summaryrefslogtreecommitdiff
path: root/unittest/mysys/waiting_threads-t.c
blob: 01fc850cb96fb929348cc037deb952df4459c1ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/* Copyright (C) 2008 MySQL AB, 2008-2009 Sun Microsystems, Inc.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1301 USA */

#include "thr_template.c"
#include <waiting_threads.h>
#include <m_string.h>

struct test_wt_thd {
  WT_THD thd;
  pthread_mutex_t lock;
} thds[THREADS];

uint i, cnt;
pthread_mutex_t lock;
pthread_cond_t thread_sync;

ulong wt_timeout_short=100, wt_deadlock_search_depth_short=4;
ulong wt_timeout_long=10000, wt_deadlock_search_depth_long=15;

#define reset(ARRAY) bzero(ARRAY, sizeof(ARRAY))

/* see explanation of the kill strategies in waiting_threads.h */
enum { LATEST, RANDOM, YOUNGEST, LOCKS } kill_strategy;

WT_RESOURCE_TYPE restype={ wt_resource_id_memcmp, 0};

#define rnd() ((uint)(my_rnd(&rand) * INT_MAX32))

/*
  stress test: wait on a random number of random threads.
  it always succeeds (unless crashes or hangs).
*/
pthread_handler_t test_wt(void *arg)
{
  int    m, n, i, id, res;
  struct my_rnd_struct rand;

  my_thread_init();

  pthread_mutex_lock(&mutex);
  id= cnt++;
  wt_thd_lazy_init(& thds[id].thd,
                   & wt_deadlock_search_depth_short, & wt_timeout_short,
                   & wt_deadlock_search_depth_long, & wt_timeout_long);

  /* now, wait for everybody to be ready to run */
  if (cnt >= THREADS)
    pthread_cond_broadcast(&thread_sync);
  else
    while (cnt < THREADS)
      pthread_cond_wait(&thread_sync, &mutex);
  pthread_mutex_unlock(&mutex);

  my_rnd_init(&rand, (ulong)(intptr)&m, id);
  if (kill_strategy == YOUNGEST)
    thds[id].thd.weight= (ulong) ~ my_interval_timer();
  if (kill_strategy == LOCKS)
    thds[id].thd.weight= 0;

  for (m= *(int *)arg; m ; m--)
  {
    WT_RESOURCE_ID resid;
    int blockers[THREADS/10], j, k;

    resid.value= id;
    resid.type= &restype;

    res= 0;

    /* prepare for waiting for a random number of random threads */
    for (j= n= (rnd() % THREADS)/10; !res && j >= 0; j--)
    {
retry:
      i= rnd() % (THREADS-1); /* pick a random thread */
      if (i >= id) i++;   /* with a number from 0 to THREADS-1 excluding ours */

      for (k=n; k >=j; k--) /* the one we didn't pick before */
        if (blockers[k] == i)
          goto retry;
      blockers[j]= i;

      if (kill_strategy == RANDOM)
        thds[id].thd.weight= rnd();

      pthread_mutex_lock(& thds[i].lock);
      res= wt_thd_will_wait_for(& thds[id].thd, & thds[i].thd, &resid);
      pthread_mutex_unlock(& thds[i].lock);
    }

    if (!res)
    {
      pthread_mutex_lock(&lock);
      res= wt_thd_cond_timedwait(& thds[id].thd, &lock);
      pthread_mutex_unlock(&lock);
    }

    if (res)
    {
      pthread_mutex_lock(& thds[id].lock);
      pthread_mutex_lock(&lock);
      wt_thd_release_all(& thds[id].thd);
      pthread_mutex_unlock(&lock);
      pthread_mutex_unlock(& thds[id].lock);
      if (kill_strategy == LOCKS)
        thds[id].thd.weight= 0;
      if (kill_strategy == YOUNGEST)
        thds[id].thd.weight= (ulong)~ my_interval_timer();
    }
    else if (kill_strategy == LOCKS)
      thds[id].thd.weight++;
  }

  pthread_mutex_lock(&mutex);
  /* wait for everybody to finish */
  if (!--cnt)
    pthread_cond_broadcast(&thread_sync);
  else
    while (cnt)
      pthread_cond_wait(&thread_sync, &mutex);

  pthread_mutex_lock(& thds[id].lock);
  pthread_mutex_lock(&lock);
  wt_thd_release_all(& thds[id].thd);
  pthread_mutex_unlock(&lock);
  pthread_mutex_unlock(& thds[id].lock);
  wt_thd_destroy(& thds[id].thd);

  if (!--running_threads) /* now, signal when everybody is done with deinit */
    pthread_cond_signal(&cond);
  pthread_mutex_unlock(&mutex);
  DBUG_PRINT("wt", ("exiting"));
  my_thread_end();
  return 0;
}

void do_one_test()
{
  double sum, sum0;
  DBUG_ENTER("do_one_test");

  reset(wt_cycle_stats);
  reset(wt_wait_stats);
  wt_success_stats=0;
  cnt=0;
  test_concurrently("waiting_threads", test_wt, THREADS, CYCLES);

  sum=sum0=0;
  for (cnt=0; cnt < WT_CYCLE_STATS; cnt++)
    sum+= wt_cycle_stats[0][cnt] + wt_cycle_stats[1][cnt];
  for (cnt=0; cnt < WT_CYCLE_STATS; cnt++)
    if (wt_cycle_stats[0][cnt] + wt_cycle_stats[1][cnt] > 0)
    {
      sum0+=wt_cycle_stats[0][cnt] + wt_cycle_stats[1][cnt];
      diag("deadlock cycles of length %2u: %4u %4u %8.2f %%", cnt,
           wt_cycle_stats[0][cnt], wt_cycle_stats[1][cnt], 1e2*sum0/sum);
    }
  diag("depth exceeded: %u %u",
       wt_cycle_stats[0][cnt], wt_cycle_stats[1][cnt]);
  for (cnt=0; cnt < WT_WAIT_STATS; cnt++)
    if (wt_wait_stats[cnt]>0)
      diag("deadlock waits up to %7llu us: %5u",
           wt_wait_table[cnt], wt_wait_stats[cnt]);
  diag("timed out: %u", wt_wait_stats[cnt]);
  diag("successes: %u", wt_success_stats);

  DBUG_VOID_RETURN;
}

void do_tests()
{
  DBUG_ENTER("do_tests");
  if (skip_big_tests)
  {
    skip(1, "Big test skipped");
    return;
  }
  plan(13);
  compile_time_assert(THREADS >= 4);

  DBUG_PRINT("wt", ("================= initialization ==================="));

  pthread_cond_init(&thread_sync, 0);
  pthread_mutex_init(&lock, 0);
  wt_init();
  for (cnt=0; cnt < THREADS; cnt++)
    pthread_mutex_init(& thds[cnt].lock, 0);
  {
    WT_RESOURCE_ID resid[4];
    for (i=0; i < array_elements(resid); i++)
    {
      wt_thd_lazy_init(& thds[i].thd,
                       & wt_deadlock_search_depth_short, & wt_timeout_short,
                       & wt_deadlock_search_depth_long, & wt_timeout_long);
      resid[i].value= i+1;
      resid[i].type= &restype;
    }

    DBUG_PRINT("wt", ("================= manual test ==================="));

#define ok_wait(X,Y, R) \
    ok(wt_thd_will_wait_for(& thds[X].thd, & thds[Y].thd, &resid[R]) == 0, \
      "thd[" #X "] will wait for thd[" #Y "]")
#define ok_deadlock(X,Y,R) \
    ok(wt_thd_will_wait_for(& thds[X].thd, & thds[Y].thd, &resid[R]) == WT_DEADLOCK, \
      "thd[" #X "] will wait for thd[" #Y "] - deadlock")

    ok_wait(0,1,0);
    ok_wait(0,2,0);
    ok_wait(0,3,0);

    pthread_mutex_lock(&lock);
    bad= wt_thd_cond_timedwait(& thds[0].thd, &lock);
    pthread_mutex_unlock(&lock);
    ok(bad == WT_TIMEOUT, "timeout test returned %d", bad);

    ok_wait(0,1,0);
    ok_wait(1,2,1);
    ok_deadlock(2,0,2);

    pthread_mutex_lock(&lock);
    ok(wt_thd_cond_timedwait(& thds[0].thd, &lock) == WT_TIMEOUT, "as always");
    ok(wt_thd_cond_timedwait(& thds[1].thd, &lock) == WT_TIMEOUT, "as always");
    wt_thd_release_all(& thds[0].thd);
    wt_thd_release_all(& thds[1].thd);
    wt_thd_release_all(& thds[2].thd);
    wt_thd_release_all(& thds[3].thd);

    for (i=0; i < array_elements(resid); i++)
    {
      wt_thd_release_all(& thds[i].thd);
      wt_thd_destroy(& thds[i].thd);
    }
    pthread_mutex_unlock(&lock);
  }

  wt_deadlock_search_depth_short=6;
  wt_timeout_short=1000;
  wt_timeout_long= 100;
  wt_deadlock_search_depth_long=16;
  DBUG_PRINT("wt", ("================= stress test ==================="));

  diag("timeout_short=%lu us, deadlock_search_depth_short=%lu",
       wt_timeout_short, wt_deadlock_search_depth_short);
  diag("timeout_long=%lu us, deadlock_search_depth_long=%lu",
       wt_timeout_long, wt_deadlock_search_depth_long);

#ifndef _WIN32
#define test_kill_strategy(X)                   \
  diag("kill strategy: " #X);                   \
  DBUG_EXECUTE("reset_file",                    \
               { rewind(DBUG_FILE); my_chsize(fileno(DBUG_FILE), 0, 0, MYF(MY_WME)); }); \
  DBUG_PRINT("info", ("kill strategy: " #X));   \
  kill_strategy=X;                              \
  do_one_test();
#else
#define test_kill_strategy(X)                   \
  diag("kill strategy: " #X);                   \
  DBUG_PRINT("info", ("kill strategy: " #X));   \
  kill_strategy=X;                              \
  do_one_test();
#endif

  test_kill_strategy(LATEST);
  test_kill_strategy(RANDOM);
  test_kill_strategy(YOUNGEST);
  test_kill_strategy(LOCKS);

  DBUG_PRINT("wt", ("================= cleanup ==================="));
  for (cnt=0; cnt < THREADS; cnt++)
    pthread_mutex_destroy(& thds[cnt].lock);
  wt_end();
  pthread_mutex_destroy(&lock);
  pthread_cond_destroy(&thread_sync);
  DBUG_VOID_RETURN;
}