1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
|
/* Copyright (C) 2019, 2020, MariaDB Corporation.
This program is free software; you can redistribute itand /or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111 - 1301 USA*/
#include "tpool_structs.h"
#include <limits.h>
#include <algorithm>
#include <assert.h>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <iostream>
#include <limits.h>
#include <mutex>
#include <queue>
#include <stack>
#include <thread>
#include <vector>
#include "tpool.h"
#include <assert.h>
#include <my_global.h>
#include <my_dbug.h>
#include <thr_timer.h>
#include <stdlib.h>
namespace tpool
{
#ifdef __linux__
#if defined(HAVE_URING) || defined(LINUX_NATIVE_AIO)
extern aio* create_linux_aio(thread_pool* tp, int max_io);
#else
aio *create_linux_aio(thread_pool *, int) { return nullptr; };
#endif
#endif
#ifdef _WIN32
extern aio* create_win_aio(thread_pool* tp, int max_io);
#endif
static const std::chrono::milliseconds LONG_TASK_DURATION = std::chrono::milliseconds(500);
static const int OVERSUBSCRIBE_FACTOR = 2;
/**
Implementation of generic threadpool.
This threadpool consists of the following components
- The task queue. This queue is populated by submit()
- Worker that execute the work items.
- Timer thread that takes care of pool health
The task queue is populated by submit() method.
on submit(), a worker thread can be woken, or created
to execute tasks.
The timer thread watches if work items are being dequeued, and if not,
this can indicate potential deadlock.
Thus the timer thread can also wake or create a thread, to ensure some progress.
Optimizations:
- worker threads that are idle for long time will shutdown.
- worker threads are woken in LIFO order, which minimizes context switching
and also ensures that idle timeout works well. LIFO wakeup order ensures
that active threads stay active, and idle ones stay idle.
*/
/**
Worker wakeup flags.
*/
enum worker_wake_reason
{
WAKE_REASON_NONE,
WAKE_REASON_TASK,
WAKE_REASON_SHUTDOWN
};
/* A per-worker thread structure.*/
struct MY_ALIGNED(CPU_LEVEL1_DCACHE_LINESIZE) worker_data
{
/** Condition variable to wakeup this worker.*/
std::condition_variable m_cv;
/** Reason why worker was woken. */
worker_wake_reason m_wake_reason;
/**
If worker wakes up with WAKE_REASON_TASK, this the task it needs to execute.
*/
task* m_task;
/** Struct is member of intrusive doubly linked list */
worker_data* m_prev;
worker_data* m_next;
/* Current state of the worker.*/
enum state
{
NONE = 0,
EXECUTING_TASK = 1,
LONG_TASK = 2,
WAITING = 4
};
int m_state;
bool is_executing_task()
{
return m_state & EXECUTING_TASK;
}
bool is_long_task()
{
return m_state & LONG_TASK;
}
bool is_waiting()
{
return m_state & WAITING;
}
std::chrono::system_clock::time_point m_task_start_time;
worker_data() :
m_cv(),
m_wake_reason(WAKE_REASON_NONE),
m_task(),
m_prev(),
m_next(),
m_state(NONE),
m_task_start_time()
{}
/*Define custom new/delete because of overaligned structure. */
void* operator new(size_t size)
{
#ifdef _WIN32
return _aligned_malloc(size, CPU_LEVEL1_DCACHE_LINESIZE);
#else
void* ptr;
int ret = posix_memalign(&ptr, CPU_LEVEL1_DCACHE_LINESIZE, size);
return ret ? 0 : ptr;
#endif
}
void operator delete(void* p)
{
#ifdef _WIN32
_aligned_free(p);
#else
free(p);
#endif
}
};
static thread_local worker_data* tls_worker_data;
class thread_pool_generic : public thread_pool
{
/** Cache for per-worker structures */
cache<worker_data> m_thread_data_cache;
/** The task queue */
circular_queue<task*> m_task_queue;
/** List of standby (idle) workers */
doubly_linked_list<worker_data> m_standby_threads;
/** List of threads that are executing tasks */
doubly_linked_list<worker_data> m_active_threads;
/* Mutex that protects the whole struct, most importantly
the standby threads list, and task queue */
std::mutex m_mtx;
/** Timeout after which idle worker shuts down */
std::chrono::milliseconds m_thread_timeout;
/** How often should timer wakeup.*/
std::chrono::milliseconds m_timer_interval;
/** Another condition variable, used in pool shutdown */
std::condition_variable m_cv_no_threads;
/** Condition variable for the timer thread. Signaled on shutdown. */
std::condition_variable m_cv_timer;
/** Overall number of enqueues*/
unsigned long long m_tasks_enqueued;
unsigned long long m_group_enqueued;
/** Overall number of dequeued tasks. */
unsigned long long m_tasks_dequeued;
/** Statistic related, number of worker thread wakeups */
int m_wakeups;
/**
Statistic related, number of spurious thread wakeups
(i.e thread woke up, and the task queue is empty)
*/
int m_spurious_wakeups;
/** The desired concurrency. This number of workers should be
actively executing. */
unsigned int m_concurrency;
/** True, if threadpool is being shutdown, false otherwise */
bool m_in_shutdown;
/** Maintenance timer state : true = active(ON),false = inactive(OFF)*/
enum class timer_state_t
{
OFF, ON
};
timer_state_t m_timer_state= timer_state_t::OFF;
void switch_timer(timer_state_t state);
/* Updates idle_since, and maybe switches the timer off */
void check_idle(std::chrono::system_clock::time_point now);
/** time point when timer last ran, used as a coarse clock. */
std::chrono::system_clock::time_point m_timestamp;
/** Number of long running tasks. The long running tasks are excluded when
adjusting concurrency */
unsigned int m_long_tasks_count;
unsigned int m_waiting_task_count;
/** Last time thread was created*/
std::chrono::system_clock::time_point m_last_thread_creation;
/** Minimumum number of threads in this pool.*/
unsigned int m_min_threads;
/** Maximimum number of threads in this pool. */
unsigned int m_max_threads;
/* maintenance related statistics (see maintenance()) */
size_t m_last_thread_count;
unsigned long long m_last_activity;
void worker_main(worker_data *thread_data);
void worker_end(worker_data* thread_data);
/* Checks threadpool responsiveness, adjusts thread_counts */
void maintenance();
static void maintenance_func(void* arg)
{
((thread_pool_generic *)arg)->maintenance();
}
bool add_thread();
bool wake(worker_wake_reason reason, task *t = nullptr);
void maybe_wake_or_create_thread();
bool too_many_active_threads();
bool get_task(worker_data *thread_var, task **t);
bool wait_for_tasks(std::unique_lock<std::mutex> &lk,
worker_data *thread_var);
void cancel_pending(task* t);
size_t thread_count()
{
return m_active_threads.size() + m_standby_threads.size();
}
public:
thread_pool_generic(int min_threads, int max_threads);
~thread_pool_generic();
void wait_begin() override;
void wait_end() override;
void submit_task(task *task) override;
virtual aio *create_native_aio(int max_io) override
{
#ifdef _WIN32
return create_win_aio(this, max_io);
#elif defined(__linux__)
return create_linux_aio(this,max_io);
#else
return nullptr;
#endif
}
class timer_generic : public thr_timer_t, public timer
{
thread_pool_generic* m_pool;
waitable_task m_task;
callback_func m_callback;
void* m_data;
int m_period;
std::mutex m_mtx;
bool m_on;
std::atomic<bool> m_running;
void run()
{
/*
In rare cases, multiple callbacks can be scheduled,
e.g with set_time(0,0) in a loop.
We do not allow parallel execution, as user is not prepared.
*/
bool expected = false;
if (!m_running.compare_exchange_strong(expected, true))
return;
m_callback(m_data);
dbug_execute_after_task_callback();
m_running = false;
if (m_pool && m_period)
{
std::unique_lock<std::mutex> lk(m_mtx);
if (m_on)
{
DBUG_PUSH_EMPTY;
thr_timer_end(this);
thr_timer_settime(this, 1000ULL * m_period);
DBUG_POP_EMPTY;
}
}
}
static void execute(void* arg)
{
auto timer = (timer_generic*)arg;
timer->run();
}
static void submit_task(void* arg)
{
timer_generic* timer = (timer_generic*)arg;
timer->m_pool->submit_task(&timer->m_task);
}
public:
timer_generic(callback_func func, void* data, thread_pool_generic * pool):
m_pool(pool),
m_task(timer_generic::execute,this),
m_callback(func),m_data(data),m_period(0),m_mtx(),
m_on(true),m_running()
{
if (pool)
{
/* EXecute callback in threadpool*/
thr_timer_init(this, submit_task, this);
}
else
{
/* run in "timer" thread */
thr_timer_init(this, m_task.get_func(), m_task.get_arg());
}
}
void set_time(int initial_delay_ms, int period_ms) override
{
std::unique_lock<std::mutex> lk(m_mtx);
if (!m_on)
return;
thr_timer_end(this);
if (!m_pool)
thr_timer_set_period(this, 1000ULL * period_ms);
else
m_period = period_ms;
thr_timer_settime(this, 1000ULL * initial_delay_ms);
}
/*
Change only period of a periodic timer
(after the next execution). Workarounds
mysys timer deadlocks
*/
void set_period(int period_ms)
{
std::unique_lock<std::mutex> lk(m_mtx);
if (!m_on)
return;
if (!m_pool)
thr_timer_set_period(this, 1000ULL * period_ms);
else
m_period = period_ms;
}
void disarm() override
{
std::unique_lock<std::mutex> lk(m_mtx);
m_on = false;
thr_timer_end(this);
lk.unlock();
if (m_task.m_group)
{
m_task.m_group->cancel_pending(&m_task);
}
if (m_pool)
{
m_pool->cancel_pending(&m_task);
}
m_task.wait();
}
virtual ~timer_generic()
{
disarm();
}
};
timer_generic m_maintenance_timer;
virtual timer* create_timer(callback_func func, void *data) override
{
return new timer_generic(func, data, this);
}
};
void thread_pool_generic::cancel_pending(task* t)
{
std::unique_lock <std::mutex> lk(m_mtx);
for (auto it = m_task_queue.begin(); it != m_task_queue.end(); it++)
{
if (*it == t)
{
t->release();
*it = nullptr;
}
}
}
/**
Register worker in standby list, and wait to be woken.
@retval true if thread was woken
@retval false idle wait timeout exceeded (the current thread must shutdown)
*/
bool thread_pool_generic::wait_for_tasks(std::unique_lock<std::mutex> &lk,
worker_data *thread_data)
{
assert(m_task_queue.empty());
assert(!m_in_shutdown);
thread_data->m_wake_reason= WAKE_REASON_NONE;
m_active_threads.erase(thread_data);
m_standby_threads.push_back(thread_data);
for (;;)
{
thread_data->m_cv.wait_for(lk, m_thread_timeout);
if (thread_data->m_wake_reason != WAKE_REASON_NONE)
{
/* Woke up not due to timeout.*/
return true;
}
if (thread_count() <= m_min_threads)
{
/* Do not shutdown thread, maintain required minimum of worker
threads.*/
continue;
}
/*
Woke up due to timeout, remove this thread's from the standby list. In
all other cases where it is signaled it is removed by the signaling
thread.
*/
m_standby_threads.erase(thread_data);
m_active_threads.push_back(thread_data);
return false;
}
}
/**
Workers "get next task" routine.
A task can be handed over to the current thread directly during submit().
if thread_var->m_wake_reason == WAKE_REASON_TASK.
Or a task can be taken from the task queue.
In case task queue is empty, the worker thread will park (wait for wakeup).
*/
bool thread_pool_generic::get_task(worker_data *thread_var, task **t)
{
std::unique_lock<std::mutex> lk(m_mtx);
if (thread_var->is_long_task())
{
DBUG_ASSERT(m_long_tasks_count);
m_long_tasks_count--;
}
DBUG_ASSERT(!thread_var->is_waiting());
thread_var->m_state = worker_data::NONE;
while (m_task_queue.empty())
{
if (m_in_shutdown)
return false;
if (!wait_for_tasks(lk, thread_var))
return false;
if (m_task_queue.empty())
{
m_spurious_wakeups++;
continue;
}
}
/* Dequeue from the task queue.*/
*t= m_task_queue.front();
m_task_queue.pop();
m_tasks_dequeued++;
thread_var->m_state |= worker_data::EXECUTING_TASK;
thread_var->m_task_start_time = m_timestamp;
return true;
}
/** Worker thread shutdown routine. */
void thread_pool_generic::worker_end(worker_data* thread_data)
{
std::lock_guard<std::mutex> lk(m_mtx);
DBUG_ASSERT(!thread_data->is_long_task());
m_active_threads.erase(thread_data);
m_thread_data_cache.put(thread_data);
if (!thread_count() && m_in_shutdown)
{
/* Signal the destructor that no more threads are left. */
m_cv_no_threads.notify_all();
}
}
extern "C" void set_tls_pool(tpool::thread_pool* pool);
/* The worker get/execute task loop.*/
void thread_pool_generic::worker_main(worker_data *thread_var)
{
task* task;
set_tls_pool(this);
if(m_worker_init_callback)
m_worker_init_callback();
tls_worker_data = thread_var;
while (get_task(thread_var, &task) && task)
{
task->execute();
}
if (m_worker_destroy_callback)
m_worker_destroy_callback();
worker_end(thread_var);
}
/*
Check if threadpool had been idle for a while
Switch off maintenance timer if it is in idle state
for too long.
Helper function, to be used inside maintenance callback,
before m_last_activity is updated
*/
static const auto invalid_timestamp= std::chrono::system_clock::time_point::max();
constexpr auto max_idle_time= std::chrono::minutes(1);
/* Time since maintenance timer had nothing to do */
static std::chrono::system_clock::time_point idle_since= invalid_timestamp;
void thread_pool_generic::check_idle(std::chrono::system_clock::time_point now)
{
DBUG_ASSERT(m_task_queue.empty());
/*
We think that there is no activity, if there were at most 2 tasks
since last time, and there is a spare thread.
The 2 tasks (and not 0) is to account for some periodic timers.
*/
bool idle= m_standby_threads.m_count > 0;
if (!idle)
{
idle_since= invalid_timestamp;
return;
}
if (idle_since == invalid_timestamp)
{
idle_since= now;
return;
}
/* Switch timer off after 1 minute of idle time */
if (now - idle_since > max_idle_time)
{
idle_since= invalid_timestamp;
switch_timer(timer_state_t::OFF);
}
}
/*
Periodic job to fix thread count and concurrency,
in case of long tasks, etc
*/
void thread_pool_generic::maintenance()
{
/*
If pool is busy (i.e the its mutex is currently locked), we can
skip the maintenance task, some times, to lower mutex contention
*/
static int skip_counter;
const int MAX_SKIPS = 10;
std::unique_lock<std::mutex> lk(m_mtx, std::defer_lock);
if (skip_counter == MAX_SKIPS)
{
lk.lock();
}
else if (!lk.try_lock())
{
skip_counter++;
return;
}
skip_counter = 0;
m_timestamp = std::chrono::system_clock::now();
if (m_task_queue.empty())
{
check_idle(m_timestamp);
m_last_activity = m_tasks_dequeued + m_wakeups;
return;
}
m_long_tasks_count = 0;
for (auto thread_data = m_active_threads.front();
thread_data;
thread_data = thread_data->m_next)
{
if (thread_data->is_executing_task() &&
!thread_data->is_waiting() &&
(thread_data->is_long_task()
|| (m_timestamp - thread_data->m_task_start_time > LONG_TASK_DURATION)))
{
thread_data->m_state |= worker_data::LONG_TASK;
m_long_tasks_count++;
}
}
maybe_wake_or_create_thread();
size_t thread_cnt = (int)thread_count();
if (m_last_activity == m_tasks_dequeued + m_wakeups &&
m_last_thread_count <= thread_cnt && m_active_threads.size() == thread_cnt)
{
// no progress made since last iteration. create new
// thread
add_thread();
}
m_last_activity = m_tasks_dequeued + m_wakeups;
m_last_thread_count= thread_cnt;
}
/*
Heuristic used for thread creation throttling.
Returns interval in milliseconds between thread creation
(depending on number of threads already in the pool, and
desired concurrency level)
*/
static int throttling_interval_ms(size_t n_threads,size_t concurrency)
{
if (n_threads < concurrency*4)
return 0;
if (n_threads < concurrency*8)
return 50;
if (n_threads < concurrency*16)
return 100;
return 200;
}
/* Create a new worker.*/
bool thread_pool_generic::add_thread()
{
size_t n_threads = thread_count();
if (n_threads >= m_max_threads)
return false;
if (n_threads >= m_min_threads)
{
auto now = std::chrono::system_clock::now();
if (now - m_last_thread_creation <
std::chrono::milliseconds(throttling_interval_ms(n_threads, m_concurrency)))
{
/*
Throttle thread creation and wakeup deadlock detection timer,
if is it off.
*/
switch_timer(timer_state_t::ON);
return false;
}
}
worker_data *thread_data = m_thread_data_cache.get();
m_active_threads.push_back(thread_data);
try
{
std::thread thread(&thread_pool_generic::worker_main, this, thread_data);
m_last_thread_creation = std::chrono::system_clock::now();
thread.detach();
}
catch (std::system_error& e)
{
m_active_threads.erase(thread_data);
m_thread_data_cache.put(thread_data);
static bool warning_written;
if (!warning_written)
{
fprintf(stderr, "Warning : threadpool thread could not be created :%s,"
"current number of threads in pool %zu\n", e.what(), thread_count());
warning_written = true;
}
return false;
}
return true;
}
/** Wake a standby thread, and hand the given task over to this thread. */
bool thread_pool_generic::wake(worker_wake_reason reason, task *)
{
assert(reason != WAKE_REASON_NONE);
if (m_standby_threads.empty())
return false;
auto var= m_standby_threads.back();
m_standby_threads.pop_back();
m_active_threads.push_back(var);
assert(var->m_wake_reason == WAKE_REASON_NONE);
var->m_wake_reason= reason;
var->m_cv.notify_one();
m_wakeups++;
return true;
}
thread_pool_generic::thread_pool_generic(int min_threads, int max_threads) :
m_thread_data_cache(max_threads),
m_task_queue(10000),
m_standby_threads(),
m_active_threads(),
m_mtx(),
m_thread_timeout(std::chrono::milliseconds(60000)),
m_timer_interval(std::chrono::milliseconds(400)),
m_cv_no_threads(),
m_cv_timer(),
m_tasks_enqueued(),
m_tasks_dequeued(),
m_wakeups(),
m_spurious_wakeups(),
m_concurrency(std::thread::hardware_concurrency()*2),
m_in_shutdown(),
m_timestamp(),
m_long_tasks_count(),
m_waiting_task_count(),
m_last_thread_creation(),
m_min_threads(min_threads),
m_max_threads(max_threads),
m_last_thread_count(),
m_last_activity(),
m_maintenance_timer(thread_pool_generic::maintenance_func, this, nullptr)
{
if (m_max_threads < m_concurrency)
m_concurrency = m_max_threads;
if (m_min_threads > m_concurrency)
m_concurrency = min_threads;
if (!m_concurrency)
m_concurrency = 1;
// start the timer
m_maintenance_timer.set_time(0, (int)m_timer_interval.count());
}
void thread_pool_generic::maybe_wake_or_create_thread()
{
if (m_task_queue.empty())
return;
DBUG_ASSERT(m_active_threads.size() >= static_cast<size_t>(m_long_tasks_count + m_waiting_task_count));
if (m_active_threads.size() - m_long_tasks_count - m_waiting_task_count > m_concurrency)
return;
if (!m_standby_threads.empty())
{
wake(WAKE_REASON_TASK);
}
else
{
add_thread();
}
}
bool thread_pool_generic::too_many_active_threads()
{
return m_active_threads.size() - m_long_tasks_count - m_waiting_task_count >
m_concurrency* OVERSUBSCRIBE_FACTOR;
}
/** Submit a new task*/
void thread_pool_generic::submit_task(task* task)
{
std::unique_lock<std::mutex> lk(m_mtx);
if (m_in_shutdown)
return;
task->add_ref();
m_tasks_enqueued++;
m_task_queue.push(task);
maybe_wake_or_create_thread();
}
/* Notify thread pool that current thread is going to wait */
void thread_pool_generic::wait_begin()
{
if (!tls_worker_data || tls_worker_data->is_long_task())
return;
std::unique_lock<std::mutex> lk(m_mtx);
if(tls_worker_data->is_long_task())
{
/*
Current task flag could have become "long-running"
while waiting for the lock, thus recheck.
*/
return;
}
DBUG_ASSERT(!tls_worker_data->is_waiting());
tls_worker_data->m_state |= worker_data::WAITING;
m_waiting_task_count++;
/* Maintain concurrency */
maybe_wake_or_create_thread();
}
void thread_pool_generic::wait_end()
{
if (tls_worker_data && tls_worker_data->is_waiting())
{
std::unique_lock<std::mutex> lk(m_mtx);
tls_worker_data->m_state &= ~worker_data::WAITING;
m_waiting_task_count--;
}
}
void thread_pool_generic::switch_timer(timer_state_t state)
{
if (m_timer_state == state)
return;
/*
We can't use timer::set_time, because mysys timers are deadlock
prone.
Instead, to switch off we increase the timer period
and decrease period to switch on.
This might introduce delays in thread creation when needed,
as period will only be changed when timer fires next time.
For this reason, we can't use very long periods for the "off" state.
*/
m_timer_state= state;
long long period= (state == timer_state_t::OFF) ?
m_timer_interval.count()*10: m_timer_interval.count();
m_maintenance_timer.set_period((int)period);
}
/**
Wake up all workers, and wait until they are gone
Stop the timer.
*/
thread_pool_generic::~thread_pool_generic()
{
/*
Stop AIO early.
This is needed to prevent AIO completion thread
from calling submit_task() on an object that is being destroyed.
*/
m_aio.reset();
/* Also stop the maintanence task early. */
m_maintenance_timer.disarm();
std::unique_lock<std::mutex> lk(m_mtx);
m_in_shutdown= true;
/* Wake up idle threads. */
while (wake(WAKE_REASON_SHUTDOWN))
{
}
while (thread_count())
{
m_cv_no_threads.wait(lk);
}
lk.unlock();
}
thread_pool *create_thread_pool_generic(int min_threads, int max_threads)
{
return new thread_pool_generic(min_threads, max_threads);
}
} // namespace tpool
|