#include "memcached.h" #ifdef TLS #include "tls.h" #include #include #include #include #ifndef MAXPATHLEN #define MAXPATHLEN 4096 #endif static pthread_mutex_t ssl_ctx_lock = PTHREAD_MUTEX_INITIALIZER; const unsigned ERROR_MSG_SIZE = 64; const size_t SSL_ERROR_MSG_SIZE = 256; void SSL_LOCK() { pthread_mutex_lock(&(ssl_ctx_lock)); } void SSL_UNLOCK(void) { pthread_mutex_unlock(&(ssl_ctx_lock)); } /* * Reads decrypted data from the underlying BIO read buffers, * which reads from the socket. */ ssize_t ssl_read(conn *c, void *buf, size_t count) { assert (c != NULL); /* TODO : document the state machine interactions for SSL_read with non-blocking sockets/ SSL re-negotiations */ return SSL_read(c->ssl, buf, count); } /* * SSL sendmsg implementation. Perform a SSL_write. */ ssize_t ssl_sendmsg(conn *c, struct msghdr *msg, int flags) { assert (c != NULL); size_t buf_remain = settings.ssl_wbuf_size; size_t bytes = 0; size_t to_copy; int i; // ssl_wbuf is pointing to the buffer allocated in the worker thread. assert(c->ssl_wbuf); // TODO: allocate a fix buffer in crawler/logger if they start using // the sendmsg method. Also, set c->ssl_wbuf when the side thread // start owning the connection and reset the pointer in // conn_worker_readd. // Currently this connection would not be served by a different thread // than the one it's assigned. assert(pthread_equal(c->thread->thread_id, pthread_self()) != 0); char *bp = c->ssl_wbuf; for (i = 0; i < msg->msg_iovlen; i++) { size_t len = msg->msg_iov[i].iov_len; to_copy = len < buf_remain ? len : buf_remain; memcpy(bp + bytes, (void*)msg->msg_iov[i].iov_base, to_copy); buf_remain -= to_copy; bytes += to_copy; if (buf_remain == 0) break; } /* TODO : document the state machine interactions for SSL_write with non-blocking sockets/ SSL re-negotiations */ return SSL_write(c->ssl, c->ssl_wbuf, bytes); } /* * Writes data to the underlying BIO write buffers, * which encrypt and write them to the socket. */ ssize_t ssl_write(conn *c, void *buf, size_t count) { assert (c != NULL); return SSL_write(c->ssl, buf, count); } /* * Prints an SSL error into the buff, if there's any. */ static void print_ssl_error(char *buff, size_t len) { unsigned long err; if ((err = ERR_get_error()) != 0) { ERR_error_string_n(err, buff, len); } } /* * Loads server certificates to the SSL context and validate them. * @return whether certificates are successfully loaded and verified or not. * @param error_msg contains the error when unsuccessful. */ static bool load_server_certificates(char **errmsg) { bool success = false; const size_t CRLF_NULLCHAR_LEN = 3; char *error_msg = malloc(MAXPATHLEN + ERROR_MSG_SIZE + SSL_ERROR_MSG_SIZE); size_t errmax = MAXPATHLEN + ERROR_MSG_SIZE + SSL_ERROR_MSG_SIZE - CRLF_NULLCHAR_LEN; if (error_msg == NULL) { *errmsg = NULL; return false; } if (settings.ssl_ctx == NULL) { snprintf(error_msg, errmax, "Error TLS not enabled\r\n"); *errmsg = error_msg; return false; } char *ssl_err_msg = malloc(SSL_ERROR_MSG_SIZE); if (ssl_err_msg == NULL) { free(error_msg); *errmsg = NULL; return false; } bzero(ssl_err_msg, SSL_ERROR_MSG_SIZE); size_t err_msg_size = 0; SSL_LOCK(); if (!SSL_CTX_use_certificate_chain_file(settings.ssl_ctx, settings.ssl_chain_cert)) { print_ssl_error(ssl_err_msg, SSL_ERROR_MSG_SIZE); err_msg_size = snprintf(error_msg, errmax, "Error loading the certificate chain: " "%s : %s", settings.ssl_chain_cert, ssl_err_msg); } else if (!SSL_CTX_use_PrivateKey_file(settings.ssl_ctx, settings.ssl_key, settings.ssl_keyformat)) { print_ssl_error(ssl_err_msg, SSL_ERROR_MSG_SIZE); err_msg_size = snprintf(error_msg, errmax, "Error loading the key: %s : %s", settings.ssl_key, ssl_err_msg); } else if (!SSL_CTX_check_private_key(settings.ssl_ctx)) { print_ssl_error(ssl_err_msg, SSL_ERROR_MSG_SIZE); err_msg_size = snprintf(error_msg, errmax, "Error validating the certificate: %s", ssl_err_msg); } else if (settings.ssl_ca_cert) { if (!SSL_CTX_load_verify_locations(settings.ssl_ctx, settings.ssl_ca_cert, NULL)) { print_ssl_error(ssl_err_msg, SSL_ERROR_MSG_SIZE); err_msg_size = snprintf(error_msg, errmax, "Error loading the CA certificate: %s : %s", settings.ssl_ca_cert, ssl_err_msg); } else { SSL_CTX_set_client_CA_list(settings.ssl_ctx, SSL_load_client_CA_file(settings.ssl_ca_cert)); success = true; } } else { success = true; } SSL_UNLOCK(); free(ssl_err_msg); if (success) { settings.ssl_last_cert_refresh_time = current_time; free(error_msg); } else { *errmsg = error_msg; error_msg += (err_msg_size >= errmax ? errmax - 1: err_msg_size); snprintf(error_msg, CRLF_NULLCHAR_LEN, "\r\n"); // Print if there are more errors and drain the queue. ERR_print_errors_fp(stderr); } return success; } /* * Verify SSL settings and initiates the SSL context. */ int ssl_init(void) { assert(settings.ssl_enabled); // SSL context for the process. All connections will share one // process level context. settings.ssl_ctx = SSL_CTX_new(TLS_server_method()); SSL_CTX_set_min_proto_version(settings.ssl_ctx, settings.ssl_min_version); // The server certificate, private key and validations. char *error_msg; if (!load_server_certificates(&error_msg)) { fprintf(stderr, "%s", error_msg); free(error_msg); exit(EX_USAGE); } // The verification mode of client certificate, default is SSL_VERIFY_PEER. SSL_CTX_set_verify(settings.ssl_ctx, settings.ssl_verify_mode, NULL); if (settings.ssl_ciphers && !SSL_CTX_set_cipher_list(settings.ssl_ctx, settings.ssl_ciphers)) { fprintf(stderr, "Error setting the provided cipher(s): %s\n", settings.ssl_ciphers); exit(EX_USAGE); } // Optional session caching; default disabled. if (settings.ssl_session_cache) { SSL_CTX_sess_set_new_cb(settings.ssl_ctx, ssl_new_session_callback); SSL_CTX_set_session_cache_mode(settings.ssl_ctx, SSL_SESS_CACHE_SERVER); SSL_CTX_set_session_id_context(settings.ssl_ctx, (const unsigned char *) SESSION_ID_CONTEXT, strlen(SESSION_ID_CONTEXT)); } else { SSL_CTX_set_session_cache_mode(settings.ssl_ctx, SSL_SESS_CACHE_OFF); } // Optional kernel TLS offload; default disabled. if (settings.ssl_kernel_tls) { #if defined(SSL_OP_ENABLE_KTLS) SSL_CTX_set_options(settings.ssl_ctx, SSL_OP_ENABLE_KTLS); #else fprintf(stderr, "Kernel TLS offload is not available\n"); exit(EX_USAGE); #endif } #ifdef SSL_OP_NO_RENEGOTIATION // Disable TLS re-negotiation if SSL_OP_NO_RENEGOTIATION is defined for // openssl 1.1.0h or above SSL_CTX_set_options(settings.ssl_ctx, SSL_OP_NO_RENEGOTIATION); #endif // Release TLS read/write buffers of idle connections SSL_CTX_set_mode(settings.ssl_ctx, SSL_MODE_RELEASE_BUFFERS); return 0; } /* * This method is registered with each SSL connection and abort the SSL session * if a client initiates a renegotiation for openssl versions before 1.1.0h. * For openssl 1.1.0h and above, TLS re-negotiation is disabled by setting the * SSL_OP_NO_RENEGOTIATION option in SSL_CTX_set_options. */ void ssl_callback(const SSL *s, int where, int ret) { #ifndef SSL_OP_NO_RENEGOTIATION SSL* ssl = (SSL*)s; if (SSL_in_before(ssl)) { fprintf(stderr, "%d: SSL renegotiation is not supported, " "closing the connection\n", SSL_get_fd(ssl)); SSL_set_shutdown(ssl, SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN); return; } #endif } /* * This method is invoked with every new successfully negotiated SSL session, * when server-side session caching is enabled. Note that this method is not * invoked when a session is reused. */ int ssl_new_session_callback(SSL *s, SSL_SESSION *sess) { STATS_LOCK(); stats.ssl_new_sessions++; STATS_UNLOCK(); return 0; } bool refresh_certs(char **errmsg) { return load_server_certificates(errmsg); } const char *ssl_proto_text(int version) { switch (version) { case TLS1_VERSION: return "tlsv1.0"; case TLS1_1_VERSION: return "tlsv1.1"; case TLS1_2_VERSION: return "tlsv1.2"; #if defined(TLS1_3_VERSION) case TLS1_3_VERSION: return "tlsv1.3"; #endif default: return "unknown"; } } #endif