summaryrefslogtreecommitdiff
path: root/unittest/mysys/my_rdtsc-t.c
blob: 286ff29fbfc67272ddef65ab702216458beefcaa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/* Copyright (C) 2008-2009 Sun Microsystems, Inc

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; version 2 of the License.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

/*
  rdtsc3 -- multi-platform timer code
  pgulutzan@mysql.com, 2005-08-29
  modified 2008-11-02

  When you run rdtsc3, it will print the contents of
  "my_timer_info". The display indicates
  what timer routine is best for a given platform.

  For example, this is the display on production.mysql.com,
  a 2.8GHz Xeon with Linux 2.6.17, gcc 3.3.3:

  cycles        nanoseconds   microseconds  milliseconds  ticks
------------- ------------- ------------- ------------- -------------
            1            11            13            18            17
   2815019607    1000000000       1000000          1049           102
            1          1000             1             1             1
           88          4116          3888          4092          2044

  The first line shows routines, e.g. 1 = MY_TIMER_ROUTINE_ASM_X86.
  The second line shows frequencies, e.g. 2815019607 is nearly 2.8GHz.
  The third line shows resolutions, e.g. 1000 = very poor resolution.
  The fourth line shows overheads, e.g. ticks takes 2044 cycles.
*/

#include "my_global.h"
#include "my_rdtsc.h"
#include "tap.h"

#define LOOP_COUNT 100

MY_TIMER_INFO myt;

void test_init()
{
  my_timer_init(&myt);

  diag("----- Routine ---------------");
  diag("myt.cycles.routine          : %13llu", myt.cycles.routine);
  diag("myt.nanoseconds.routine     : %13llu", myt.nanoseconds.routine);
  diag("myt.microseconds.routine    : %13llu", myt.microseconds.routine);
  diag("myt.milliseconds.routine    : %13llu", myt.milliseconds.routine);
  diag("myt.ticks.routine           : %13llu", myt.ticks.routine);

  diag("----- Frequency -------------");
  diag("myt.cycles.frequency        : %13llu", myt.cycles.frequency);
  diag("myt.nanoseconds.frequency   : %13llu", myt.nanoseconds.frequency);
  diag("myt.microseconds.frequency  : %13llu", myt.microseconds.frequency);
  diag("myt.milliseconds.frequency  : %13llu", myt.milliseconds.frequency);
  diag("myt.ticks.frequency         : %13llu", myt.ticks.frequency);

  diag("----- Resolution ------------");
  diag("myt.cycles.resolution       : %13llu", myt.cycles.resolution);
  diag("myt.nanoseconds.resolution  : %13llu", myt.nanoseconds.resolution);
  diag("myt.microseconds.resolution : %13llu", myt.microseconds.resolution);
  diag("myt.milliseconds.resolution : %13llu", myt.milliseconds.resolution);
  diag("myt.ticks.resolution        : %13llu", myt.ticks.resolution);

  diag("----- Overhead --------------");
  diag("myt.cycles.overhead         : %13llu", myt.cycles.overhead);
  diag("myt.nanoseconds.overhead    : %13llu", myt.nanoseconds.overhead);
  diag("myt.microseconds.overhead   : %13llu", myt.microseconds.overhead);
  diag("myt.milliseconds.overhead   : %13llu", myt.milliseconds.overhead);
  diag("myt.ticks.overhead          : %13llu", myt.ticks.overhead);

  ok(1, "my_timer_init() did not crash");
}

void test_cycle()
{
  ulonglong t1= my_timer_cycles();
  ulonglong t2;
  int i;
  int backward= 0;
  int nonzero= 0;

  for (i=0 ; i < LOOP_COUNT ; i++)
  {
    t2= my_timer_cycles();
    if (t1 >= t2)
      backward++;
    if (t2 != 0)
      nonzero++;
    t1= t2;
  }

  /* Expect at most 1 backward, the cycle value can overflow */
  ok((backward <= 1), "The cycle timer is strictly increasing");

  if (myt.cycles.routine != 0)
    ok((nonzero != 0), "The cycle timer is implemented");
  else
    ok((nonzero == 0), "The cycle timer is not implemented and returns 0");
}

void test_nanosecond()
{
  ulonglong t1= my_timer_nanoseconds();
  ulonglong t2;
  int i;
  int backward= 0;
  int nonzero= 0;

  for (i=0 ; i < LOOP_COUNT ; i++)
  {
    t2= my_timer_nanoseconds();
    if (t1 > t2)
      backward++;
    if (t2 != 0)
      nonzero++;
    t1= t2;
  }

  ok((backward == 0), "The nanosecond timer is increasing");

  if (myt.nanoseconds.routine != 0)
    ok((nonzero != 0), "The nanosecond timer is implemented");
  else
    ok((nonzero == 0), "The nanosecond timer is not implemented and returns 0");
}

void test_microsecond()
{
  ulonglong t1= my_timer_microseconds();
  ulonglong t2;
  int i;
  int backward= 0;
  int nonzero= 0;

  for (i=0 ; i < LOOP_COUNT ; i++)
  {
    t2= my_timer_microseconds();
    if (t1 > t2)
      backward++;
    if (t2 != 0)
      nonzero++;
    t1= t2;
  }

  ok((backward == 0), "The microsecond timer is increasing");

  if (myt.microseconds.routine != 0)
    ok((nonzero != 0), "The microsecond timer is implemented");
  else
    ok((nonzero == 0), "The microsecond timer is not implemented and returns 0");
}

void test_millisecond()
{
  ulonglong t1= my_timer_milliseconds();
  ulonglong t2;
  int i;
  int backward= 0;
  int nonzero= 0;

  for (i=0 ; i < LOOP_COUNT ; i++)
  {
    t2= my_timer_milliseconds();
    if (t1 > t2)
      backward++;
    if (t2 != 0)
      nonzero++;
    t1= t2;
  }

  ok((backward == 0), "The millisecond timer is increasing");

  if (myt.milliseconds.routine != 0)
    ok((nonzero != 0), "The millisecond timer is implemented");
  else
    ok((nonzero == 0), "The millisecond timer is not implemented and returns 0");
}

void test_tick()
{
  ulonglong t1= my_timer_ticks();
  ulonglong t2;
  int i;
  int backward= 0;
  int nonzero= 0;

  for (i=0 ; i < LOOP_COUNT ; i++)
  {
    t2= my_timer_ticks();
    if (t1 > t2)
      backward++;
    if (t2 != 0)
      nonzero++;
    t1= t2;
  }

  ok((backward == 0), "The tick timer is increasing");

  if (myt.ticks.routine != 0)
    ok((nonzero != 0), "The tick timer is implemented");
  else
    ok((nonzero == 0), "The tick timer is not implemented and returns 0");
}

int main(int argc __attribute__((unused)),
         char ** argv __attribute__((unused)))
{
  plan(11);

  test_init();
  test_cycle();
  test_nanosecond();
  test_microsecond();
  test_millisecond();
  test_tick();

  return 0;
}