/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "anv_private.h" #include "genxml/gen_macros.h" #include "genxml/genX_pack.h" #include "genxml/genX_rt_pack.h" #include "common/intel_genX_state.h" #include "common/intel_l3_config.h" #include "common/intel_sample_positions.h" #include "nir/nir_xfb_info.h" #include "vk_util.h" #include "vk_format.h" #include "vk_log.h" #include "vk_render_pass.h" static uint32_t vertex_element_comp_control(enum isl_format format, unsigned comp) { uint8_t bits; switch (comp) { case 0: bits = isl_format_layouts[format].channels.r.bits; break; case 1: bits = isl_format_layouts[format].channels.g.bits; break; case 2: bits = isl_format_layouts[format].channels.b.bits; break; case 3: bits = isl_format_layouts[format].channels.a.bits; break; default: unreachable("Invalid component"); } /* * Take in account hardware restrictions when dealing with 64-bit floats. * * From Broadwell spec, command reference structures, page 586: * "When SourceElementFormat is set to one of the *64*_PASSTHRU formats, * 64-bit components are stored * in the URB without any conversion. In * this case, vertex elements must be written as 128 or 256 bits, with * VFCOMP_STORE_0 being used to pad the output as required. E.g., if * R64_PASSTHRU is used to copy a 64-bit Red component into the URB, * Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3 * set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or * Components 1-3 must be specified as VFCOMP_STORE_0 in order to output * a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires * Component 3 to be specified as VFCOMP_STORE_0 in order to output a * 256-bit vertex element." */ if (bits) { return VFCOMP_STORE_SRC; } else if (comp >= 2 && !isl_format_layouts[format].channels.b.bits && isl_format_layouts[format].channels.r.type == ISL_RAW) { /* When emitting 64-bit attributes, we need to write either 128 or 256 * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and * VFCOMP_STORE_0 to pad the written chunk */ return VFCOMP_NOSTORE; } else if (comp < 3 || isl_format_layouts[format].channels.r.type == ISL_RAW) { /* Note we need to pad with value 0, not 1, due hardware restrictions * (see comment above) */ return VFCOMP_STORE_0; } else if (isl_format_layouts[format].channels.r.type == ISL_UINT || isl_format_layouts[format].channels.r.type == ISL_SINT) { assert(comp == 3); return VFCOMP_STORE_1_INT; } else { assert(comp == 3); return VFCOMP_STORE_1_FP; } } void genX(emit_vertex_input)(struct anv_batch *batch, uint32_t *vertex_element_dws, const struct anv_graphics_pipeline *pipeline, const struct vk_vertex_input_state *vi) { const struct anv_device *device = pipeline->base.base.device; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); const uint64_t inputs_read = vs_prog_data->inputs_read; const uint64_t double_inputs_read = vs_prog_data->double_inputs_read & inputs_read; assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0); const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0; const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0; for (uint32_t i = 0; i < pipeline->vs_input_elements; i++) { /* The SKL docs for VERTEX_ELEMENT_STATE say: * * "All elements must be valid from Element[0] to the last valid * element. (I.e. if Element[2] is valid then Element[1] and * Element[0] must also be valid)." * * The SKL docs for 3D_Vertex_Component_Control say: * * "Don't store this component. (Not valid for Component 0, but can * be used for Component 1-3)." * * So we can't just leave a vertex element blank and hope for the best. * We have to tell the VF hardware to put something in it; so we just * store a bunch of zero. * * TODO: Compact vertex elements so we never end up with holes. */ struct GENX(VERTEX_ELEMENT_STATE) element = { .Valid = true, .Component0Control = VFCOMP_STORE_0, .Component1Control = VFCOMP_STORE_0, .Component2Control = VFCOMP_STORE_0, .Component3Control = VFCOMP_STORE_0, }; GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &vertex_element_dws[i * 2], &element); } u_foreach_bit(a, vi->attributes_valid) { enum isl_format format = anv_get_isl_format(device->info, vi->attributes[a].format, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_TILING_LINEAR); uint32_t binding = vi->attributes[a].binding; assert(binding < MAX_VBS); if ((elements & (1 << a)) == 0) continue; /* Binding unused */ uint32_t slot = __builtin_popcount(elements & ((1 << a) - 1)) - DIV_ROUND_UP(__builtin_popcount(elements_double & ((1 << a) -1)), 2); struct GENX(VERTEX_ELEMENT_STATE) element = { .VertexBufferIndex = vi->attributes[a].binding, .Valid = true, .SourceElementFormat = format, .EdgeFlagEnable = false, .SourceElementOffset = vi->attributes[a].offset, .Component0Control = vertex_element_comp_control(format, 0), .Component1Control = vertex_element_comp_control(format, 1), .Component2Control = vertex_element_comp_control(format, 2), .Component3Control = vertex_element_comp_control(format, 3), }; GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &vertex_element_dws[slot * 2], &element); /* On Broadwell and later, we have a separate VF_INSTANCING packet * that controls instancing. On Haswell and prior, that's part of * VERTEX_BUFFER_STATE which we emit later. */ anv_batch_emit(batch, GENX(3DSTATE_VF_INSTANCING), vfi) { bool per_instance = vi->bindings[binding].input_rate == VK_VERTEX_INPUT_RATE_INSTANCE; uint32_t divisor = vi->bindings[binding].divisor * pipeline->instance_multiplier; vfi.InstancingEnable = per_instance; vfi.VertexElementIndex = slot; vfi.InstanceDataStepRate = per_instance ? divisor : 1; } } } static void emit_vertex_input(struct anv_graphics_pipeline *pipeline, const struct vk_graphics_pipeline_state *state, const struct vk_vertex_input_state *vi) { struct anv_batch *batch = &pipeline->base.base.batch; /* Only pack the VERTEX_ELEMENT_STATE if not dynamic so we can just memcpy * everything in gfx8_cmd_buffer.c */ if (!BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_VI)) { genX(emit_vertex_input)(batch, pipeline->vertex_input_data, pipeline, vi); } const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); const bool needs_svgs_elem = pipeline->svgs_count > 1 || !vs_prog_data->uses_drawid; const uint32_t id_slot = pipeline->vs_input_elements; const uint32_t drawid_slot = id_slot + needs_svgs_elem; if (pipeline->svgs_count > 0) { assert(pipeline->vertex_input_elems >= pipeline->svgs_count); uint32_t slot_offset = pipeline->vertex_input_elems - pipeline->svgs_count; if (needs_svgs_elem) { #if GFX_VER < 11 /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum: * "Within a VERTEX_ELEMENT_STATE structure, if a Component * Control field is set to something other than VFCOMP_STORE_SRC, * no higher-numbered Component Control fields may be set to * VFCOMP_STORE_SRC" * * This means, that if we have BaseInstance, we need BaseVertex as * well. Just do all or nothing. */ uint32_t base_ctrl = (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0; #endif struct GENX(VERTEX_ELEMENT_STATE) element = { .VertexBufferIndex = ANV_SVGS_VB_INDEX, .Valid = true, .SourceElementFormat = ISL_FORMAT_R32G32_UINT, #if GFX_VER >= 11 /* On gen11, these are taken care of by extra parameter slots */ .Component0Control = VFCOMP_STORE_0, .Component1Control = VFCOMP_STORE_0, #else .Component0Control = base_ctrl, .Component1Control = base_ctrl, #endif .Component2Control = VFCOMP_STORE_0, .Component3Control = VFCOMP_STORE_0, }; GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &pipeline->vertex_input_data[slot_offset * 2], &element); slot_offset++; anv_batch_emit(batch, GENX(3DSTATE_VF_INSTANCING), vfi) { vfi.VertexElementIndex = id_slot; } } if (vs_prog_data->uses_drawid) { struct GENX(VERTEX_ELEMENT_STATE) element = { .VertexBufferIndex = ANV_DRAWID_VB_INDEX, .Valid = true, .SourceElementFormat = ISL_FORMAT_R32_UINT, #if GFX_VER >= 11 /* On gen11, this is taken care of by extra parameter slots */ .Component0Control = VFCOMP_STORE_0, #else .Component0Control = VFCOMP_STORE_SRC, #endif .Component1Control = VFCOMP_STORE_0, .Component2Control = VFCOMP_STORE_0, .Component3Control = VFCOMP_STORE_0, }; GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &pipeline->vertex_input_data[slot_offset * 2], &element); slot_offset++; anv_batch_emit(batch, GENX(3DSTATE_VF_INSTANCING), vfi) { vfi.VertexElementIndex = drawid_slot; } } } anv_batch_emit(batch, GENX(3DSTATE_VF_SGVS), sgvs) { sgvs.VertexIDEnable = vs_prog_data->uses_vertexid; sgvs.VertexIDComponentNumber = 2; sgvs.VertexIDElementOffset = id_slot; sgvs.InstanceIDEnable = vs_prog_data->uses_instanceid; sgvs.InstanceIDComponentNumber = 3; sgvs.InstanceIDElementOffset = id_slot; } #if GFX_VER >= 11 anv_batch_emit(batch, GENX(3DSTATE_VF_SGVS_2), sgvs) { /* gl_BaseVertex */ sgvs.XP0Enable = vs_prog_data->uses_firstvertex; sgvs.XP0SourceSelect = XP0_PARAMETER; sgvs.XP0ComponentNumber = 0; sgvs.XP0ElementOffset = id_slot; /* gl_BaseInstance */ sgvs.XP1Enable = vs_prog_data->uses_baseinstance; sgvs.XP1SourceSelect = StartingInstanceLocation; sgvs.XP1ComponentNumber = 1; sgvs.XP1ElementOffset = id_slot; /* gl_DrawID */ sgvs.XP2Enable = vs_prog_data->uses_drawid; sgvs.XP2ComponentNumber = 0; sgvs.XP2ElementOffset = drawid_slot; } #endif } void genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch, const struct intel_l3_config *l3_config, VkShaderStageFlags active_stages, const unsigned entry_size[4], enum intel_urb_deref_block_size *deref_block_size) { const struct intel_device_info *devinfo = device->info; unsigned entries[4]; unsigned start[4]; bool constrained; intel_get_urb_config(devinfo, l3_config, active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, active_stages & VK_SHADER_STAGE_GEOMETRY_BIT, entry_size, entries, start, deref_block_size, &constrained); for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) { anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) { urb._3DCommandSubOpcode += i; urb.VSURBStartingAddress = start[i]; urb.VSURBEntryAllocationSize = entry_size[i] - 1; urb.VSNumberofURBEntries = entries[i]; } } #if GFX_VERx10 >= 125 if (device->physical->vk.supported_extensions.NV_mesh_shader || device->physical->vk.supported_extensions.EXT_mesh_shader) { anv_batch_emit(batch, GENX(3DSTATE_URB_ALLOC_MESH), zero); anv_batch_emit(batch, GENX(3DSTATE_URB_ALLOC_TASK), zero); } #endif } #if GFX_VERx10 >= 125 static void emit_urb_setup_mesh(struct anv_graphics_pipeline *pipeline, enum intel_urb_deref_block_size *deref_block_size) { struct anv_batch *batch = &pipeline->base.base.batch; const struct intel_device_info *devinfo = pipeline->base.base.device->info; const struct brw_task_prog_data *task_prog_data = anv_pipeline_has_stage(pipeline, MESA_SHADER_TASK) ? get_task_prog_data(pipeline) : NULL; const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline); const struct intel_mesh_urb_allocation alloc = intel_get_mesh_urb_config(devinfo, pipeline->base.base.l3_config, task_prog_data ? task_prog_data->map.size_dw : 0, mesh_prog_data->map.size_dw); /* Zero out the primitive pipeline URB allocations. */ for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) { anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) { urb._3DCommandSubOpcode += i; } } anv_batch_emit(batch, GENX(3DSTATE_URB_ALLOC_TASK), urb) { if (task_prog_data) { urb.TASKURBEntryAllocationSize = alloc.task_entry_size_64b - 1; urb.TASKNumberofURBEntriesSlice0 = alloc.task_entries; urb.TASKNumberofURBEntriesSliceN = alloc.task_entries; urb.TASKURBStartingAddressSlice0 = alloc.task_starting_address_8kb; urb.TASKURBStartingAddressSliceN = alloc.task_starting_address_8kb; } } anv_batch_emit(batch, GENX(3DSTATE_URB_ALLOC_MESH), urb) { urb.MESHURBEntryAllocationSize = alloc.mesh_entry_size_64b - 1; urb.MESHNumberofURBEntriesSlice0 = alloc.mesh_entries; urb.MESHNumberofURBEntriesSliceN = alloc.mesh_entries; urb.MESHURBStartingAddressSlice0 = alloc.mesh_starting_address_8kb; urb.MESHURBStartingAddressSliceN = alloc.mesh_starting_address_8kb; } *deref_block_size = alloc.deref_block_size; } #endif static void emit_urb_setup(struct anv_graphics_pipeline *pipeline, enum intel_urb_deref_block_size *deref_block_size) { #if GFX_VERx10 >= 125 if (anv_pipeline_is_mesh(pipeline)) { emit_urb_setup_mesh(pipeline, deref_block_size); return; } #endif unsigned entry_size[4]; for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { const struct brw_vue_prog_data *prog_data = !anv_pipeline_has_stage(pipeline, i) ? NULL : (const struct brw_vue_prog_data *) pipeline->base.shaders[i]->prog_data; entry_size[i] = prog_data ? prog_data->urb_entry_size : 1; } genX(emit_urb_setup)(pipeline->base.base.device, &pipeline->base.base.batch, pipeline->base.base.l3_config, pipeline->base.active_stages, entry_size, deref_block_size); } static void emit_3dstate_sbe(struct anv_graphics_pipeline *pipeline) { struct anv_batch *batch = &pipeline->base.base.batch; const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline); if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) { anv_batch_emit(batch, GENX(3DSTATE_SBE), sbe); anv_batch_emit(batch, GENX(3DSTATE_SBE_SWIZ), sbe); #if GFX_VERx10 >= 125 if (anv_pipeline_is_mesh(pipeline)) anv_batch_emit(batch, GENX(3DSTATE_SBE_MESH), sbe_mesh); #endif return; } struct GENX(3DSTATE_SBE) sbe = { GENX(3DSTATE_SBE_header), /* TODO(mesh): Figure out cases where we need attribute swizzling. See also * calculate_urb_setup() and related functions. */ .AttributeSwizzleEnable = anv_pipeline_is_primitive(pipeline), .PointSpriteTextureCoordinateOrigin = UPPERLEFT, .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs, .ConstantInterpolationEnable = wm_prog_data->flat_inputs, }; for (unsigned i = 0; i < 32; i++) sbe.AttributeActiveComponentFormat[i] = ACF_XYZW; /* On Broadwell, they broke 3DSTATE_SBE into two packets */ struct GENX(3DSTATE_SBE_SWIZ) swiz = { GENX(3DSTATE_SBE_SWIZ_header), }; if (anv_pipeline_is_primitive(pipeline)) { const struct brw_vue_map *fs_input_map = &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map; int first_slot = brw_compute_first_urb_slot_required(wm_prog_data->inputs, fs_input_map); assert(first_slot % 2 == 0); unsigned urb_entry_read_offset = first_slot / 2; int max_source_attr = 0; for (uint8_t idx = 0; idx < wm_prog_data->urb_setup_attribs_count; idx++) { uint8_t attr = wm_prog_data->urb_setup_attribs[idx]; int input_index = wm_prog_data->urb_setup[attr]; assert(0 <= input_index); /* gl_Viewport, gl_Layer and FragmentShadingRateKHR are stored in the * VUE header */ if (attr == VARYING_SLOT_VIEWPORT || attr == VARYING_SLOT_LAYER || attr == VARYING_SLOT_PRIMITIVE_SHADING_RATE) { continue; } if (attr == VARYING_SLOT_PNTC) { sbe.PointSpriteTextureCoordinateEnable = 1 << input_index; continue; } const int slot = fs_input_map->varying_to_slot[attr]; if (slot == -1) { /* This attribute does not exist in the VUE--that means that the * vertex shader did not write to it. It could be that it's a * regular varying read by the fragment shader but not written by * the vertex shader or it's gl_PrimitiveID. In the first case the * value is undefined, in the second it needs to be * gl_PrimitiveID. */ swiz.Attribute[input_index].ConstantSource = PRIM_ID; swiz.Attribute[input_index].ComponentOverrideX = true; swiz.Attribute[input_index].ComponentOverrideY = true; swiz.Attribute[input_index].ComponentOverrideZ = true; swiz.Attribute[input_index].ComponentOverrideW = true; continue; } /* We have to subtract two slots to account for the URB entry output * read offset in the VS and GS stages. */ const int source_attr = slot - 2 * urb_entry_read_offset; assert(source_attr >= 0 && source_attr < 32); max_source_attr = MAX2(max_source_attr, source_attr); /* The hardware can only do overrides on 16 overrides at a time, and the * other up to 16 have to be lined up so that the input index = the * output index. We'll need to do some tweaking to make sure that's the * case. */ if (input_index < 16) swiz.Attribute[input_index].SourceAttribute = source_attr; else assert(source_attr == input_index); } sbe.VertexURBEntryReadOffset = urb_entry_read_offset; sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2); sbe.ForceVertexURBEntryReadOffset = true; sbe.ForceVertexURBEntryReadLength = true; /* Ask the hardware to supply PrimitiveID if the fragment shader * reads it but a previous stage didn't write one. */ if ((wm_prog_data->inputs & VARYING_BIT_PRIMITIVE_ID) && fs_input_map->varying_to_slot[VARYING_SLOT_PRIMITIVE_ID] == -1) { sbe.PrimitiveIDOverrideAttributeSelect = wm_prog_data->urb_setup[VARYING_SLOT_PRIMITIVE_ID]; sbe.PrimitiveIDOverrideComponentX = true; sbe.PrimitiveIDOverrideComponentY = true; sbe.PrimitiveIDOverrideComponentZ = true; sbe.PrimitiveIDOverrideComponentW = true; pipeline->primitive_id_override = true; } } else { assert(anv_pipeline_is_mesh(pipeline)); #if GFX_VERx10 >= 125 const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline); anv_batch_emit(batch, GENX(3DSTATE_SBE_MESH), sbe_mesh) { const struct brw_mue_map *mue = &mesh_prog_data->map; assert(mue->per_vertex_header_size_dw % 8 == 0); sbe_mesh.PerVertexURBEntryOutputReadOffset = mue->per_vertex_header_size_dw / 8; sbe_mesh.PerVertexURBEntryOutputReadLength = DIV_ROUND_UP(mue->per_vertex_data_size_dw, 8); /* Clip distance array is passed in the per-vertex header so that * it can be consumed by the HW. If user wants to read it in the FS, * adjust the offset and length to cover it. Conveniently it is at * the end of the per-vertex header, right before per-vertex * attributes. * * Note that FS attribute reading must be aware that the clip * distances have fixed position. */ if (mue->per_vertex_header_size_dw > 8 && (wm_prog_data->urb_setup[VARYING_SLOT_CLIP_DIST0] >= 0 || wm_prog_data->urb_setup[VARYING_SLOT_CLIP_DIST1] >= 0)) { sbe_mesh.PerVertexURBEntryOutputReadOffset -= 1; sbe_mesh.PerVertexURBEntryOutputReadLength += 1; } assert(mue->per_primitive_header_size_dw % 8 == 0); sbe_mesh.PerPrimitiveURBEntryOutputReadOffset = mue->per_primitive_header_size_dw / 8; sbe_mesh.PerPrimitiveURBEntryOutputReadLength = DIV_ROUND_UP(mue->per_primitive_data_size_dw, 8); /* Just like with clip distances, if Primitive Shading Rate, * Viewport Index or Layer is read back in the FS, adjust * the offset and length to cover the Primitive Header, where * PSR, Viewport Index & Layer are stored. */ if (wm_prog_data->urb_setup[VARYING_SLOT_VIEWPORT] >= 0 || wm_prog_data->urb_setup[VARYING_SLOT_PRIMITIVE_SHADING_RATE] >= 0 || wm_prog_data->urb_setup[VARYING_SLOT_LAYER] >= 0) { assert(sbe_mesh.PerPrimitiveURBEntryOutputReadOffset > 0); sbe_mesh.PerPrimitiveURBEntryOutputReadOffset -= 1; sbe_mesh.PerPrimitiveURBEntryOutputReadLength += 1; } } #endif } uint32_t *dw = anv_batch_emit_dwords(batch, GENX(3DSTATE_SBE_length)); if (!dw) return; GENX(3DSTATE_SBE_pack)(batch, dw, &sbe); dw = anv_batch_emit_dwords(batch, GENX(3DSTATE_SBE_SWIZ_length)); if (!dw) return; GENX(3DSTATE_SBE_SWIZ_pack)(batch, dw, &swiz); } /** Returns the final polygon mode for rasterization * * This function takes into account polygon mode, primitive topology and the * different shader stages which might generate their own type of primitives. */ VkPolygonMode genX(raster_polygon_mode)(struct anv_graphics_pipeline *pipeline, VkPolygonMode polygon_mode, VkPrimitiveTopology primitive_topology) { if (anv_pipeline_is_mesh(pipeline)) { switch (get_mesh_prog_data(pipeline)->primitive_type) { case SHADER_PRIM_POINTS: return VK_POLYGON_MODE_POINT; case SHADER_PRIM_LINES: return VK_POLYGON_MODE_LINE; case SHADER_PRIM_TRIANGLES: return polygon_mode; default: unreachable("invalid primitive type for mesh"); } } else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { switch (get_gs_prog_data(pipeline)->output_topology) { case _3DPRIM_POINTLIST: return VK_POLYGON_MODE_POINT; case _3DPRIM_LINELIST: case _3DPRIM_LINESTRIP: case _3DPRIM_LINELOOP: return VK_POLYGON_MODE_LINE; case _3DPRIM_TRILIST: case _3DPRIM_TRIFAN: case _3DPRIM_TRISTRIP: case _3DPRIM_RECTLIST: case _3DPRIM_QUADLIST: case _3DPRIM_QUADSTRIP: case _3DPRIM_POLYGON: return polygon_mode; } unreachable("Unsupported GS output topology"); } else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) { switch (get_tes_prog_data(pipeline)->output_topology) { case BRW_TESS_OUTPUT_TOPOLOGY_POINT: return VK_POLYGON_MODE_POINT; case BRW_TESS_OUTPUT_TOPOLOGY_LINE: return VK_POLYGON_MODE_LINE; case BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW: case BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW: return polygon_mode; } unreachable("Unsupported TCS output topology"); } else { switch (primitive_topology) { case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: return VK_POLYGON_MODE_POINT; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: return VK_POLYGON_MODE_LINE; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: return polygon_mode; default: unreachable("Unsupported primitive topology"); } } } const uint32_t genX(vk_to_intel_cullmode)[] = { [VK_CULL_MODE_NONE] = CULLMODE_NONE, [VK_CULL_MODE_FRONT_BIT] = CULLMODE_FRONT, [VK_CULL_MODE_BACK_BIT] = CULLMODE_BACK, [VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH }; const uint32_t genX(vk_to_intel_fillmode)[] = { [VK_POLYGON_MODE_FILL] = FILL_MODE_SOLID, [VK_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME, [VK_POLYGON_MODE_POINT] = FILL_MODE_POINT, }; const uint32_t genX(vk_to_intel_front_face)[] = { [VK_FRONT_FACE_COUNTER_CLOCKWISE] = 1, [VK_FRONT_FACE_CLOCKWISE] = 0 }; void genX(rasterization_mode)(VkPolygonMode raster_mode, VkLineRasterizationModeEXT line_mode, float line_width, uint32_t *api_mode, bool *msaa_rasterization_enable) { if (raster_mode == VK_POLYGON_MODE_LINE) { /* Unfortunately, configuring our line rasterization hardware on gfx8 * and later is rather painful. Instead of giving us bits to tell the * hardware what line mode to use like we had on gfx7, we now have an * arcane combination of API Mode and MSAA enable bits which do things * in a table which are expected to magically put the hardware into the * right mode for your API. Sadly, Vulkan isn't any of the APIs the * hardware people thought of so nothing works the way you want it to. * * Look at the table titled "Multisample Rasterization Modes" in Vol 7 * of the Skylake PRM for more details. */ switch (line_mode) { case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT: *api_mode = DX101; #if GFX_VER <= 9 /* Prior to ICL, the algorithm the HW uses to draw wide lines * doesn't quite match what the CTS expects, at least for rectangular * lines, so we set this to false here, making it draw parallelograms * instead, which work well enough. */ *msaa_rasterization_enable = line_width < 1.0078125; #else *msaa_rasterization_enable = true; #endif break; case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT: case VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT: *api_mode = DX9OGL; *msaa_rasterization_enable = false; break; default: unreachable("Unsupported line rasterization mode"); } } else { *api_mode = DX101; *msaa_rasterization_enable = true; } } static void emit_rs_state(struct anv_graphics_pipeline *pipeline, const struct vk_input_assembly_state *ia, const struct vk_rasterization_state *rs, const struct vk_multisample_state *ms, const struct vk_render_pass_state *rp, enum intel_urb_deref_block_size urb_deref_block_size) { struct GENX(3DSTATE_SF) sf = { GENX(3DSTATE_SF_header), }; sf.ViewportTransformEnable = true; sf.StatisticsEnable = true; sf.VertexSubPixelPrecisionSelect = _8Bit; sf.AALineDistanceMode = true; #if GFX_VER >= 12 sf.DerefBlockSize = urb_deref_block_size; #endif bool point_from_shader; if (anv_pipeline_is_primitive(pipeline)) { const struct brw_vue_prog_data *last_vue_prog_data = anv_pipeline_get_last_vue_prog_data(pipeline); point_from_shader = last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ; } else { assert(anv_pipeline_is_mesh(pipeline)); const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline); point_from_shader = mesh_prog_data->map.start_dw[VARYING_SLOT_PSIZ] >= 0; } if (point_from_shader) { sf.PointWidthSource = Vertex; } else { sf.PointWidthSource = State; sf.PointWidth = 1.0; } struct GENX(3DSTATE_RASTER) raster = { GENX(3DSTATE_RASTER_header), }; /* For details on 3DSTATE_RASTER multisample state, see the BSpec table * "Multisample Modes State". */ /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix * computations. If we ever set this bit to a different value, they will * need to be updated accordingly. */ raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0; raster.ForceMultisampling = false; raster.ScissorRectangleEnable = true; raster.ConservativeRasterizationEnable = rs->conservative_mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT; raster.APIMode = DX101; GENX(3DSTATE_SF_pack)(NULL, pipeline->gfx8.sf, &sf); GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gfx8.raster, &raster); } static void emit_ms_state(struct anv_graphics_pipeline *pipeline, const struct vk_multisample_state *ms) { struct anv_batch *batch = &pipeline->base.base.batch; /* On Gfx8+ 3DSTATE_MULTISAMPLE only holds the number of samples. */ genX(emit_multisample)(batch, pipeline->rasterization_samples); } const uint32_t genX(vk_to_intel_logic_op)[] = { [VK_LOGIC_OP_COPY] = LOGICOP_COPY, [VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR, [VK_LOGIC_OP_AND] = LOGICOP_AND, [VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE, [VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED, [VK_LOGIC_OP_NO_OP] = LOGICOP_NOOP, [VK_LOGIC_OP_XOR] = LOGICOP_XOR, [VK_LOGIC_OP_OR] = LOGICOP_OR, [VK_LOGIC_OP_NOR] = LOGICOP_NOR, [VK_LOGIC_OP_EQUIVALENT] = LOGICOP_EQUIV, [VK_LOGIC_OP_INVERT] = LOGICOP_INVERT, [VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE, [VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED, [VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED, [VK_LOGIC_OP_NAND] = LOGICOP_NAND, [VK_LOGIC_OP_SET] = LOGICOP_SET, }; const uint32_t genX(vk_to_intel_compare_op)[] = { [VK_COMPARE_OP_NEVER] = PREFILTEROP_NEVER, [VK_COMPARE_OP_LESS] = PREFILTEROP_LESS, [VK_COMPARE_OP_EQUAL] = PREFILTEROP_EQUAL, [VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROP_LEQUAL, [VK_COMPARE_OP_GREATER] = PREFILTEROP_GREATER, [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROP_NOTEQUAL, [VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROP_GEQUAL, [VK_COMPARE_OP_ALWAYS] = PREFILTEROP_ALWAYS, }; const uint32_t genX(vk_to_intel_stencil_op)[] = { [VK_STENCIL_OP_KEEP] = STENCILOP_KEEP, [VK_STENCIL_OP_ZERO] = STENCILOP_ZERO, [VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE, [VK_STENCIL_OP_INCREMENT_AND_CLAMP] = STENCILOP_INCRSAT, [VK_STENCIL_OP_DECREMENT_AND_CLAMP] = STENCILOP_DECRSAT, [VK_STENCIL_OP_INVERT] = STENCILOP_INVERT, [VK_STENCIL_OP_INCREMENT_AND_WRAP] = STENCILOP_INCR, [VK_STENCIL_OP_DECREMENT_AND_WRAP] = STENCILOP_DECR, }; const uint32_t genX(vk_to_intel_primitive_type)[] = { [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST, [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST, [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN, [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ, [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ, [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ, }; static void emit_3dstate_clip(struct anv_graphics_pipeline *pipeline, const struct vk_input_assembly_state *ia, const struct vk_viewport_state *vp, const struct vk_rasterization_state *rs) { const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline); (void) wm_prog_data; struct GENX(3DSTATE_CLIP) clip = { GENX(3DSTATE_CLIP_header), }; clip.ClipEnable = true; clip.StatisticsEnable = true; clip.EarlyCullEnable = true; clip.GuardbandClipTestEnable = true; clip.VertexSubPixelPrecisionSelect = _8Bit; clip.ClipMode = CLIPMODE_NORMAL; clip.MinimumPointWidth = 0.125; clip.MaximumPointWidth = 255.875; /* TODO(mesh): Multiview. */ if (anv_pipeline_is_primitive(pipeline)) { const struct brw_vue_prog_data *last = anv_pipeline_get_last_vue_prog_data(pipeline); /* From the Vulkan 1.0.45 spec: * * "If the last active vertex processing stage shader entry point's * interface does not include a variable decorated with * ViewportIndex, then the first viewport is used." */ if (vp && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) { clip.MaximumVPIndex = vp->viewport_count > 0 ? vp->viewport_count - 1 : 0; } else { clip.MaximumVPIndex = 0; } /* From the Vulkan 1.0.45 spec: * * "If the last active vertex processing stage shader entry point's * interface does not include a variable decorated with Layer, then * the first layer is used." */ clip.ForceZeroRTAIndexEnable = !(last->vue_map.slots_valid & VARYING_BIT_LAYER); } else if (anv_pipeline_is_mesh(pipeline)) { const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline); if (vp && vp->viewport_count > 0 && mesh_prog_data->map.start_dw[VARYING_SLOT_VIEWPORT] >= 0) { clip.MaximumVPIndex = vp->viewport_count - 1; } else { clip.MaximumVPIndex = 0; } clip.ForceZeroRTAIndexEnable = mesh_prog_data->map.start_dw[VARYING_SLOT_LAYER] < 0; } clip.NonPerspectiveBarycentricEnable = wm_prog_data ? wm_prog_data->uses_nonperspective_interp_modes : 0; GENX(3DSTATE_CLIP_pack)(NULL, pipeline->gfx8.clip, &clip); #if GFX_VERx10 >= 125 if (anv_pipeline_is_mesh(pipeline)) { struct anv_batch *batch = &pipeline->base.base.batch; const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline); anv_batch_emit(batch, GENX(3DSTATE_CLIP_MESH), clip_mesh) { clip_mesh.PrimitiveHeaderEnable = mesh_prog_data->map.per_primitive_header_size_dw > 0; clip_mesh.UserClipDistanceClipTestEnableBitmask = mesh_prog_data->clip_distance_mask; clip_mesh.UserClipDistanceCullTestEnableBitmask = mesh_prog_data->cull_distance_mask; } } #endif } static void emit_3dstate_streamout(struct anv_graphics_pipeline *pipeline, const struct vk_rasterization_state *rs) { struct anv_batch *batch = &pipeline->base.base.batch; const struct anv_device *device = pipeline->base.base.device; const struct brw_vue_prog_data *prog_data = anv_pipeline_get_last_vue_prog_data(pipeline); const struct brw_vue_map *vue_map = &prog_data->vue_map; nir_xfb_info *xfb_info; if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) xfb_info = pipeline->base.shaders[MESA_SHADER_GEOMETRY]->xfb_info; else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) xfb_info = pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->xfb_info; else xfb_info = pipeline->base.shaders[MESA_SHADER_VERTEX]->xfb_info; if (xfb_info) { struct GENX(SO_DECL) so_decl[MAX_XFB_STREAMS][128]; int next_offset[MAX_XFB_BUFFERS] = {0, 0, 0, 0}; int decls[MAX_XFB_STREAMS] = {0, 0, 0, 0}; memset(so_decl, 0, sizeof(so_decl)); for (unsigned i = 0; i < xfb_info->output_count; i++) { const nir_xfb_output_info *output = &xfb_info->outputs[i]; unsigned buffer = output->buffer; unsigned stream = xfb_info->buffer_to_stream[buffer]; /* Our hardware is unusual in that it requires us to program SO_DECLs * for fake "hole" components, rather than simply taking the offset * for each real varying. Each hole can have size 1, 2, 3, or 4; we * program as many size = 4 holes as we can, then a final hole to * accommodate the final 1, 2, or 3 remaining. */ int hole_dwords = (output->offset - next_offset[buffer]) / 4; while (hole_dwords > 0) { so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) { .HoleFlag = 1, .OutputBufferSlot = buffer, .ComponentMask = (1 << MIN2(hole_dwords, 4)) - 1, }; hole_dwords -= 4; } int varying = output->location; uint8_t component_mask = output->component_mask; /* VARYING_SLOT_PSIZ contains four scalar fields packed together: * - VARYING_SLOT_PRIMITIVE_SHADING_RATE in VARYING_SLOT_PSIZ.x * - VARYING_SLOT_LAYER in VARYING_SLOT_PSIZ.y * - VARYING_SLOT_VIEWPORT in VARYING_SLOT_PSIZ.z * - VARYING_SLOT_PSIZ in VARYING_SLOT_PSIZ.w */ if (varying == VARYING_SLOT_PRIMITIVE_SHADING_RATE) { varying = VARYING_SLOT_PSIZ; component_mask = 1 << 0; // SO_DECL_COMPMASK_X } else if (varying == VARYING_SLOT_LAYER) { varying = VARYING_SLOT_PSIZ; component_mask = 1 << 1; // SO_DECL_COMPMASK_Y } else if (varying == VARYING_SLOT_VIEWPORT) { varying = VARYING_SLOT_PSIZ; component_mask = 1 << 2; // SO_DECL_COMPMASK_Z } else if (varying == VARYING_SLOT_PSIZ) { component_mask = 1 << 3; // SO_DECL_COMPMASK_W } next_offset[buffer] = output->offset + __builtin_popcount(component_mask) * 4; const int slot = vue_map->varying_to_slot[varying]; if (slot < 0) { /* This can happen if the shader never writes to the varying. * Insert a hole instead of actual varying data. */ so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) { .HoleFlag = true, .OutputBufferSlot = buffer, .ComponentMask = component_mask, }; } else { so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) { .OutputBufferSlot = buffer, .RegisterIndex = slot, .ComponentMask = component_mask, }; } } int max_decls = 0; for (unsigned s = 0; s < MAX_XFB_STREAMS; s++) max_decls = MAX2(max_decls, decls[s]); uint8_t sbs[MAX_XFB_STREAMS] = { }; for (unsigned b = 0; b < MAX_XFB_BUFFERS; b++) { if (xfb_info->buffers_written & (1 << b)) sbs[xfb_info->buffer_to_stream[b]] |= 1 << b; } /* Wa_16011773973: * If SOL is enabled and SO_DECL state has to be programmed, * 1. Send 3D State SOL state with SOL disabled * 2. Send SO_DECL NP state * 3. Send 3D State SOL with SOL Enabled */ if (intel_device_info_is_dg2(device->info)) anv_batch_emit(batch, GENX(3DSTATE_STREAMOUT), so); uint32_t *dw = anv_batch_emitn(batch, 3 + 2 * max_decls, GENX(3DSTATE_SO_DECL_LIST), .StreamtoBufferSelects0 = sbs[0], .StreamtoBufferSelects1 = sbs[1], .StreamtoBufferSelects2 = sbs[2], .StreamtoBufferSelects3 = sbs[3], .NumEntries0 = decls[0], .NumEntries1 = decls[1], .NumEntries2 = decls[2], .NumEntries3 = decls[3]); for (int i = 0; i < max_decls; i++) { GENX(SO_DECL_ENTRY_pack)(NULL, dw + 3 + i * 2, &(struct GENX(SO_DECL_ENTRY)) { .Stream0Decl = so_decl[0][i], .Stream1Decl = so_decl[1][i], .Stream2Decl = so_decl[2][i], .Stream3Decl = so_decl[3][i], }); } #if GFX_VERx10 == 125 /* Wa_14015946265: Send PC with CS stall after SO_DECL. */ anv_batch_emit(batch, GENX(PIPE_CONTROL), pc) { pc.CommandStreamerStallEnable = true; } #endif } struct GENX(3DSTATE_STREAMOUT) so = { GENX(3DSTATE_STREAMOUT_header), }; if (xfb_info) { pipeline->uses_xfb = true; so.SOFunctionEnable = true; so.SOStatisticsEnable = true; so.Buffer0SurfacePitch = xfb_info->buffers[0].stride; so.Buffer1SurfacePitch = xfb_info->buffers[1].stride; so.Buffer2SurfacePitch = xfb_info->buffers[2].stride; so.Buffer3SurfacePitch = xfb_info->buffers[3].stride; int urb_entry_read_offset = 0; int urb_entry_read_length = (prog_data->vue_map.num_slots + 1) / 2 - urb_entry_read_offset; /* We always read the whole vertex. This could be reduced at some * point by reading less and offsetting the register index in the * SO_DECLs. */ so.Stream0VertexReadOffset = urb_entry_read_offset; so.Stream0VertexReadLength = urb_entry_read_length - 1; so.Stream1VertexReadOffset = urb_entry_read_offset; so.Stream1VertexReadLength = urb_entry_read_length - 1; so.Stream2VertexReadOffset = urb_entry_read_offset; so.Stream2VertexReadLength = urb_entry_read_length - 1; so.Stream3VertexReadOffset = urb_entry_read_offset; so.Stream3VertexReadLength = urb_entry_read_length - 1; } GENX(3DSTATE_STREAMOUT_pack)(NULL, pipeline->gfx8.streamout_state, &so); } static uint32_t get_sampler_count(const struct anv_shader_bin *bin) { uint32_t count_by_4 = DIV_ROUND_UP(bin->bind_map.sampler_count, 4); /* We can potentially have way more than 32 samplers and that's ok. * However, the 3DSTATE_XS packets only have 3 bits to specify how * many to pre-fetch and all values above 4 are marked reserved. */ return MIN2(count_by_4, 4); } static UNUSED struct anv_address get_scratch_address(struct anv_pipeline *pipeline, gl_shader_stage stage, const struct anv_shader_bin *bin) { return (struct anv_address) { .bo = anv_scratch_pool_alloc(pipeline->device, &pipeline->device->scratch_pool, stage, bin->prog_data->total_scratch), .offset = 0, }; } static UNUSED uint32_t get_scratch_space(const struct anv_shader_bin *bin) { return ffs(bin->prog_data->total_scratch / 2048); } static UNUSED uint32_t get_scratch_surf(struct anv_pipeline *pipeline, gl_shader_stage stage, const struct anv_shader_bin *bin) { if (bin->prog_data->total_scratch == 0) return 0; struct anv_bo *bo = anv_scratch_pool_alloc(pipeline->device, &pipeline->device->scratch_pool, stage, bin->prog_data->total_scratch); anv_reloc_list_add_bo(pipeline->batch.relocs, pipeline->batch.alloc, bo); return anv_scratch_pool_get_surf(pipeline->device, &pipeline->device->scratch_pool, bin->prog_data->total_scratch) >> 4; } static void emit_3dstate_vs(struct anv_graphics_pipeline *pipeline) { struct anv_batch *batch = &pipeline->base.base.batch; const struct intel_device_info *devinfo = pipeline->base.base.device->info; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); const struct anv_shader_bin *vs_bin = pipeline->base.shaders[MESA_SHADER_VERTEX]; assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX)); anv_batch_emit(batch, GENX(3DSTATE_VS), vs) { vs.Enable = true; vs.StatisticsEnable = true; vs.KernelStartPointer = vs_bin->kernel.offset; vs.SIMD8DispatchEnable = vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8; assert(!vs_prog_data->base.base.use_alt_mode); #if GFX_VER < 11 vs.SingleVertexDispatch = false; #endif vs.VectorMaskEnable = false; /* Wa_1606682166: * Incorrect TDL's SSP address shift in SARB for 16:6 & 18:8 modes. * Disable the Sampler state prefetch functionality in the SARB by * programming 0xB000[30] to '1'. */ vs.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(vs_bin); vs.BindingTableEntryCount = vs_bin->bind_map.surface_count; vs.FloatingPointMode = IEEE754; vs.IllegalOpcodeExceptionEnable = false; vs.SoftwareExceptionEnable = false; vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1; if (GFX_VER == 9 && devinfo->gt == 4 && anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) { /* On Sky Lake GT4, we have experienced some hangs related to the VS * cache and tessellation. It is unknown exactly what is happening * but the Haswell docs for the "VS Reference Count Full Force Miss * Enable" field of the "Thread Mode" register refer to a HSW bug in * which the VUE handle reference count would overflow resulting in * internal reference counting bugs. My (Faith's) best guess is that * this bug cropped back up on SKL GT4 when we suddenly had more * threads in play than any previous gfx9 hardware. * * What we do know for sure is that setting this bit when * tessellation shaders are in use fixes a GPU hang in Batman: Arkham * City when playing with DXVK (https://bugs.freedesktop.org/107280). * Disabling the vertex cache with tessellation shaders should only * have a minor performance impact as the tessellation shaders are * likely generating and processing far more geometry than the vertex * stage. */ vs.VertexCacheDisable = true; } vs.VertexURBEntryReadLength = vs_prog_data->base.urb_read_length; vs.VertexURBEntryReadOffset = 0; vs.DispatchGRFStartRegisterForURBData = vs_prog_data->base.base.dispatch_grf_start_reg; vs.UserClipDistanceClipTestEnableBitmask = vs_prog_data->base.clip_distance_mask; vs.UserClipDistanceCullTestEnableBitmask = vs_prog_data->base.cull_distance_mask; #if GFX_VERx10 >= 125 vs.ScratchSpaceBuffer = get_scratch_surf(&pipeline->base.base, MESA_SHADER_VERTEX, vs_bin); #else vs.PerThreadScratchSpace = get_scratch_space(vs_bin); vs.ScratchSpaceBasePointer = get_scratch_address(&pipeline->base.base, MESA_SHADER_VERTEX, vs_bin); #endif } } static void emit_3dstate_hs_ds(struct anv_graphics_pipeline *pipeline, const struct vk_tessellation_state *ts) { struct anv_batch *batch = &pipeline->base.base.batch; if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) { anv_batch_emit(batch, GENX(3DSTATE_HS), hs); anv_batch_emit(batch, GENX(3DSTATE_DS), ds); return; } const struct intel_device_info *devinfo = pipeline->base.base.device->info; const struct anv_shader_bin *tcs_bin = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]; const struct anv_shader_bin *tes_bin = pipeline->base.shaders[MESA_SHADER_TESS_EVAL]; const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline); const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline); struct GENX(3DSTATE_HS) hs = { GENX(3DSTATE_HS_header), }; hs.Enable = true; hs.StatisticsEnable = true; hs.KernelStartPointer = tcs_bin->kernel.offset; /* Wa_1606682166 */ hs.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(tcs_bin); hs.BindingTableEntryCount = tcs_bin->bind_map.surface_count; #if GFX_VER >= 12 /* Wa_1604578095: * * Hang occurs when the number of max threads is less than 2 times * the number of instance count. The number of max threads must be * more than 2 times the number of instance count. */ assert((devinfo->max_tcs_threads / 2) > tcs_prog_data->instances); #endif hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1; hs.IncludeVertexHandles = true; hs.InstanceCount = tcs_prog_data->instances - 1; hs.VertexURBEntryReadLength = 0; hs.VertexURBEntryReadOffset = 0; hs.DispatchGRFStartRegisterForURBData = tcs_prog_data->base.base.dispatch_grf_start_reg & 0x1f; #if GFX_VER >= 12 hs.DispatchGRFStartRegisterForURBData5 = tcs_prog_data->base.base.dispatch_grf_start_reg >> 5; #endif #if GFX_VERx10 >= 125 hs.ScratchSpaceBuffer = get_scratch_surf(&pipeline->base.base, MESA_SHADER_TESS_CTRL, tcs_bin); #else hs.PerThreadScratchSpace = get_scratch_space(tcs_bin); hs.ScratchSpaceBasePointer = get_scratch_address(&pipeline->base.base, MESA_SHADER_TESS_CTRL, tcs_bin); #endif #if GFX_VER == 12 /* Patch Count threshold specifies the maximum number of patches that * will be accumulated before a thread dispatch is forced. */ hs.PatchCountThreshold = tcs_prog_data->patch_count_threshold; #endif hs.DispatchMode = tcs_prog_data->base.dispatch_mode; hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id; GENX(3DSTATE_HS_pack)(&pipeline->base.base.batch, pipeline->gfx8.hs, &hs); anv_batch_emit(batch, GENX(3DSTATE_DS), ds) { ds.Enable = true; ds.StatisticsEnable = true; ds.KernelStartPointer = tes_bin->kernel.offset; /* Wa_1606682166 */ ds.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(tes_bin); ds.BindingTableEntryCount = tes_bin->bind_map.surface_count; ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1; ds.ComputeWCoordinateEnable = tes_prog_data->domain == BRW_TESS_DOMAIN_TRI; ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length; ds.PatchURBEntryReadOffset = 0; ds.DispatchGRFStartRegisterForURBData = tes_prog_data->base.base.dispatch_grf_start_reg; #if GFX_VER < 11 ds.DispatchMode = tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ? DISPATCH_MODE_SIMD8_SINGLE_PATCH : DISPATCH_MODE_SIMD4X2; #else assert(tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8); ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH; #endif ds.UserClipDistanceClipTestEnableBitmask = tes_prog_data->base.clip_distance_mask; ds.UserClipDistanceCullTestEnableBitmask = tes_prog_data->base.cull_distance_mask; #if GFX_VER >= 12 ds.PrimitiveIDNotRequired = !tes_prog_data->include_primitive_id; #endif #if GFX_VERx10 >= 125 ds.ScratchSpaceBuffer = get_scratch_surf(&pipeline->base.base, MESA_SHADER_TESS_EVAL, tes_bin); #else ds.PerThreadScratchSpace = get_scratch_space(tes_bin); ds.ScratchSpaceBasePointer = get_scratch_address(&pipeline->base.base, MESA_SHADER_TESS_EVAL, tes_bin); #endif } } static void emit_3dstate_gs(struct anv_graphics_pipeline *pipeline) { struct anv_batch *batch = &pipeline->base.base.batch; const struct intel_device_info *devinfo = pipeline->base.base.device->info; const struct anv_shader_bin *gs_bin = pipeline->base.shaders[MESA_SHADER_GEOMETRY]; if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { anv_batch_emit(batch, GENX(3DSTATE_GS), gs); return; } const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline); anv_batch_emit(batch, GENX(3DSTATE_GS), gs) { gs.Enable = true; gs.StatisticsEnable = true; gs.KernelStartPointer = gs_bin->kernel.offset; gs.DispatchMode = gs_prog_data->base.dispatch_mode; gs.SingleProgramFlow = false; gs.VectorMaskEnable = false; /* Wa_1606682166 */ gs.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(gs_bin); gs.BindingTableEntryCount = gs_bin->bind_map.surface_count; gs.IncludeVertexHandles = gs_prog_data->base.include_vue_handles; gs.IncludePrimitiveID = gs_prog_data->include_primitive_id; gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1; gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1; gs.OutputTopology = gs_prog_data->output_topology; gs.ControlDataFormat = gs_prog_data->control_data_format; gs.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords; gs.InstanceControl = MAX2(gs_prog_data->invocations, 1) - 1; gs.ReorderMode = TRAILING; gs.ExpectedVertexCount = gs_prog_data->vertices_in; gs.StaticOutput = gs_prog_data->static_vertex_count >= 0; gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ? gs_prog_data->static_vertex_count : 0; gs.VertexURBEntryReadOffset = 0; gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length; gs.DispatchGRFStartRegisterForURBData = gs_prog_data->base.base.dispatch_grf_start_reg; gs.UserClipDistanceClipTestEnableBitmask = gs_prog_data->base.clip_distance_mask; gs.UserClipDistanceCullTestEnableBitmask = gs_prog_data->base.cull_distance_mask; #if GFX_VERx10 >= 125 gs.ScratchSpaceBuffer = get_scratch_surf(&pipeline->base.base, MESA_SHADER_GEOMETRY, gs_bin); #else gs.PerThreadScratchSpace = get_scratch_space(gs_bin); gs.ScratchSpaceBasePointer = get_scratch_address(&pipeline->base.base, MESA_SHADER_GEOMETRY, gs_bin); #endif } } static bool rp_has_ds_self_dep(const struct vk_render_pass_state *rp) { return rp->pipeline_flags & VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT; } static void emit_3dstate_wm(struct anv_graphics_pipeline *pipeline, const struct vk_input_assembly_state *ia, const struct vk_rasterization_state *rs, const struct vk_multisample_state *ms, const struct vk_color_blend_state *cb, const struct vk_render_pass_state *rp) { const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline); struct GENX(3DSTATE_WM) wm = { GENX(3DSTATE_WM_header), }; wm.StatisticsEnable = true; wm.LineEndCapAntialiasingRegionWidth = _05pixels; wm.LineAntialiasingRegionWidth = _10pixels; wm.PointRasterizationRule = RASTRULE_UPPER_LEFT; if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) { if (wm_prog_data->early_fragment_tests) { wm.EarlyDepthStencilControl = EDSC_PREPS; } else if (wm_prog_data->has_side_effects) { wm.EarlyDepthStencilControl = EDSC_PSEXEC; } else { wm.EarlyDepthStencilControl = EDSC_NORMAL; } /* Gen8 hardware tries to compute ThreadDispatchEnable for us but * doesn't take into account KillPixels when no depth or stencil * writes are enabled. In order for occlusion queries to work * correctly with no attachments, we need to force-enable PS thread * dispatch. * * The BDW docs are pretty clear that that this bit isn't validated * and probably shouldn't be used in production: * * "This must always be set to Normal. This field should not be * tested for functional validation." * * Unfortunately, however, the other mechanism we have for doing this * is 3DSTATE_PS_EXTRA::PixelShaderHasUAV which causes hangs on BDW. * Given two bad options, we choose the one which works. */ pipeline->force_fragment_thread_dispatch = wm_prog_data->has_side_effects || wm_prog_data->uses_kill; wm.BarycentricInterpolationMode = wm_prog_data_barycentric_modes(wm_prog_data, pipeline->fs_msaa_flags); } GENX(3DSTATE_WM_pack)(NULL, pipeline->gfx8.wm, &wm); } static void emit_3dstate_ps(struct anv_graphics_pipeline *pipeline, const struct vk_multisample_state *ms, const struct vk_color_blend_state *cb) { struct anv_batch *batch = &pipeline->base.base.batch; UNUSED const struct intel_device_info *devinfo = pipeline->base.base.device->info; const struct anv_shader_bin *fs_bin = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) { anv_batch_emit(batch, GENX(3DSTATE_PS), ps) { } return; } const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline); anv_batch_emit(batch, GENX(3DSTATE_PS), ps) { intel_set_ps_dispatch_state(&ps, devinfo, wm_prog_data, ms != NULL ? ms->rasterization_samples : 1, pipeline->fs_msaa_flags); const bool persample = brw_wm_prog_data_is_persample(wm_prog_data, pipeline->fs_msaa_flags); ps.KernelStartPointer0 = fs_bin->kernel.offset + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0); ps.KernelStartPointer1 = fs_bin->kernel.offset + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1); ps.KernelStartPointer2 = fs_bin->kernel.offset + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2); ps.SingleProgramFlow = false; ps.VectorMaskEnable = wm_prog_data->uses_vmask; /* Wa_1606682166 */ ps.SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(fs_bin); ps.BindingTableEntryCount = fs_bin->bind_map.surface_count; ps.PushConstantEnable = wm_prog_data->base.nr_params > 0 || wm_prog_data->base.ubo_ranges[0].length; ps.PositionXYOffsetSelect = !wm_prog_data->uses_pos_offset ? POSOFFSET_NONE : persample ? POSOFFSET_SAMPLE : POSOFFSET_CENTROID; ps.MaximumNumberofThreadsPerPSD = devinfo->max_threads_per_psd - 1; ps.DispatchGRFStartRegisterForConstantSetupData0 = brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0); ps.DispatchGRFStartRegisterForConstantSetupData1 = brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1); ps.DispatchGRFStartRegisterForConstantSetupData2 = brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2); #if GFX_VERx10 >= 125 ps.ScratchSpaceBuffer = get_scratch_surf(&pipeline->base.base, MESA_SHADER_FRAGMENT, fs_bin); #else ps.PerThreadScratchSpace = get_scratch_space(fs_bin); ps.ScratchSpaceBasePointer = get_scratch_address(&pipeline->base.base, MESA_SHADER_FRAGMENT, fs_bin); #endif } } static void emit_3dstate_ps_extra(struct anv_graphics_pipeline *pipeline, const struct vk_rasterization_state *rs, const struct vk_render_pass_state *rp) { struct anv_batch *batch = &pipeline->base.base.batch; const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline); if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) { anv_batch_emit(batch, GENX(3DSTATE_PS_EXTRA), ps); return; } anv_batch_emit(batch, GENX(3DSTATE_PS_EXTRA), ps) { ps.PixelShaderValid = true; ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0; ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask; ps.PixelShaderIsPerSample = brw_wm_prog_data_is_persample(wm_prog_data, pipeline->fs_msaa_flags); ps.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode; ps.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth; ps.PixelShaderUsesSourceW = wm_prog_data->uses_src_w; /* If the subpass has a depth or stencil self-dependency, then we need * to force the hardware to do the depth/stencil write *after* fragment * shader execution. Otherwise, the writes may hit memory before we get * around to fetching from the input attachment and we may get the depth * or stencil value from the current draw rather than the previous one. */ ps.PixelShaderKillsPixel = rp_has_ds_self_dep(rp) || wm_prog_data->uses_kill; ps.PixelShaderComputesStencil = wm_prog_data->computed_stencil; ps.PixelShaderPullsBary = wm_prog_data->pulls_bary; ps.InputCoverageMaskState = ICMS_NONE; assert(!wm_prog_data->inner_coverage); /* Not available in SPIR-V */ if (!wm_prog_data->uses_sample_mask) ps.InputCoverageMaskState = ICMS_NONE; else if (brw_wm_prog_data_is_coarse(wm_prog_data, 0)) ps.InputCoverageMaskState = ICMS_NORMAL; else if (wm_prog_data->post_depth_coverage) ps.InputCoverageMaskState = ICMS_DEPTH_COVERAGE; else ps.InputCoverageMaskState = ICMS_NORMAL; #if GFX_VER >= 11 ps.PixelShaderRequiresSourceDepthandorWPlaneCoefficients = wm_prog_data->uses_depth_w_coefficients; ps.PixelShaderIsPerCoarsePixel = brw_wm_prog_data_is_coarse(wm_prog_data, pipeline->fs_msaa_flags); #endif #if GFX_VERx10 >= 125 /* TODO: We should only require this when the last geometry shader uses * a fragment shading rate that is not constant. */ ps.EnablePSDependencyOnCPsizeChange = brw_wm_prog_data_is_coarse(wm_prog_data, pipeline->fs_msaa_flags); #endif } } static void emit_3dstate_vf_statistics(struct anv_graphics_pipeline *pipeline) { struct anv_batch *batch = &pipeline->base.base.batch; anv_batch_emit(batch, GENX(3DSTATE_VF_STATISTICS), vfs) { vfs.StatisticsEnable = true; } } static void compute_kill_pixel(struct anv_graphics_pipeline *pipeline, const struct vk_multisample_state *ms, const struct vk_render_pass_state *rp) { if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) { pipeline->kill_pixel = false; return; } const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline); /* This computes the KillPixel portion of the computation for whether or * not we want to enable the PMA fix on gfx8 or gfx9. It's given by this * chunk of the giant formula: * * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels || * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget || * 3DSTATE_PS_BLEND::AlphaToCoverageEnable || * 3DSTATE_PS_BLEND::AlphaTestEnable || * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable) * * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept * of an alpha test. */ pipeline->kill_pixel = rp_has_ds_self_dep(rp) || wm_prog_data->uses_kill || wm_prog_data->uses_omask || (ms && ms->alpha_to_coverage_enable); } #if GFX_VER == 12 static void emit_3dstate_primitive_replication(struct anv_graphics_pipeline *pipeline, const struct vk_render_pass_state *rp) { struct anv_batch *batch = &pipeline->base.base.batch; if (anv_pipeline_is_mesh(pipeline)) { anv_batch_emit(batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr); return; } const int replication_count = anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map.num_pos_slots; assert(replication_count >= 1); if (replication_count == 1) { anv_batch_emit(batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr); return; } assert(replication_count == util_bitcount(rp->view_mask)); assert(replication_count <= MAX_VIEWS_FOR_PRIMITIVE_REPLICATION); anv_batch_emit(batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr) { pr.ReplicaMask = (1 << replication_count) - 1; pr.ReplicationCount = replication_count - 1; int i = 0; u_foreach_bit(view_index, rp->view_mask) { pr.RTAIOffset[i] = view_index; i++; } } } #endif #if GFX_VERx10 >= 125 static void emit_task_state(struct anv_graphics_pipeline *pipeline) { struct anv_batch *batch = &pipeline->base.base.batch; assert(anv_pipeline_is_mesh(pipeline)); if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TASK)) { anv_batch_emit(batch, GENX(3DSTATE_TASK_CONTROL), zero); return; } const struct anv_shader_bin *task_bin = pipeline->base.shaders[MESA_SHADER_TASK]; anv_batch_emit(batch, GENX(3DSTATE_TASK_CONTROL), tc) { tc.TaskShaderEnable = true; tc.ScratchSpaceBuffer = get_scratch_surf(&pipeline->base.base, MESA_SHADER_TASK, task_bin); tc.MaximumNumberofThreadGroups = 511; } const struct intel_device_info *devinfo = pipeline->base.base.device->info; const struct brw_task_prog_data *task_prog_data = get_task_prog_data(pipeline); const struct brw_cs_dispatch_info task_dispatch = brw_cs_get_dispatch_info(devinfo, &task_prog_data->base, NULL); anv_batch_emit(batch, GENX(3DSTATE_TASK_SHADER), task) { task.KernelStartPointer = task_bin->kernel.offset; task.SIMDSize = task_dispatch.simd_size / 16; task.MessageSIMD = task.SIMDSize; task.NumberofThreadsinGPGPUThreadGroup = task_dispatch.threads; task.ExecutionMask = task_dispatch.right_mask; task.LocalXMaximum = task_dispatch.group_size - 1; task.EmitLocalIDX = true; task.NumberofBarriers = task_prog_data->base.uses_barrier; task.SharedLocalMemorySize = encode_slm_size(GFX_VER, task_prog_data->base.base.total_shared); task.PreferredSLMAllocationSize = preferred_slm_allocation_size(devinfo); /* * 3DSTATE_TASK_SHADER_DATA.InlineData[0:1] will be used for an address * of a buffer with push constants and descriptor set table and * InlineData[2:7] will be used for first few push constants. */ task.EmitInlineParameter = true; task.XP0Required = task_prog_data->uses_drawid; } /* Recommended values from "Task and Mesh Distribution Programming". */ anv_batch_emit(batch, GENX(3DSTATE_TASK_REDISTRIB), redistrib) { redistrib.LocalBOTAccumulatorThreshold = MULTIPLIER_1; redistrib.SmallTaskThreshold = 1; /* 2^N */ redistrib.TargetMeshBatchSize = devinfo->num_slices > 2 ? 3 : 5; /* 2^N */ redistrib.TaskRedistributionLevel = TASKREDISTRIB_BOM; redistrib.TaskRedistributionMode = TASKREDISTRIB_RR_STRICT; } } static void emit_mesh_state(struct anv_graphics_pipeline *pipeline) { struct anv_batch *batch = &pipeline->base.base.batch; assert(anv_pipeline_is_mesh(pipeline)); const struct anv_shader_bin *mesh_bin = pipeline->base.shaders[MESA_SHADER_MESH]; anv_batch_emit(batch, GENX(3DSTATE_MESH_CONTROL), mc) { mc.MeshShaderEnable = true; mc.ScratchSpaceBuffer = get_scratch_surf(&pipeline->base.base, MESA_SHADER_MESH, mesh_bin); mc.MaximumNumberofThreadGroups = 511; } const struct intel_device_info *devinfo = pipeline->base.base.device->info; const struct brw_mesh_prog_data *mesh_prog_data = get_mesh_prog_data(pipeline); const struct brw_cs_dispatch_info mesh_dispatch = brw_cs_get_dispatch_info(devinfo, &mesh_prog_data->base, NULL); const unsigned output_topology = mesh_prog_data->primitive_type == SHADER_PRIM_POINTS ? OUTPUT_POINT : mesh_prog_data->primitive_type == SHADER_PRIM_LINES ? OUTPUT_LINE : OUTPUT_TRI; uint32_t index_format; switch (mesh_prog_data->index_format) { case BRW_INDEX_FORMAT_U32: index_format = INDEX_U32; break; case BRW_INDEX_FORMAT_U888X: index_format = INDEX_U888X; break; default: unreachable("invalid index format"); } anv_batch_emit(batch, GENX(3DSTATE_MESH_SHADER), mesh) { mesh.KernelStartPointer = mesh_bin->kernel.offset; mesh.SIMDSize = mesh_dispatch.simd_size / 16; mesh.MessageSIMD = mesh.SIMDSize; mesh.NumberofThreadsinGPGPUThreadGroup = mesh_dispatch.threads; mesh.ExecutionMask = mesh_dispatch.right_mask; mesh.LocalXMaximum = mesh_dispatch.group_size - 1; mesh.EmitLocalIDX = true; mesh.MaximumPrimitiveCount = MAX2(mesh_prog_data->map.max_primitives, 1) - 1; mesh.OutputTopology = output_topology; mesh.PerVertexDataPitch = mesh_prog_data->map.per_vertex_pitch_dw / 8; mesh.PerPrimitiveDataPresent = mesh_prog_data->map.per_primitive_pitch_dw > 0; mesh.PerPrimitiveDataPitch = mesh_prog_data->map.per_primitive_pitch_dw / 8; mesh.IndexFormat = index_format; mesh.NumberofBarriers = mesh_prog_data->base.uses_barrier; mesh.SharedLocalMemorySize = encode_slm_size(GFX_VER, mesh_prog_data->base.base.total_shared); mesh.PreferredSLMAllocationSize = preferred_slm_allocation_size(devinfo); /* * 3DSTATE_MESH_SHADER_DATA.InlineData[0:1] will be used for an address * of a buffer with push constants and descriptor set table and * InlineData[2:7] will be used for first few push constants. */ mesh.EmitInlineParameter = true; mesh.XP0Required = mesh_prog_data->uses_drawid; } /* Recommended values from "Task and Mesh Distribution Programming". */ anv_batch_emit(batch, GENX(3DSTATE_MESH_DISTRIB), distrib) { distrib.DistributionMode = MESH_RR_FREE; distrib.TaskDistributionBatchSize = devinfo->num_slices > 2 ? 4 : 9; /* 2^N thread groups */ distrib.MeshDistributionBatchSize = devinfo->num_slices > 2 ? 3 : 3; /* 2^N thread groups */ } } #endif void genX(graphics_pipeline_emit)(struct anv_graphics_pipeline *pipeline, const struct vk_graphics_pipeline_state *state) { struct anv_batch *batch = &pipeline->base.base.batch; enum intel_urb_deref_block_size urb_deref_block_size; emit_urb_setup(pipeline, &urb_deref_block_size); assert(state->rs != NULL); emit_rs_state(pipeline, state->ia, state->rs, state->ms, state->rp, urb_deref_block_size); emit_ms_state(pipeline, state->ms); compute_kill_pixel(pipeline, state->ms, state->rp); emit_3dstate_clip(pipeline, state->ia, state->vp, state->rs); #if GFX_VER == 12 emit_3dstate_primitive_replication(pipeline, state->rp); #endif if (anv_pipeline_is_primitive(pipeline)) { emit_vertex_input(pipeline, state, state->vi); emit_3dstate_vs(pipeline); emit_3dstate_hs_ds(pipeline, state->ts); emit_3dstate_gs(pipeline); emit_3dstate_vf_statistics(pipeline); emit_3dstate_streamout(pipeline, state->rs); #if GFX_VERx10 >= 125 const struct anv_device *device = pipeline->base.base.device; /* Disable Mesh. */ if (device->physical->vk.supported_extensions.NV_mesh_shader || device->physical->vk.supported_extensions.EXT_mesh_shader) { struct anv_batch *batch = &pipeline->base.base.batch; anv_batch_emit(batch, GENX(3DSTATE_MESH_CONTROL), zero); anv_batch_emit(batch, GENX(3DSTATE_TASK_CONTROL), zero); } #endif } else { assert(anv_pipeline_is_mesh(pipeline)); /* BSpec 46303 forbids both 3DSTATE_MESH_CONTROL.MeshShaderEnable * and 3DSTATE_STREAMOUT.SOFunctionEnable to be 1. */ anv_batch_emit(batch, GENX(3DSTATE_STREAMOUT), so) {} #if GFX_VERx10 >= 125 emit_task_state(pipeline); emit_mesh_state(pipeline); #endif } emit_3dstate_sbe(pipeline); emit_3dstate_wm(pipeline, state->ia, state->rs, state->ms, state->cb, state->rp); emit_3dstate_ps(pipeline, state->ms, state->cb); emit_3dstate_ps_extra(pipeline, state->rs, state->rp); } #if GFX_VERx10 >= 125 void genX(compute_pipeline_emit)(struct anv_compute_pipeline *pipeline) { const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline); anv_pipeline_setup_l3_config(&pipeline->base, cs_prog_data->base.total_shared > 0); } #else /* #if GFX_VERx10 >= 125 */ void genX(compute_pipeline_emit)(struct anv_compute_pipeline *pipeline) { struct anv_device *device = pipeline->base.device; const struct intel_device_info *devinfo = device->info; const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline); anv_pipeline_setup_l3_config(&pipeline->base, cs_prog_data->base.total_shared > 0); const struct brw_cs_dispatch_info dispatch = brw_cs_get_dispatch_info(devinfo, cs_prog_data, NULL); const uint32_t vfe_curbe_allocation = ALIGN(cs_prog_data->push.per_thread.regs * dispatch.threads + cs_prog_data->push.cross_thread.regs, 2); const struct anv_shader_bin *cs_bin = pipeline->cs; anv_batch_emit(&pipeline->base.batch, GENX(MEDIA_VFE_STATE), vfe) { vfe.StackSize = 0; vfe.MaximumNumberofThreads = devinfo->max_cs_threads * devinfo->subslice_total - 1; vfe.NumberofURBEntries = 2; #if GFX_VER < 11 vfe.ResetGatewayTimer = true; #endif vfe.URBEntryAllocationSize = 2; vfe.CURBEAllocationSize = vfe_curbe_allocation; if (cs_bin->prog_data->total_scratch) { /* Broadwell's Per Thread Scratch Space is in the range [0, 11] * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M. */ vfe.PerThreadScratchSpace = ffs(cs_bin->prog_data->total_scratch) - 11; vfe.ScratchSpaceBasePointer = get_scratch_address(&pipeline->base, MESA_SHADER_COMPUTE, cs_bin); } } struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = { .KernelStartPointer = cs_bin->kernel.offset + brw_cs_prog_data_prog_offset(cs_prog_data, dispatch.simd_size), /* Wa_1606682166 */ .SamplerCount = GFX_VER == 11 ? 0 : get_sampler_count(cs_bin), /* We add 1 because the CS indirect parameters buffer isn't accounted * for in bind_map.surface_count. * * Typically set to 0 to avoid prefetching on every thread dispatch. */ .BindingTableEntryCount = devinfo->verx10 == 125 ? 0 : 1 + MIN2(pipeline->cs->bind_map.surface_count, 30), .BarrierEnable = cs_prog_data->uses_barrier, .SharedLocalMemorySize = encode_slm_size(GFX_VER, cs_prog_data->base.total_shared), .ConstantURBEntryReadOffset = 0, .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs, .CrossThreadConstantDataReadLength = cs_prog_data->push.cross_thread.regs, #if GFX_VER >= 12 /* TODO: Check if we are missing workarounds and enable mid-thread * preemption. * * We still have issues with mid-thread preemption (it was already * disabled by the kernel on gfx11, due to missing workarounds). It's * possible that we are just missing some workarounds, and could enable * it later, but for now let's disable it to fix a GPU in compute in Car * Chase (and possibly more). */ .ThreadPreemptionDisable = true, #endif .NumberofThreadsinGPGPUThreadGroup = dispatch.threads, }; GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, pipeline->interface_descriptor_data, &desc); } #endif /* #if GFX_VERx10 >= 125 */ #if GFX_VERx10 >= 125 void genX(ray_tracing_pipeline_emit)(struct anv_ray_tracing_pipeline *pipeline) { for (uint32_t i = 0; i < pipeline->group_count; i++) { struct anv_rt_shader_group *group = &pipeline->groups[i]; switch (group->type) { case VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR: { struct GENX(RT_GENERAL_SBT_HANDLE) sh = {}; sh.General = anv_shader_bin_get_bsr(group->general, 32); GENX(RT_GENERAL_SBT_HANDLE_pack)(NULL, group->handle, &sh); break; } case VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR: { struct GENX(RT_TRIANGLES_SBT_HANDLE) sh = {}; if (group->closest_hit) sh.ClosestHit = anv_shader_bin_get_bsr(group->closest_hit, 32); if (group->any_hit) sh.AnyHit = anv_shader_bin_get_bsr(group->any_hit, 24); GENX(RT_TRIANGLES_SBT_HANDLE_pack)(NULL, group->handle, &sh); break; } case VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR: { struct GENX(RT_PROCEDURAL_SBT_HANDLE) sh = {}; if (group->closest_hit) sh.ClosestHit = anv_shader_bin_get_bsr(group->closest_hit, 32); sh.Intersection = anv_shader_bin_get_bsr(group->intersection, 24); GENX(RT_PROCEDURAL_SBT_HANDLE_pack)(NULL, group->handle, &sh); break; } default: unreachable("Invalid shader group type"); } } } #else void genX(ray_tracing_pipeline_emit)(struct anv_ray_tracing_pipeline *pipeline) { unreachable("Ray tracing not supported"); } #endif /* GFX_VERx10 >= 125 */