1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
/*
An alternative implementation of "strtod()" that is both
simplier, and thread-safe.
Original code from mit-threads as bundled with MySQL 3.23
SQL:2003 specifies a number as
<signed numeric literal> ::= [ <sign> ] <unsigned numeric literal>
<unsigned numeric literal> ::=
<exact numeric literal>
| <approximate numeric literal>
<exact numeric literal> ::=
<unsigned integer> [ <period> [ <unsigned integer> ] ]
| <period> <unsigned integer>
<approximate numeric literal> ::= <mantissa> E <exponent>
<mantissa> ::= <exact numeric literal>
<exponent> ::= <signed integer>
So do we.
*/
#include <my_base.h> /* Includes errno.h */
#include <m_ctype.h>
#define MAX_DBL_EXP 308
#define MAX_RESULT_FOR_MAX_EXP 1.7976931348623157
#define MIN_RESULT_FOR_MIN_EXP 2.225073858507202
static double scaler10[] = {
1.0, 1e10, 1e20, 1e30, 1e40, 1e50, 1e60, 1e70, 1e80, 1e90
};
static double scaler1[] = {
1.0, 10.0, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9
};
/*
Convert string to double (string doesn't have to be null terminated)
SYNOPSIS
my_strtod()
str String to convert
end_ptr Pointer to pointer that points to end of string
Will be updated to point to end of double.
error Will contain error number in case of error (else 0)
RETURN
value of str as double
*/
double my_strtod(const char *str, char **end_ptr, int *error)
{
double result= 0.0;
uint negative= 0, ndigits, dec_digits= 0, neg_exp= 0;
int exp= 0, digits_after_dec_point= 0, tmp_exp;
const char *old_str, *end= *end_ptr, *start_of_number;
char next_char;
my_bool overflow=0;
double scaler= 1.0;
*error= 0;
if (str >= end)
goto done;
while (my_isspace(&my_charset_latin1, *str))
{
if (++str == end)
goto done;
}
start_of_number= str;
if ((negative= (*str == '-')) || *str=='+')
{
if (++str == end)
goto done; /* Could be changed to error */
}
/* Skip pre-zero for easier calculation of overflows */
while (*str == '0')
{
if (++str == end)
goto done;
start_of_number= 0; /* Found digit */
}
old_str= str;
while ((next_char= *str) >= '0' && next_char <= '9')
{
result= result*10.0 + (next_char - '0');
scaler= scaler*10.0;
if (++str == end)
{
next_char= 0; /* Found end of string */
break;
}
start_of_number= 0; /* Found digit */
}
ndigits= (uint) (str-old_str);
if (next_char == '.' && str < end-1)
{
/*
Continue to add numbers after decimal point to the result, as if there
was no decimal point. We will later (in the exponent handling) shift
the number down with the required number of fractions. We do it this
way to be able to get maximum precision for numbers like 123.45E+02,
which are normal for some ODBC applications.
*/
old_str= ++str;
while (my_isdigit(&my_charset_latin1, (next_char= *str)))
{
result= result*10.0 + (next_char - '0');
digits_after_dec_point++;
scaler= scaler*10.0;
if (++str == end)
{
next_char= 0;
break;
}
}
/* If we found just '+.' or '.' then point at first character */
if (!(dec_digits= (uint) (str-old_str)) && start_of_number)
str= start_of_number; /* Point at '+' or '.' */
}
if ((next_char == 'e' || next_char == 'E') &&
dec_digits + ndigits != 0 && str < end-1)
{
const char *old_str= str++;
if ((neg_exp= (*str == '-')) || *str == '+')
str++;
if (str == end || !my_isdigit(&my_charset_latin1, *str))
str= old_str;
else
{
do
{
if (exp < 9999) /* prot. against exp overfl. */
exp= exp*10 + (*str - '0');
str++;
} while (str < end && my_isdigit(&my_charset_latin1, *str));
}
}
tmp_exp= neg_exp ? exp + digits_after_dec_point : exp - digits_after_dec_point;
if (tmp_exp)
{
int order;
/*
Check for underflow/overflow.
order is such an integer number that f = C * 10 ^ order,
where f is the resulting floating point number and 1 <= C < 10.
Here we compute the modulus
*/
order= exp + (neg_exp ? -1 : 1) * (ndigits - 1);
if (order < 0)
order= -order;
if (order >= MAX_DBL_EXP && result)
{
double c;
/* Compute modulus of C (see comment above) */
c= result / scaler * 10.0;
if (neg_exp)
{
if (order > MAX_DBL_EXP || c < MIN_RESULT_FOR_MIN_EXP)
{
result= 0.0;
goto done;
}
}
else
{
if (order > MAX_DBL_EXP || c > MAX_RESULT_FOR_MAX_EXP)
{
overflow= 1;
goto done;
}
}
}
exp= tmp_exp;
if (exp < 0)
{
exp= -exp;
neg_exp= 1; /* neg_exp was 0 before */
}
while (exp >= 100)
{
result= neg_exp ? result/1.0e100 : result*1.0e100;
exp-= 100;
}
scaler= scaler10[exp/10]*scaler1[exp%10];
if (neg_exp)
result/= scaler;
else
result*= scaler;
}
done:
*end_ptr= (char*) str; /* end of number */
if (overflow || isinf(result))
{
result= DBL_MAX;
*error= EOVERFLOW;
}
return negative ? -result : result;
}
double my_atof(const char *nptr)
{
int error;
const char *end= nptr+65535; /* Should be enough */
return (my_strtod(nptr, (char**) &end, &error));
}
|