTBACKUP */
|