
Things to know about super

author: Michele Simionato

date: August 2008
This document is the sum of four blog post appeared on Artima and con-

verted into PDF form for readers’ convenience:

• http://www.artima.com/weblogs/viewpost.jsp?thread=236275

• http://www.artima.com/weblogs/viewpost.jsp?thread=236278

• http://www.artima.com/weblogs/viewpost.jsp?thread=237121

• http://www.artima.com/weblogs/viewpost.jsp?thread=281127

Contents

Things to know about super 1

Foreword . 2
Introduction . 2
There is no superclass in a MI world 3
Bound and unbound (super) methods 4
super and descriptors . 6
The secrets of unbound super objects 7
The unbound syntax is a mess . 8
Bugs of unbound super objects in earlier versions of Python 10
Appendix . 11
Special attributes are special . 12
super does not work with meta-attributes 13
Remember to use super consistently 14
Argument passing in cooperative methods can fool you 15
Conclusion: is there life beyond super? 17

Super in Python 3 17

Why cooperative hierarchies are tricky 18
The problem with incompatible signatures 19
The intended usage for super . 20
The magic of super in Python 3 . 22
References . 25

Foreword

I begun programming with Python in 2002, just after the release of Python
2.2. That release was a major overhaul of the language: new-style classes were
introduced, the way inheritance worked changed and the builtin super was in-
troduced. Therefore, you may correctly say that I have worked with super right
from the beginning; still, I never liked it and over the years I have discovered
more and more of its dark corners.

In 2004 I decided to write a comprehensive paper documenting super pitfalls
and traps, with the goal of publishing it on the Python web site, just as I had

1

http://www.artima.com/weblogs/viewpost.jsp?thread=236275
http://www.artima.com/weblogs/viewpost.jsp?thread=236278
http://www.artima.com/weblogs/viewpost.jsp?thread=237121
http://www.artima.com/weblogs/viewpost.jsp?thread=281127

published my essay on multiple inheritance and the Method Resolution Order.
With time the paper grew longer and longer but I never had the feeling that
I had covered everything I needed to say: moreover I have a full time job, so
I never had the time to fully revise the paper as a whole. As a consequence,
four years have passed and the paper is still in draft status. This is a pity, since
it documents issues that people encounter and that regularly come out on the
Python newsgroups and forums.

Keeping the draft sitting on my hard disk is doing a disservice to the com-
munity. Still, I lack to time to finish it properly. To come out from the impasse,
I decided to split the long paper in a series of short blog posts, which I do have
the time to review properly. Moreover people are free to post comments and
corrections in case I am making mistakes (speaking about super this is always
possible). Once I finish the series, I may integrate the corrections, put it to-
gether again and possibly publish it as whole on the Python website. In other
words, in order to finish the task, I am trying the strategies of divide et conquer
and release early, release often. We will see how it goes.

Introduction

super is a Python built-in, first introduced in Python 2.2 and slightly improved
and fixed in later versions, which is often misunderstood by the average Python
programmer. One of the reasons for that is the poor documentation of super: at
the time of this writing (August 2008) the documentation is incomplete and in
some parts misleading and even wrong. For instance, the standard documenta-
tion (even for the new 2.6 version http://docs.python.org/dev/library/functions.html#super)
still says:

super(type[, object-or-type])

Return the superclass of type. If the second argument is omitted the

super object returned is unbound. If the second argument is an object,

isinstance(obj, type) must be true. If the second argument is a type,

issubclass(type2, type) must be true. super() only works for new-style

classes.

[UPDATE: the final version of Python 2.6 has a better documentation for
super, as a direct consequence of this post ;)]. The first sentence is just plain
wrong: super does not return the superclass. There is no such a thing as
the superclass in a Multiple Inheritance (MI) world. Also, the sentence about
unbound is misleading, since it may easily lead the programmer to think about
bound and unbound methods, whereas it has nothing to do with that concept.
IMNSHO super is one of the most tricky and surprising Python constructs, and
we absolutely need a document to shed light on its secrets. The present paper
is a first step in this direction: it aims to tell you the truth about super. At
least the amount of truth I have discovered with my experimentations, which is
certainly not the whole truth ;)

A fair warning is in order here: this document is aimed at expert Pythonistas.
It assumes you are familiar with new-style classes and the Method Resolution
Order (MRO); moreover a good understanding of descriptors would be extremely
useful. Some parts also require good familiarity with metaclasses. All in all,
this paper is not for the faint of heart ;)

2

http://www.python.org/download/releases/2.3/mro/
http://docs.python.org/dev/library/functions.html#super
http://www.python.org/download/releases/2.2.3/descrintro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://users.rcn.com/python/download/Descriptor.htm
http://www.ibm.com/developerworks/library/l-pymeta.html

There is no superclass in a MI world

Readers familiar will single inheritance languages, such as Java or Smalltalk,
will have a clear concept of superclass in mind. This concept, however, has no
useful meaning in Python or in other multiple inheritance languages. I became
convinced of this fact after a discussion with Bjorn Pettersen and Alex Martelli
on comp.lang.python in May 2003 (at that time I was mistakenly thinking that
one could define a superclass concept in Python). Consider this example from
that discussion:

+-----+

| T |

|a = 0|

+-----+

/ \

/ \

+-------+ +-------+

| A | | B |

| | | a = 2 |

+-------+ +-------+

\ /

\ /

+-----+

| C |

+-----+

:

: instantiation

c

>>> class T(object):

... a = 0

>>> class A(T):

... pass

>>> class B(T):

... a = 2

>>> class C(A,B):

... pass

>>> c = C()

What is the superclass of C? There are two direct superclasses (i.e. bases) of
C: A and B. A comes before B, so one would naturally think that the superclass of C
is A. However, A inherits its attribute a from T with value a=0: if super(C,c) was
returning the superclass of C, then super(C,c).a would return 0. This is NOT
what happens. Instead, super(C,c).a walks trought the method resolution
order of the class of c (i.e. C) and retrieves the attribute from the first class
above C which defines it. In this example the MRO of C is [C, A, B, T,

object], so B is the first class above C which defines a and super(C,c).a

correctly returns the value 2, not 0:

3

http://tinyurl.com/5ms8lk

>>> super(C,c).a

2

You may call A the superclass of C, but this is not a useful concept since the
methods are resolved by looking at the classes in the MRO of C, and not by
looking at the classes in the MRO of A (which in this case is [A,T, object]

and does not contain B). The whole MRO is needed, not just the first superclass.
So, using the word superclass in the standard docs is misleading and should

be avoided altogether.

Bound and unbound (super) methods

Having established that super cannot return the mythical superclass, we may
ask ourselves what the hell it is returning ;) The truth is that super returns
proxy objects.

Informally speaking, a proxy is an object with the ability to dispatch to
methods of other objects via delegation. Technically, super is a class overriding
the __getattribute__ method. Instances of super are proxy objects providing
access to the methods in the MRO. The dispatch is done in such a way that

super(cls, instance-or-subclass).method(*args, **kw)

corresponds more or less to
right-method-in-the-MRO-applied-to(instance-or-subclass, *args,

**kw)

There is a caveat at this point: the second argument can be an instance of
the first argument, or a subclass of it. In the first case we expect a bound method
to be returned and in the second case and unbound method to be returned. This
is true in recent versions of Python: for instance, in this example

>>> class B(object):

... def __repr__(self):

... return "<instance of %s>" % self.__class__.__name__

>>> class C(B):

... pass

>>> class D(C):

... pass

>>> d = D()

you get

>>> print super(C, d).__repr__

<bound method D.__repr__ of <instance of D>>

and

>>> print super(C, D).__repr__

<unbound method D.__repr__>

However, if you are still using Python 2.2 (there are unlucky people forced to
use old versions) your should be aware that super had a bug and super(<class>,
<subclass>).method returned a bound method, not an unbound one:

4

>> print super(C, D).__repr__ # in Python 2.2

<bound method D.__repr__ of <class ’__main__.D’>>

That means that in Python 2.2 you get:

>> print super(C, D).__repr__() # in Python 2.2

<instance of type>

D, seen as an instance of the (meta)class type, is being passed as first ar-
gument to __repr__. This has been fixed in Python 2.3+, where you correctly
get a TypeError:

>>> print super(C, D).__repr__() # the same as B.__repr__()

Traceback (most recent call last):

...

TypeError: unbound method __repr__() must be called with D instance as first

argument (got nothing instead)

The point is subtle, but usually one does not see problems since typically
super is invoked on instances, not on subclasses, and in this case it works
correctly in all Python versions:

>>> print super(C, d).__repr__()

<instance of D>

When I was using Python 2.2, due to the bug just discussed, and due to the
super docstring

>>> print super.__doc__

super(type) -> unbound super object

super(type, obj) -> bound super object; requires isinstance(obj, type)

super(type, type2) -> bound super object; requires issubclass(type2, type)

Typical use to call a cooperative superclass method:

class C(B):

def meth(self, arg):

super(C, self).meth(arg)

I got the impression that in order to get unbound methods I needed to
use the unbound super object. This is actually untrue. To understand how
bound/unbound methods work we need to talk about descriptors.

super and descriptors

Descriptors (more properly I should speak of the descriptor protocol) were in-
troduced in Python 2.2 by Guido van Rossum. Their primary motivation was
technical, since they were needed to implement the new-style object system.
Descriptors were also used to introduce new standard concepts in Python, such
as classmethods, staticmethods and properties. Moreover, according to the tra-
ditional transparency policy of Python, descriptors were exposed to the applica-
tion programmer, giving him/her the freedom to write custom descriptors. Any
serious Python programmer should have a look at descriptors: luckily they are
now very well documented (which was not the case when I first studied them

5

:-/) thanks to the beautiful essay of Raimond Hettinger. You should read it
before continuing this article, since it explains all the details. However, for the
sake of our discussion of super, it is enough to say that a descriptor class is just
a regular new-style class which implements a .__get__ method with signature
__get__(self, obj, objtyp=None). A descriptor object is just an instance of
a descriptor class.

Descriptor objects are intended to be used as attributes (hence their com-
plete name attribute descriptors). Suppose that descr is a given descriptor
object used as attribute of a given class C. Then the syntax C.descr is actu-
ally interpreted by Python as a call to descr.__get__(None, C), whereas the
same syntax for an instance of C corresponds to a call to descr.__get__(c,

type(c)).
Since the combination of descriptors and super is so tricky, the core devel-

opers got it wrong in different versions of Python. For instance, in Python 2.2
the only way to get the unboud method __repr__ is via the descriptor API:

>> super(C, d).__repr__.__get__(None, D) # Python 2.2

<unbound method D.__repr__>

You may check that it works correctly:

>> print _(d)

<instance of D>

In Python 2.3 one can get the unbond method by using the super(cls,

subcls) syntax, but the syntax super(C, d).__repr__.__get__(None, D)

also works; in Python 2.4+ instead the same syntax returns a bound method,
not an unbound one:

>>> super(C, d).__repr__.__get__(None, D) # in Python 2.4+

<bound method D.__repr__ of <instance of D>>

The core developers changed the behavior again, making my life difficult
while I was writing this paper :-/ I cannot trace the history of the bugs of
super here, but if you are using an old version of Python and you find something
weird with super, I advice you to have a look at the Python bug tracker before
thinking you are doing something wrong. In this case, to be correct, the change
is not in super, but in the descriptor implementation. In Python 2.2-2.3 you
could get an unbound method from a bound one as follows:

>> d.__repr__.__get__(None, D) # in Python 2.2-2.3

<unbound method D.__repr__>

In Python 2.4 that does not work anymore:

>>> d.__repr__.__get__(None, D) # in Python 2.4+

<bound method D.__repr__ of <instance of D>>

Still, you can get the unbound method by passing for the underlying function
first:

>>> d.__repr__.im_func.__get__(None, D) # in Python 2.4+

<unbound method D.__repr__>

6

http://users.rcn.com/python/download/Descriptor.htm

When working with super, virtually everybody uses the two-argument syn-
tax super(type, object-or-type) which returns a bound super object (bound
to the second argument, an instance or a subclass of the first argument). How-
ever, super also supports a single-argument syntax super(type) - fortunately
very little used - which returns an unbound super object. Here I argue that
unbounds super objects are a wart of the language and should be removed or
deprecated (and Guido agrees).

The secrets of unbound super objects

Let me begin by clarifying a misconception about bound super objects and
unbound super objects. From the names, you may think that if super(C,

c).meth returns a bound method then super(C).meth returns an unbound
method: however, this is a wrong expectation. Consider for instance the follow-
ing example:

>>> class B1(object):

... def f(self):

... return 1

... def __repr__(self):

... return ’<instance of %s>’ % self.__class__.__name__

...

>>> class C1(B1): pass

...

The unbound super object super(C1) does not dispatch to the method of
the superclass:

>>> super(C1).f

Traceback (most recent call last):

...

AttributeError: ’super’ object has no attribute ’f’

i.e. super(C1) is not a shortcut for the bound super object super(C1, C1)

which dispatches properly:

>>> super(C1, C1).f

<unbound method C1.f>

Things are more tricky if you consider methods defined in super (remember
that super is class which defines a few methods, such as __new__, __init__,
__repr__, __getattribute__ and __get__) or special attributes inherited from
object. In our example super(C1).__repr__ does not give an error,

>>> print super(C1).__repr__() # same as repr(super(C1))

<super: <class ’C1’>, NULL>

but it is not dispatching to the __repr__ method in the base class B1: in-
stead, it is retrieving the __repr__ method defined in super, i.e. it is giving
something completely different.

Very tricky. You cannot use unbound super object to dispatch to the the
upper methods in the hierarchy. If you want to do that, you must use the
two-argument syntax super(cls, cls), at least in recent versions of Python.

7

We said before that Python 2.2 is buggy in this respect, i.e. super(cls, cls)

returns a bound method instead of an unbound method:

>> print super(C1, C1).__repr__ # buggy behavior in Python 2.2

<bound method C1.__repr__ of <class ’__main__.C1’>>

Unbound super objects must be turned into bound objects in order to make
them to dispatch properly. That can be done via the descriptor protocol. For
instance, I can convert super(C1) in a super object bound to c1 in this way:

>>> c1 = C1()

>>> boundsuper = super(C1).__get__(c1, C1) # this is the same as super(C1, c1)

Now I can access the bound method c1.f in this way:

>>> print boundsuper.f

<bound method C1.f of <instance of C1>>

The unbound syntax is a mess

Having established that the unbound syntax does not return unbound methods
one might ask what its purpose is. The answer is that super(C) is intended
to be used as an attribute in other classes. Then the descriptor magic will
automatically convert the unbound syntax in the bound syntax. For instance:

>>> class B(object):

... a = 1

>>> class C(B):

... pass

>>> class D(C):

... sup = super(C)

>>> d = D()

>>> d.sup.a

1

This works since d.sup.a calls super(C).__get__(d,D).a which is turned
into super(C, d).a and retrieves B.a.

There is a single use case for the single argument syntax of super that I am
aware of, but I think it gives more troubles than advantages. The use case is
the implementation of autosuper made by Guido on his essay about new style
classes.

The idea there is to use the unbound super objects as private attributes.
For instance, in our example, we could define the private attribute __sup in the
class C as the unbound super object super(C):

>>> C._C__sup = super(C)

With this definition inside the methods the syntax self.__sup.meth can
be used as an alternative to super(C, self).meth. The advantage is that you
avoid to repeat the name of the class in the calling syntax, since that name is
hidden in the mangling mechanism of private names. The creation of the __sup
attributes can be hidden in a metaclass and made automatic. So, all this seems
to work: but actually this not the case.

8

http://www.python.org/download/releases/2.2.3/descrintro/#cooperation
http://www.python.org/download/releases/2.2.3/descrintro/#cooperation

Things may wrong in various cases, for instance for classmethods, as in this
example:

def test__super():

"These tests work for Python 2.2+"

class B(object):

def __repr__(self):

return ’<instance of %s>’ % self.__class__.__name__

def meth(cls):

print "B.meth(%s)" % cls

meth = classmethod(meth) # I want this example to work in older Python

class C(B):

def meth(cls):

print "C.meth(%s)" % cls

cls.__super.meth()

meth = classmethod(meth)

C._C__super = super(C)

class D(C):

pass

D._D__super = super(D)

d = D()

try:

d.meth()

except AttributeError, e:

print e

else:

raise RuntimeError(’I was expecting an AttributeError!’)

The test will print a message ’super’ object has no attribute ’meth’.

The issue here is that self.__sup.meth works but cls.__sup.meth does not,
unless the __sup descriptor is defined at the metaclass level.

So, using a __super unbound super object is not a robust solution (no-
tice that everything would work by substituting self.__super.meth() with
super(C,self).meth() instead). In Python 3.0 all this has been resolved in a
much better way.

If it was me, I would just remove the single argument syntax of super,
making it illegal. But this would probably break someone code, so I don’t think
it will ever happen in Python 2.X. I did ask on the Python 3000 mailing list
about removing unbound super objects (the title of the thread was let’s get rid
of unbound super) and this was Guido’s reply:

Thanks for proposing this -- I’ve been scratching my head wondering
what the use of unbound super() would be. :-) I’m fine with killing
it -- perhaps someone can do a bit of research to try and find out if

9

there are any real-life uses (apart from various auto-super clones)?
--- Guido van Rossum

Unfortunaly as of now unbound super objects are still around in Python 3.0,
but you should consider them morally deprecated.

Bugs of unbound super objects in earlier versions of Python

The unbound form of super is pretty buggy in Python 2.2 and Python 2.3. For
instance, it does not play well with pydoc. Here is what happens with Python
2.3.4 (see also bug report 729103):

>>> class B(object): pass

...

>>> class C(B):

... s=super(B)

...

>>> help(C)

Traceback (most recent call last):

...

... lots of stuff here

...

File "/usr/lib/python2.3/pydoc.py", line 1198, in docother

chop = maxlen - len(line)

TypeError: unsupported operand type(s) for -: ’type’ and ’int’

In Python 2.2 you get an AttributeError instead, but still help does not
work.

Moreover, an incompatibility between the unbound form of super and doctest
in Python 2.2 and Python 2.3 was reported by Christian Tanzer (902628). If
you run the following

class C(object):

pass

C.s = super(C)

if __name__ == ’__main__’:

import doctest, __main__; doctest.testmod(__main__)

you will get a

TypeError: Tester.run__test__: values in dict must be strings, functions or

classes; <super: <class ’C’>, NULL>

Both issues are not directly related to super: they are bugs with the inspect
and doctest modules not recognizing descriptors properly. Nevertheless, as
usual, they are exposed by super which acts as a magnet for subtle bugs. Of
course, there may be other bugs I am not aware of; if you know of other issues,
just add a comment here.

10

http://bugs.python.org/issue729103
http://bugs.python.org/issue902628

Appendix

In this appendix I give some test code for people wanting to understand the
current implementation of super. Starting from Python 2.3+, super defines
the following attributes:

>> vars(super).keys()

[’__thisclass__’,

’__new__’,

’__self_class__’,

’__self__’,

’__getattribute__’,

’__repr__’,

’__doc__’,

’__init__’,

’__get__’]

In particular super objects have attributes __thisclass__ (the first argu-
ment passed to super) __self__ (the second argument passed to super or
None) and __self_class__ (the class of __self__, __self__ or None). You
may check that the following assertions hold true:

def test_super():

"These tests work for Python 2.3+"

class B(object):

pass

class C(B):

pass

class D(C):

pass

d = D()

instance-bound syntax

bsup = super(C, d)

assert bsup.__thisclass__ is C

assert bsup.__self__ is d

assert bsup.__self_class__ is D

class-bound syntax

Bsup = super(C, D)

assert Bsup.__thisclass__ is C

assert Bsup.__self__ is D

assert Bsup.__self_class__ is D

unbound syntax

usup = super(C)

assert usup.__thisclass__ is C

11

assert usup.__self__ is None

assert usup.__self_class__ is None

The tricky point is the __self_class__ attribute, which is the class of
__self__ only if __self__ is an instance of __thisclass__, otherwise __self_class__
coincides with __self__. Python 2.2 was buggy because it failed to make that
distinction, so it could not distinguish bound and unbound methods correctly.

Working with super is tricky, not only because of the quirks and bugs of
super itself, but also because you are likely to run into some gray area of the
Python language itself. In particular, in order to understand how super works,
you need to understand really well how attribute lookup works, including the
tricky cases of special attributes and metaclass attributes. Moreover, even if
you know perfectly well how super works, interacting with a third party library
using (or not using) super is still non-obvious. At the end, I am led to believe
that the problem is not super, but the whole concept of multiple inheritance
and cooperative methods in Python.

Special attributes are special

This issue came up at least three or four times in the Python newsgroup, and
there are various independent bug reports on sourceforge about it, you may face
it too. Bjorn Pettersen was the first one who pointed out the problem to me
(see also bug report 729913): the issue is that

super(MyCls, self).__getitem__(5)

works, but not
super(MyCls, self)[5].
The problem is general to all special methods, not only to __getitem__ and

it is a consequence of the implementation of attribute lookup for special meth-
ods. Clear explanations of what is going on are provided by Michael Hudson
as a comment to the bug report: 789262 and by Raymond Hettinger as a com-
ment to the bug report 805304. Shortly put, this is not a problem of super per
se, the problem is that the special call x[5] (using __getitem__ as example)
is converted to type(x).__getitem__(x,5) only if __getitem__ is explicitely
defined in type(x). If type(x) does not define __getitem__ directly, but only
indirectly via delegation (i.e. overriding __getattribute__), then the second
form works but not the first one.

This restriction will likely stay in Python, so it has to be considered just
a documentation bug, since nowhere in the docs it is mentioned that special
calling syntaxes (such as the [] call, the iter call, the repr call, etc. etc.) are
special and bypass __getattribute__. The advice is: just use the more explicit
form and everything will work.

super does not work with meta-attributes

Even when super is right, its behavior may be surprising, unless you are deeply
familiar with the intricacies of the Python object model. For instance, super
does not play well with the __name__ attribute of classes, even if it works well for
the __doc__ attribute and other regular class attributes. Consider this example:

>>> class B(object):

... "This is class B"

12

http://bugs.python.org/issue729913
http://bugs.python.org/issue789262
http://bugs.python.org/issue805304

...

>>> class C(B):

... pass

...

The special (class) attribute __doc__ is retrieved as you would expect:

>>> super(C, C).__doc__ == B.__doc__

True

On the other hand, the special attribute __name__ is not retrieved correctly:

>>> super(C, C).__name__ # one would expect it to be ’B’

Traceback (most recent call last):

File "<stdin>", line 1, in ?

AttributeError: ’super’ object has no attribute ’__name__’

The problem is that __name__ is not just a plain class attribute: it is actually
a getset descriptor defined on the metaclass type (try to run help(type.__dict__[’__name__’])
and you will see it for yourself). More in general, super has problems with
meta-attributes, i.e. class attributes of metaclasses.

Meta-attributes differs from regular attributes since they are not transmitted
to the instances of the instances. Consider this example:

class M(type):

"A metaclass with a class attribute ’a’."

a = 1

class B:

"An instance of M with a meta-attribute ’a’."

__metaclass__ = M

class C(B):

"An instance of M with the same meta-attribute ’a’"

if __name__ == "__main__":

print B.a, C.a # => 1 1

print super(C,C).a #=> attribute error

If you run this, you will get an attribute error. This is a case where super

is doing the right thing, since ’a’ is not inherited from B, but it comes directly
from the metaclass, so ’a’ is not in the MRO of C. A similar thing happens for
the __name__ attribute (the fact that it is a descriptor and not a plain attribute
does not matter), so super is working correctly, but still it may seems surprising
at first. You can find the rationale for this behaviour in my second article with
David Mertz; in the case of __name__ it is obvious though: you don’t want all
of your objects to have a name, even if all your classes do.

There are certainly other bugs and pitfalls which I have not mentioned here
because I think are not worth mention, or because I have forgot them, or also be-
cause I am not aware of them all. So, be careful when you use super, especially
in earlier versions of Python.

13

http://www-128.ibm.com/developerworks/linux/library/l-pymeta2
http://www-128.ibm.com/developerworks/linux/library/l-pymeta2

Remember to use super consistently

Some years ago James Knight wrote an essay titled Super considered harmful
where he points out a few shortcomings of super and he makes an important
recommendation: use super consistently, and document that you use it, as it is
part of the external interface for your class, like it or not. The issue is that
a developer inheriting from a hierarchy written by somebody else has to know
if the hierarchy uses super internally or not. For instance, consider this case,
where the library author has used super internally:

library_using_super

class A(object):

def __init__(self):

print "A",

super(A, self).__init__()

class B(object):

def __init__(self):

print "B",

super(B, self).__init__()

If the application programmer knows that the library uses super internally,
she will use super and everything will work just fine; but it she does not know if
the library uses super she may be tempted to call A.__init__ and B.__init__

directly, but this will end up in having B.__init__ called twice!

>>> from library_using_super import A, B

>>> class C(A, B):

... def __init__(self):

... print "C",

... A.__init__(self)

... B.__init__(self)

>>> c = C()

C A B B

On the other hand, if the library does not uses super internally,

library_not_using_super

class A(object):

def __init__(self):

print "A",

class B(object):

def __init__(self):

print "B",

the application programmer cannot use super either, otherwise B.__init__
will not be called:

14

http://fuhm.net/super-harmful/

>>> from library_not_using_super import A, B

>>> class C(A,B):

... def __init__(self):

... print "C",

... super(C, self).__init__()

>>> c = C()

C A

So, if you use classes coming from a library in a multiple inheritance situa-
tion, you must know if the classes were intended to be cooperative (using super)
or not. Library author should always document their usage of super.

Argument passing in cooperative methods can fool you

James Knight devolves a paragraph to the discussion of argument passing in
cooperative methods. Basically, if you want to be safe, all your cooperative
methods should have a compatible signature. There are various ways of getting
a compatible signature, for instance you could accept everything (i.e. your
cooperative methods could have signature *args, **kw) which is a bit too
much for me, or all of your methods could have exactly the same arguments.
The issue comes when you have default arguments, since your MRO can change
if you change your hierarchy, and argument passing may break down. Here is
an example:

"An example of argument passing in cooperative methods"

class A(object):

def __init__(self):

print ’A’

class B(A):

def __init__(self, a=None):

print ’B with a=%s’ % a

super(B, self).__init__(a)

class C(A):

def __init__(self, a):

print ’C with a=%s’ % a

super(C, self).__init__()

class D(B, C):

def __init__(self):

print ’D’

super(D, self).__init__()

>>> from cooperation_ex import D

>>> d = D()

D

B with a=None

15

C with a=None

A

This works, but it is fragile (you see what will happen if you change D(B, C)

with D(C, B)?) and in general it is always difficult to figure out which arguments
will be passed to each method and in which order so it is best just to use
the same arguments everywhere (or not to use cooperative methods altogether,
if you have no need for cooperation). There is no shortage of examples of
trickiness in multiple inheritance hierarchies; for instance I remember a post
from comp.lang.python about the fragility of super when changing the base
class.

Also, beware of situations in which you have some old style classes mixing
with new style classes: the result may depend on the order of the base classes
(see examples 2-2b and 2-3b in Super considered harmful).

UPDATE: the introduction of Python 2.6 made the special methods __new__
and __init__ even more brittle with respect to cooperative super calls.

Starting from Python 2.6 the special methods __new__ and __init__ of
object do not take any argument, whereas previously the had a generic signa-
ture, but all the arguments were ignored. That means that it is very easy to
get in trouble if your constructors take arguments. Here is an example:

class A(object):

def __init__(self, a):

super(A, self).__init__() # object.__init__ cannot take arguments

class B(object):

def __init__(self, a):

super(B, self).__init__() # object.__init__ cannot take arguments

class C(A, B):

def __init__(self, a):

super(C, self).__init__(a) # A.__init__ takes one argument

As you see, this cannot work: when self is an instance of C, super(A,
self).__init__() will call B.__init__ without arguments, resulting in a TypeError.
In older Python you could avoid that by passing a to the super calls, since
object.__init__ could be called with any number of arguments. This prob-
lem was recently pointed out by Menno Smits in his blog and there is no way
to solve it in Python 2.6, unless you change all of your classes to inherit from
a custom Object class with an __init__ accepting all kind of arguments, i.e.
basically reverting back to the Python 2.5 situation.

Conclusion: is there life beyond super?

In this series I have argued that super is tricky; I think nobody can dispute that.
However the existence of dark corners is not a compelling argument against a
language construct: after all, they are rare and there is an easy solution to their
obscurity, i.e. documenting them. This is what I have being doing all along. On
the other hand, one may wonder if all super warts aren’t hints of some serious
problem underlying. It may well be that the problem is not with super, nor
with cooperative methods: the problem may be with multiple inheritance itself.

16

http://tinyurl.com/3jqhx7
http://fuhm.net/super-harmful/
http://freshfoo.com/blog/object__init__takes_no_parameters

I personally liked super, cooperative methods and multiple inheritance for
a couple of years, then I started working with Zope and my mind changed
completely. Zope 2 did not use super at all but is a mess anyway, so the problem
is multiple inheritance itself. Inheritance makes your code heavily coupled and
difficult to follow (spaghetti inheritance). I have not found a real life problem
yet that I could not solve with single inheritance + composition/delegation in a
better and more maintainable way than using multiple inheritance. Nowadays
I am very careful when using multiple inheritance.

People should be educated about the issues; moreover people should be
aware that there are alternative to multiple inheritance in other languages. For
instance Ruby uses mixins (they are a restricted multiple inheritance without
cooperative methods and with a well defined superclass, but they do not solve
the issue of name conflicts and the issue with the ordering of the mixin classes);
recently some people proposed the concepts of traits (restricted mixin where
name conflicts must be solved explicitely and the ordering of the mixins does
not matter) which is interesting.

In CLOS multiple inheritance works better since (multi-)methods are defined
outside classes and call-next-method is well integrated in the language; it is
simpler to track down the ancestors of a single method than to wonder about the
full class hierarchy. The language SML (which nobody except academics use,
but would deserve better recognition) goes boldly in the direction of favoring
composition over inheritance and uses functors to this aim.

Recently I have written a trilogy of papers for Stacktrace discussing why
multiple inheritance and mixins are a bad idea and suggesting alternatives. I
plan to translate the series and to publish here in the future. For the moment
you can use the Google Translator. The series starts from here and it is a
recommended reading if you ever had troubles with mixins.

Super in Python 3

Most languages supporting inheritance support cooperative inheritance, i.e.
there is a language-supported way for children methods to dispatch to their
parent method: this is usually done via a super keyword. Things are easy
when the language support single inheritance only, since each class has a single
parent and there is an unique concept of super method. Things are difficult
when the language support multiple inheritance: in that case the programmer
has to understand the intricacies of the Method Resolution Order.

Why cooperative hierarchies are tricky

This paper is intended to be very practical, so let me start with an example.
Consider the following hierarchy (in Python 3):

class A(object):

def __init__(self):

print(’A.__init__’)

super().__init__()

class B(object):

def __init__(self):

17

http://www.iam.unibe.ch/~scg/Research/Traits/
http://stacktrace.it/articoli/2008/06/i-pericoli-della-programmazione-con-i-mixin1/

print(’B.__init__’)

super().__init__()

class C(A, B):

def __init__(self):

print(’C.__init__’)

super().__init__()

What is the “superclass” of A? In other words, when I create an instance
of A, which method will be called by super().__init__()? Notice that I am
considering here generic instances of A, not only direct instances: in partic-
ular, an instance of C is also an instance of A and instantiating C will call
super().__init__() in A.__init__ at some point: the tricky point is to un-
derstand which method will be called for indirect instances of A.

In a single inheritance language there is an unique answer both for direct
and indirect instances (object is the super class of A and object.__init__ is
the method called by super().__init__()). On the other hand, in a multiple
inheritance language there is no easy answer. It is better to say that there is
no super class and it is impossible to know which method will be called by
super().__init__() unless the subclass from wich super is called is known.
In particular, this is what happens when we instantiate C:

>>> c = C()

C.__init__

A.__init__

B.__init__

As you see the super call in C dispatches to A.__init__ and then the super
call there dispatches to B.__init__ which in turns dispatches to object.__init__.
The important point is that the same super call can dispatch to different meth-
ods: when super().__init__() is called directly by instantiating A it dis-
patches to object.__init__ whereas when it is called indirectly by instanti-
ating C it dispatches to B.__init__. If somebody extends the hierarchy, adds
subclasses of A and instantiated them, then the super call in A.__init__ can
dispatch to an entirely different method: the super method call depends on
the instance I am starting from. The precise algorithm specifying the order in
which the methods are called is called the Method Resolution Order algorithm,
or MRO for short. It is discussed in detail in an old essay I wrote years ago and
interested readers are referred to it (see the references below). Here I will take
the easy way and I will ask Python.

Given any class, it is possibly to extract its linearization, i.e. the ordered
list of its ancestors plus the class itself: the super call follow such list to decide
which is the right method to dispatch to. For instance, if you are considering a
direct instance of A, object is the only class the super call can dispatch to:

>>> A.mro()

[<class ’__main__.A’>, <class ’object’>]

If you are considering a direct instance of C, super looks at the linearization
of C:

18

>>> C.mro()

[<class ’__main__.C’>, <class ’__main__.A’>, <class ’__main__.B’>, <class

’object’>]

A super call in C will look first at A, then at B and finally at object. Finding
out the linearization is non-trivial; just to give an example suppose we add to
our hierarchy three classes D, E and F in this way:

>>> class D: pass

>>> class E(A, D): pass

>>> class F(E, C): pass

>>> for c in F.mro():

... print(c.__name__)

F

E

C

A

D

B

object

As you see, for an instance of F a super call in A.__init__ will dispatch at
D.__init__ and not directly at B.__init__!

The problem with incompatible signatures

I have just shown that one cannot tell in advance where the supercall will
dispatch, unless one knows the whole hierarchy: this is quite different from the
single inheritance situation and it is also very much error prone and brittle.
When you design a hierarchy you will expect for instance that A.__init__ will
call B.__init__, but adding classes (and such classes may be added by a third
party) may change the method chain. In this case A.__init__ (when invoked
by an F instance) will call D.__init__. This is dangerous: for instance, if the
behavior of your code depends on the ordering of the methods you may get in
trouble. Things are worse if one of the methods in the cooperative chain does
not have a compatible signature, since the chain will break.

This problem is not theoretical and it happens even in very trivial hierarchies.
For instance, here is an example of incompatible signatures in the __init__

method (this problem affects even Python 2.6, not only Python 3.X):

class X(object):

def __init__(self, a):

super().__init__()

class Y(object):

def __init__(self, a):

super().__init__()

class Z(X, Y):

def __init__(self, a):

super().__init__(a)

19

Here instantiating X and Y works fine, but as soon as you introduce Z you get
in trouble since super().__init__(a) in Z.__init__ will call super().__init__()
in X which in turns will call Y.__init__ with no arguments, resulting in a
TypeError! In older Python versions (from 2.2 to 2.5) such problem can be
avoided by leveraging on the fact that object.__init__ accepts any number of
arguments (ignoring them), by replacing super().__init__() with super().__init__(a).
In Python 2.6+ instead there is no real solution for this problem, except avoiding
super in the constructor or avoiding multiple inheritance.

In general if you want to support multiple inheritance you should use super
only when the methods in a cooperative chain have consistent signature: that
means that you will not use super in __init__ and __new__ since likely your
constructors will have custom arguments whereas object.__init__ and object.__new__
have no arguments. However, in practice, you may inherits from third party
classes which do not obey this rule, or others could derive from your classes
without following this rule and breakage may occur. For instance, I have used
super for years in my __init__ methods and I never had problems because
in older Python versions object.__init__ accepted any number of arguments:
but in Python 3 all that code is fragile under multiple inheritance. I am left
with two choices: removing super or telling people that those classes are not
intended to be used in multiple inheritance situations, i.e. the constructors will
break if they do that. Nowadays I tend to favor the second choice.

Luckily, usually multiple inheritance is used with mixin classes, and mixins
do not have constructors, so that in practice the problem is mitigated.

The intended usage for super

Even if super has its shortcomings, there are meaningful use cases for it, assum-
ing you think multiple inheritance is a legitimate design technique. For instance,
if you use metaclasses and you want to support multiple inheritance, you must
use super in the __new__ and __init__ methods: there is no problem, since
the constructor for metaclasses has a fixed signature (name, bases, dictionary).
But metaclasses are extremely rare, so let me give a more meaningful example
for an application programmer where a design bases on cooperative multiple
inheritances could be reasonable.

Suppose you have a bunch of Manager classes which share many common
methods and which are intended to manage different resources, such as databases,
FTP sites, etc. To be concrete, suppose there are two common methods:
getinfolist which returns a list of strings describing the managed resorce
(containing infos such as the URI, the tables in the database or the files in the
site, etc.) and close which closes the resource (the database connection or the
FTP connection). You can model the hierarchy with a Manager abstract base
class

class Manager(object):

def close(self):

pass

def getinfolist(self):

return []

and two concrete classes DbManager and FtpManager:

20

class DbManager(Manager):

def __init__(self, dsn):

self.conn = DBConn(dsn)

def close(self):

super().close()

self.conn.close()

def getinfolist(self):

return super().getinfolist() + [’db info’]

class FtpManager(Manager):

def __init__(self, url):

self.ftp = FtpSite(url)

def close(self):

super().close()

self.ftp.close()

def getinfolist(self):

return super().getinfolist() + [’ftp info’]

Now suppose you need to manage both a database and an FTP site: then
you can define a MultiManager as follows:

class MultiManager(DbManager, FtpManager):

def __init__(self, dsn, url):

DbManager.__init__(dsn)

FtpManager.__init__(url)

Everything works: calling MultiManager.close will in turn call DbManager.close
and FtpManager.close. There is no risk of running in trouble with the signa-
ture since the close and getinfolist methods have all the same signature
(actually they take no arguments at all). Notice also that I did not use super

in the constructor. You see that super is essential in this design: without
it, only DbManager.close would be called and your FTP connection would
leak. The getinfolist method works similarly: forgetting super would mean
losing some information. An alternative not using super would require defin-
ing an explicit method close in the MultiManager, calling DbManager.close

and FtpManager.close explicitly, and an explicit method getinfolist calling
‘DbManager.getinfolist and FtpManager.getinfolist:

def close(self):

DbManager.close(self)

FtpManager.close(self)

def getinfolist(self):

return DbManager.getinfolist(self) + FtpManager.getinfolist(self)

This would be less elegant but probably clearer and safer so you can always
decide not to use super if you really hate it. However, if you have N common
methods, there is some boiler plate to write; moreover, every time you add a
Manager class you must add it to the N common methods, which is ugly. Here
N is just 2, so not using super may work well, but in general it is clear that the
cooperative approach is more effective. Actually, I strongly believe (and always

21

had) that super and the MRO are the right way to do multiple inheritance:
but I also believe that multiple inheritance itself is wrong. For instance, in the
MultiManager example I would not use multiple inheritance but composition
and I would probably use a generalization such as the following:

class MyMultiManager(Manager):

def __init__(self, *managers):

self.managers = managers

def close(self):

for mngr in self.managers:

mngr.close()

def getinfolist(self):

return sum(mngr.getinfolist() for mngr in self.managers)

There are languages that do not provide inheritance (even single inheri-
tance!) and are perfectly fine, so you should always question if you should use
inheritance or not. There are always many options and the design space is
rather large. Personally, I always use super but I use single-inheritance only,
so that my cooperative hierarchies are trivial.

The magic of super in Python 3

Deep down, super in Python 3 is the same as in Python 2.X. However, on
the surface - at the syntactic level, not at the semantic level - there is a big
difference: Python 3 super is smart enough to figure out the class it is invoked
from and the first argument of the containing method. Actually it is so smart
that it works also for inner classes and even if the first argument is not called
self. In Python 2.X super is dumber and you must tell the class and the
argument explicitly: for instance our first example must be written

class A(object):

def __init__(self):

print(’A.__init__’)

super(A, self).__init__()

By the way, this syntax works both in Python 3 and in Python 2, this is
why I said that deep down super is the same. The new feature in Python 3
is that there is a shortcut notation super() for super(A, self). In Python
3 the (bytecode) compiler is smart enough to recognize that the supercall is
performed inside the class A so that it inserts the reference to A automagically;
moreover it inserts the reference to the first argument of the current method
too. Typically the first argument of the current method is self, but it may be
cls or any identifier: super will work fine in any case.

Since super() knows the class it is invoked from and the class of the original
caller, it can walk the MRO correctly. Such information is stored in the at-
tributes .__thisclass__ and .__self_class__ and you may understand how
it works from the following example:

class Mother(object):

def __init__(self):

sup = super()

22

print(sup.__thisclass__)

print(sup.__self_class__)

sup.__init__()

class Child(Mother):

pass

>>> child = Child()

<class ’__main__.Mother’>

<class ’__main__.Child’>

Here .__self__class__ is just the class of the first argument (self) but
this is not always the case. The exception is the case of classmethods and
staticmethods taking a class as first argument, such as __new__. Specifically,
super(cls, x) checks if x is an instance of cls and then sets .__self_class__
to x.__class__; otherwise (and that happens for classmethods and for __new__)
it checks if x is a subclass of cls and then sets .__self_class__ to x directly.
For instance, in the following example

class C0(object):

@classmethod

def c(cls):

print(’called classmethod C0.c’)

class C1(C0):

@classmethod

def c(cls):

sup = super()

print(’__thisclass__’, sup.__thisclass__)

print(’__selfclass__’, sup.__self_class__)

sup.c()

class C2(C1):

pass

the attribute .__self_class__ is not the class of the first argument (which
would be type the metaclass of all classes) but simply the first argument:

>>> C2.c()

__thisclass__ <class ’__main__.C1’>

__selfclass__ <class ’__main__.C2’>

called classmethod C0.c

There is a lot of magic going on in Python 3 super, and even more. For
instance, this is a syntax that cannot work:

def __init__(self):

print(’calling __init__’)

super().__init__()

class C(object):

__init__ = __init__

if __name__ == ’__main__’:

c = C()

23

If you try to run this code you will get a SystemError: super(): __class__

cell not found and the reason is obvious: since the __init__ method is ex-
ternal to the class the compiler cannot infer to which class it will be attached
at runtime. On the other hand, if you are completely explicit and you use the
full syntax, by writing the external method as

def __init__(self):

print(’calling __init__’)

super(C, self).__init__()

everything will work because you are explicitly telling than the method will
be attached to the class C.

I will close this section by noticing a wart of super in Python 3, pointed out
by Armin Ronacher and others: the fact that super should be a keyword but
it is not. Therefore horrors like the following are possible:

def super():

print("I am evil, you are NOT calling the supermethod!")

class C(object):

def __init__(self):

super().__init__()

if __name__ == ’__main__’:

c = C() # prints "I am evil, you are NOT calling the supermethod!"

DON’T DO THAT! Here the called __init__ is the __init__ method of
the object None!!

Of course, only an evil programmer would shadow super on purpose, but
that may happen accidentally. Consider for instance this use case: you are
refactoring an old code base written before the existence of super and using
from mod import * (this is ugly but we know that there are code bases written
this way), with mod defining a function super which has nothing to do with the
super builtin. If in this code you replace Base.method(self, *args) with
super().method(*args) you will introduce a bug. This is not common (it
never happened to me), but still it is bug that could not happen if super were
a keyword.

Moreover, super is special and it will not work if you change its name as in
this example:

from http://lucumr.pocoo.org/2010/1/7/pros-and-cons-about-python-3

_super = super

class Foo(Bar):

def foo(self):

_super().foo()

Here the bytecode compiler will not treat specially _super, only super. It
is unfortunate that we missed the opportunity to make super a keyword in
Python 3, without good reasons (Python 3 was expected to break compatibility
anyway).

24

http://lucumr.pocoo.org/2008/4/30/how-super-in-python3-works-and-why-its-retarded

References

There is plenty of material about super and multiple inheritance. You should
probably start from the MRO paper, then read Super considered harmful by
James Knight. A lot of the issues with super, especially in old versions of
Python are covered in Things to know about super. I did spent some time
thinking about ways to avoid multiple inheritance; you may be interested in
reading my series Mixins considered harmful.

25

http://www.python.org/download/releases/2.3/mro/
http://fuhm.net/super-harmful/
http://www.phyast.pitt.edu/~micheles/python/super.pdf
http://www.artima.com/weblogs/viewpost.jsp?thread=246341

	Things to know about super
	Contents
	Foreword
	Introduction
	There is no superclass in a MI world
	Bound and unbound (super) methods
	super and descriptors
	The secrets of unbound super objects
	The unbound syntax is a mess
	Bugs of unbound super objects in earlier versions of Python
	Appendix
	Special attributes are special
	super does not work with meta-attributes
	Remember to use super consistently
	Argument passing in cooperative methods can fool you
	Conclusion: is there life beyond super?

	Super in Python 3
	Why cooperative hierarchies are tricky
	The problem with incompatible signatures
	The intended usage for super
	The magic of super in Python 3
	References

