summaryrefslogtreecommitdiff
path: root/tpool/tpool_structs.h
blob: 6f47b3b3e402ad05d92b5f6b72657f6295e65626 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/* Copyright(C) 2019 MariaDB Corporation

This program is free software; you can redistribute itand /or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111 - 1301 USA*/

#pragma once
#include <vector>
#include <stack>
#include <mutex>
#include <condition_variable>
#include <assert.h>
#include <algorithm>

namespace tpool
{

enum cache_notification_mode
{
  NOTIFY_ONE,
  NOTIFY_ALL
};

/**
  Generic "pointer" cache of a fixed size
  with fast put/get operations.

  Compared to STL containers, is faster/does not
  do allocations. However, put() operation will wait
  if there is no free items.
*/
template<typename T> class cache
{
  std::mutex m_mtx;
  std::condition_variable m_cv;
  std::vector<T>  m_base;
  std::vector<T*> m_cache;
  cache_notification_mode m_notification_mode;
  int m_waiters;

  bool is_full()
  {
    return m_cache.size() == m_base.size();
  }

public:
  cache(size_t count, cache_notification_mode mode= tpool::cache_notification_mode::NOTIFY_ALL):
  m_mtx(), m_cv(), m_base(count),m_cache(count), m_notification_mode(mode),m_waiters()
  {
    for(size_t i = 0 ; i < count; i++)
      m_cache[i]=&m_base[i];
  }

  T* get(bool blocking=true)
  {
    std::unique_lock<std::mutex> lk(m_mtx);
    if (blocking)
    {
      while(m_cache.empty())
        m_cv.wait(lk);
    }
    else
    {
      if(m_cache.empty())
        return nullptr;
    }
    T* ret = m_cache.back();
    m_cache.pop_back();
    return ret;
  }


  void put(T *ele)
  {
    std::unique_lock<std::mutex> lk(m_mtx);
    m_cache.push_back(ele);
    if (m_notification_mode == NOTIFY_ONE)
      m_cv.notify_one();
    else if(m_cache.size() == 1)
      m_cv.notify_all(); // Signal cache is not empty
    else if(m_waiters && is_full())
      m_cv.notify_all(); // Signal cache is full
  }

  bool contains(T* ele)
  {
    return ele >= &m_base[0] && ele <= &m_base[m_base.size() -1];
  }

  /* Wait until cache is full.*/
  void wait()
  {
    std::unique_lock<std::mutex> lk(m_mtx);
    m_waiters++;
    while(!is_full())
      m_cv.wait(lk);
    m_waiters--;
  }
};


/**
  Circular, fixed size queue
  used for the task queue.

  Compared to STL queue, this one is
  faster, and does not do memory allocations
*/
template <typename T> class circular_queue
{

public:
  circular_queue(size_t N = 16)
    : m_capacity(N + 1), m_buffer(m_capacity), m_head(), m_tail()
  {
  }
  bool empty() { return m_head == m_tail; }
  bool full() { return (m_head + 1) % m_capacity == m_tail; }
  void clear() { m_head = m_tail = 0; }
  void resize(size_t new_size)
  {
    auto current_size = size();
    if (new_size <= current_size)
      return;
    size_t new_capacity = new_size - 1;
    std::vector<T> new_buffer(new_capacity);
    /* Figure out faster way to copy*/
    size_t i = 0;
    while (!empty())
    {
      T& ele = front();
      pop();
      new_buffer[i++] = ele;
    }
    m_buffer = new_buffer;
    m_capacity = new_capacity;
    m_tail = 0;
    m_head = current_size;
  }
  void push(T ele)
  {
    if (full())
    {
      assert(size() == m_capacity - 1);
      resize(size() + 1024);
    }
    m_buffer[m_head] = ele;
    m_head = (m_head + 1) % m_capacity;
  }
  void push_front(T ele)
  {
    if (full())
    {
      resize(size() + 1024);
    }
    if (m_tail == 0)
      m_tail = m_capacity - 1;
    else
      m_tail--;
    m_buffer[m_tail] = ele;
  }
  T& front()
  {
    assert(!empty());
    return m_buffer[m_tail];
  }
  void pop()
  {
    assert(!empty());
    m_tail = (m_tail + 1) % m_capacity;
  }
  size_t size()
  {
    if (m_head < m_tail)
    {
      return m_capacity - m_tail + m_head;
    }
    else
    {
      return m_head - m_tail;
    }
  }

  /*Iterator over elements in queue.*/
  class iterator
  {
    size_t m_pos;
    circular_queue<T>* m_queue;
  public:
    explicit iterator(size_t pos , circular_queue<T>* q) : m_pos(pos), m_queue(q) {}
    iterator& operator++()
    {
      m_pos = (m_pos + 1) % m_queue->m_capacity;
      return *this;
    }
    iterator operator++(int)
    {
      iterator retval = *this;
      ++(*this); 
      return retval;
    }
    bool operator==(iterator other) const 
    {
      return m_pos == other.m_pos;
    }
    bool operator!=(iterator other) const
    {
      return !(*this == other);
    }
    T& operator*() const
    {
      return m_queue->m_buffer[m_pos];
    }
  };

  iterator begin()
  {
    return iterator(m_tail, this);
  }
  iterator end()
  {
    return iterator(m_head, this);
  }
private:
  size_t m_capacity;
  std::vector<T> m_buffer;
  size_t m_head;
  size_t m_tail;


};

/* Doubly linked list. Intrusive,
   requires element to have m_next and m_prev pointers.
*/
template<typename T> class doubly_linked_list
{
public:
  T* m_first;
  T* m_last;
  size_t m_count;
  doubly_linked_list():m_first(),m_last(),m_count()
  {}
  void check()
  {
    assert(!m_first || !m_first->m_prev);
    assert(!m_last || !m_last->m_next);
    assert((!m_first && !m_last && m_count == 0)
     || (m_first != 0 && m_last != 0 && m_count > 0));
    T* current = m_first;
    for(size_t i=1; i< m_count;i++)
    {
      current = current->m_next;
    }
    assert(current == m_last);
    current = m_last;
    for (size_t i = 1; i < m_count; i++)
    {
      current = current->m_prev;
    }
    assert(current == m_first);
  }
  T* front()
  {
    return m_first;
  }
  size_t size()
  {
    return m_count;
  }
  void push_back(T* ele)
  {
    ele->m_prev = m_last;
    if (m_last)
      m_last->m_next = ele;

    ele->m_next = 0;
    m_last = ele;
    if (!m_first)
      m_first = m_last;

    m_count++;
  }
  T* back()
  {
    return m_last;
  }
  bool empty()
  {
    return m_count == 0;
  }
  void pop_back()
  {
    m_last = m_last->m_prev;
    if (m_last)
      m_last->m_next = 0;
    else
      m_first = 0;
    m_count--;
  }
  bool contains(T* ele)
  {
    if (!ele)
      return false;
    T* current = m_first;
    while(current)
    {
      if(current == ele)
        return true;
      current = current->m_next;
    }
    return false;
  }

  void erase(T* ele)
  {
    assert(contains(ele));

    if (ele == m_first)
    {
      m_first = ele->m_next;
      if (m_first)
        m_first->m_prev = 0;
      else
        m_last = 0;
    }
    else if (ele == m_last)
    {
      assert(ele->m_prev);
      m_last = ele->m_prev;
      m_last->m_next = 0;
    }
    else
    {
      assert(ele->m_next);
      assert(ele->m_prev);
      ele->m_next->m_prev = ele->m_prev;
      ele->m_prev->m_next = ele->m_next;
    }
    m_count--;
  }
};

}