
The decorator module
Author: Michele Simionato

E-mail: michele.simionato@gmail.com

Version: 3.3.0 (2011-01-01)

Requires: Python 2.4+

Download
page:

http://pypi.python.org/pypi/decorator/3.3.0

Installation: easy_install decorator

License: BSD license

Contents
Introduction 1

Definitions 2

Statement of the problem 2

The solution 3

A trace decorator 4

decorator is a decorator 5

blocking 6

async 7

The FunctionMaker class 8

Getting the source code 9

Dealing with third party decorators 10

Caveats and limitations 12

Compatibility notes 14

LICENCE 14

Introduction
Python decorators are an interesting example of why syntactic sugar matters. In principle, their
introduction in Python 2.4 changed nothing, since they do not provide any new functionality which was not
already present in the language. In practice, their introduction has significantly changed the way we
structure our programs in Python. I believe the change is for the best, and that decorators are a great idea
since:

• decorators help reducing boilerplate code;

• decorators help separation of concerns;

• decorators enhance readability and maintenability;

• decorators are explicit.

Still, as of now, writing custom decorators correctly requires some experience and it is not as easy as it
could be. For instance, typical implementations of decorators involve nested functions, and we all know
that flat is better than nested.

mailto:michele.simionato@gmail.com
http://pypi.python.org/pypi/decorator/3.3.0

The aim of the decorator module it to simplify the usage of decorators for the average programmer,
and to popularize decorators by showing various non-trivial examples. Of course, as all techniques,
decorators can be abused (I have seen that) and you should not try to solve every problem with a
decorator, just because you can.

You may find the source code for all the examples discussed here in the documentation.py file, which
contains this documentation in the form of doctests.

Definitions
Technically speaking, any Python object which can be called with one argument can be used as a
decorator. However, this definition is somewhat too large to be really useful. It is more convenient to split
the generic class of decorators in two subclasses:

• signature-preserving decorators, i.e. callable objects taking a function as input and returning a
function with the same signature as output;

• signature-changing decorators, i.e. decorators that change the signature of their input function, or
decorators returning non-callable objects.

Signature-changing decorators have their use: for instance the builtin classes staticmethod and
classmethod are in this group, since they take functions and return descriptor objects which are not
functions, nor callables.

However, signature-preserving decorators are more common and easier to reason about; in particular
signature-preserving decorators can be composed together whereas other decorators in general cannot.

Writing signature-preserving decorators from scratch is not that obvious, especially if one wants to define
proper decorators that can accept functions with any signature. A simple example will clarify the issue.

Statement of the problem
A very common use case for decorators is the memoization of functions. A memoize decorator works by
caching the result of the function call in a dictionary, so that the next time the function is called with the
same input parameters the result is retrieved from the cache and not recomputed. There are many
implementations of memoize in http://www.python.org/moin/PythonDecoratorLibrary, but they do not
preserve the signature. A simple implementation could be the following (notice that in general it is
impossible to memoize correctly something that depends on non-hashable arguments):

def memoize_uw(func):
 func.cache = {}
 def memoize(*args, **kw):
 if kw: # frozenset is used to ensure hashability
 key = args, frozenset(kw.iteritems())
 else:
 key = args
 cache = func.cache
 if key in cache:
 return cache[key]
 else:
 cache[key] = result = func(*args, **kw)
 return result
 return functools.update_wrapper(memoize, func)

Here we used the functools.update_wrapper utility, which has been added in Python 2.5 expressly to
simplify the definition of decorators (in older versions of Python you need to copy the function attributes
__name__, __doc__, __module__ and __dict__ from the original function to the decorated function
by hand).

http://www.python.org/moin/PythonDecoratorLibrary
http://www.python.org/doc/2.5.2/lib/module-functools.html

The implementation above works in the sense that the decorator can accept functions with generic
signatures; unfortunately this implementation does not define a signature-preserving decorator, since in
general memoize_uw returns a function with a different signature from the original function.

Consider for instance the following case:

>>> @memoize_uw
... def f1(x):
... time.sleep(1) # simulate some long computation
... return x

Here the original function takes a single argument named x, but the decorated function takes any number
of arguments and keyword arguments:

>>> from inspect import getargspec
>>> print getargspec(f1) # I am using Python 2.6+ here
ArgSpec(args=[], varargs='args', keywords='kw', defaults=None)

This means that introspection tools such as pydoc will give wrong informations about the signature of f1.
This is pretty bad: pydoc will tell you that the function accepts a generic signature *args, **kw, but when
you try to call the function with more than an argument, you will get an error:

>>> f1(0, 1)
Traceback (most recent call last):
 ...
TypeError: f1() takes exactly 1 argument (2 given)

The solution
The solution is to provide a generic factory of generators, which hides the complexity of making
signature-preserving decorators from the application programmer. The decorator function in the
decorator module is such a factory:

>>> from decorator import decorator

decorator takes two arguments, a caller function describing the functionality of the decorator and a
function to be decorated; it returns the decorated function. The caller function must have signature (f,
*args, **kw) and it must call the original function f with arguments args and kw, implementing the
wanted capability, i.e. memoization in this case:

def _memoize(func, *args, **kw):
 if kw: # frozenset is used to ensure hashability
 key = args, frozenset(kw.iteritems())
 else:
 key = args
 cache = func.cache # attributed added by memoize
 if key in cache:
 return cache[key]
 else:
 cache[key] = result = func(*args, **kw)
 return result

At this point you can define your decorator as follows:

def memoize(f):
 f.cache = {}
 return decorator(_memoize, f)

The difference with respect to the memoize_uw approach, which is based on nested functions, is that the
decorator module forces you to lift the inner function at the outer level (flat is better than nested).
Moreover, you are forced to pass explicitly the function you want to decorate to the caller function.

Here is a test of usage:

>>> @memoize
... def heavy_computation():
... time.sleep(2)
... return "done"

>>> print heavy_computation() # the first time it will take 2 seconds
done

>>> print heavy_computation() # the second time it will be instantaneous
done

The signature of heavy_computation is the one you would expect:

>>> print getargspec(heavy_computation)
ArgSpec(args=[], varargs=None, keywords=None, defaults=None)

A trace decorator
As an additional example, here is how you can define a trivial trace decorator, which prints a message
everytime the traced function is called:

def _trace(f, *args, **kw):
 print "calling %s with args %s, %s" % (f.__name__, args, kw)
 return f(*args, **kw)

def trace(f):
 return decorator(_trace, f)

Here is an example of usage:

>>> @trace
... def f1(x):
... pass

It is immediate to verify that f1 works

>>> f1(0)
calling f1 with args (0,), {}

and it that it has the correct signature:

>>> print getargspec(f1)
ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None)

The same decorator works with functions of any signature:

>>> @trace
... def f(x, y=1, z=2, *args, **kw):
... pass

>>> f(0, 3)
calling f with args (0, 3, 2), {}

>>> print getargspec(f)
ArgSpec(args=['x', 'y', 'z'], varargs='args', keywords='kw', defaults=(1, 2))

That includes even functions with exotic signatures like the following:

>>> @trace
... def exotic_signature((x, y)=(1,2)): return x+y

>>> print getargspec(exotic_signature)
ArgSpec(args=[['x', 'y']], varargs=None, keywords=None, defaults=((1, 2),))
>>> exotic_signature()
calling exotic_signature with args ((1, 2),), {}
3

Notice that the support for exotic signatures has been deprecated in Python 2.6 and removed in Python
3.0.

decorator is a decorator
It may be annoying to write a caller function (like the _trace function above) and then a trivial wrapper
(def trace(f): return decorator(_trace, f)) every time. For this reason, the decorator
module provides an easy shortcut to convert the caller function into a signature-preserving decorator: you
can just call decorator with a single argument. In our example you can just write trace =
decorator(_trace). The decorator function can also be used as a signature-changing decorator,
just as classmethod and staticmethod. However, classmethod and staticmethod return
generic objects which are not callable, while decorator returns signature-preserving decorators, i.e.
functions of a single argument. For instance, you can write directly

>>> @decorator
... def trace(f, *args, **kw):
... print "calling %s with args %s, %s" % (f.func_name, args, kw)
... return f(*args, **kw)

and now trace will be a decorator. Actually trace is a partial object which can be used as a
decorator:

>>> trace
<function trace at 0x...>

Here is an example of usage:

>>> @trace
... def func(): pass

>>> func()
calling func with args (), {}

If you are using an old Python version (Python 2.4) the decorator module provides a poor man
replacement for functools.partial.

blocking
Sometimes one has to deal with blocking resources, such as stdin, and sometimes it is best to have
back a "busy" message than to block everything. This behavior can be implemented with a suitable family
of decorators, where the parameter is the busy message:

def blocking(not_avail):
 def blocking(f, *args, **kw):
 if not hasattr(f, "thread"): # no thread running
 def set_result(): f.result = f(*args, **kw)
 f.thread = threading.Thread(None, set_result)
 f.thread.start()
 return not_avail
 elif f.thread.isAlive():
 return not_avail
 else: # the thread is ended, return the stored result
 del f.thread
 return f.result
 return decorator(blocking)

Functions decorated with blocking will return a busy message if the resource is unavailable, and the
intended result if the resource is available. For instance:

>>> @blocking("Please wait ...")
... def read_data():
... time.sleep(3) # simulate a blocking resource
... return "some data"

>>> print read_data() # data is not available yet
Please wait ...

>>> time.sleep(1)
>>> print read_data() # data is not available yet
Please wait ...

>>> time.sleep(1)
>>> print read_data() # data is not available yet
Please wait ...

>>> time.sleep(1.1) # after 3.1 seconds, data is available
>>> print read_data()
some data

async
We have just seen an examples of a simple decorator factory, implemented as a function returning a
decorator. For more complex situations, it is more convenient to implement decorator factories as classes
returning callable objects that can be used as signature-preserving decorators. The suggested pattern to
do that is to introduce a helper method call(self, func, *args, **kw) and to call it in the
__call__(self, func) method.

As an example, here I show a decorator which is able to convert a blocking function into an asynchronous
function. The function, when called, is executed in a separate thread. Moreover, it is possible to set three
callbacks on_success, on_failure and on_closing, to specify how to manage the function call. The
implementation is the following:

def on_success(result): # default implementation
 "Called on the result of the function"
 return result

def on_failure(exc_info): # default implementation
 "Called if the function fails"
 pass

def on_closing(): # default implementation
 "Called at the end, both in case of success and failure"
 pass

class Async(object):
 """
 A decorator converting blocking functions into asynchronous
 functions, by using threads or processes. Examples:

 async_with_threads = Async(threading.Thread)
 async_with_processes = Async(multiprocessing.Process)
 """

 def __init__(self, threadfactory):
 self.threadfactory = threadfactory

 def __call__(self, func, on_success=on_success,
 on_failure=on_failure, on_closing=on_closing):
 # every decorated function has its own independent thread counter
 func.counter = itertools.count(1)
 func.on_success = on_success
 func.on_failure = on_failure
 func.on_closing = on_closing
 return decorator(self.call, func)

 def call(self, func, *args, **kw):
 def func_wrapper():
 try:
 result = func(*args, **kw)
 except:
 func.on_failure(sys.exc_info())
 else:
 return func.on_success(result)

 finally:
 func.on_closing()
 name = '%s-%s' % (func.__name__, func.counter.next())
 thread = self.threadfactory(None, func_wrapper, name)
 thread.start()
 return thread

The decorated function returns the current execution thread, which can be stored and checked later, for
instance to verify that the thread .isAlive().

Here is an example of usage. Suppose one wants to write some data to an external resource which can
be accessed by a single user at once (for instance a printer). Then the access to the writing function must
be locked. Here is a minimalistic example:

>>> async = Async(threading.Thread)

>>> datalist = [] # for simplicity the written data are stored into a list.

>>> @async
... def write(data):
... # append data to the datalist by locking
... with threading.Lock():
... time.sleep(1) # emulate some long running operation
... datalist.append(data)
... # other operations not requiring a lock here

Each call to write will create a new writer thread, but there will be no synchronization problems since
write is locked.

>>> write("data1")
<Thread(write-1, started...)>

>>> time.sleep(.1) # wait a bit, so we are sure data2 is written after data1

>>> write("data2")
<Thread(write-2, started...)>

>>> time.sleep(2) # wait for the writers to complete

>>> print datalist
['data1', 'data2']

The FunctionMaker class
You may wonder about how the functionality of the decorator module is implemented. The basic
building block is a FunctionMaker class which is able to generate on the fly functions with a given
name and signature from a function template passed as a string. Generally speaking, you should not need
to resort to FunctionMaker when writing ordinary decorators, but it is handy in some circumstances.
You will see an example shortly, in the implementation of a cool decorator utility (decorator_apply).

FunctionMaker provides a .create classmethod which takes as input the name, signature, and body
of the function we want to generate as well as the execution environment were the function is generated
by exec. Here is an example:

>>> def f(*args, **kw): # a function with a generic signature
... print args, kw

>>> f1 = FunctionMaker.create('f1(a, b)', 'f(a, b)', dict(f=f))
>>> f1(1,2)
(1, 2) {}

It is important to notice that the function body is interpolated before being executed, so be careful with the
% sign!

FunctionMaker.create also accepts keyword arguments and such arguments are attached to the
resulting function. This is useful if you want to set some function attributes, for instance the docstring
__doc__.

For debugging/introspection purposes it may be useful to see the source code of the generated function;
to do that, just pass the flag addsource=True and a __source__ attribute will be added to the
generated function:

>>> f1 = FunctionMaker.create(
... 'f1(a, b)', 'f(a, b)', dict(f=f), addsource=True)
>>> print f1.__source__
def f1(a, b):
 f(a, b)
<BLANKLINE>

FunctionMaker.create can take as first argument a string, as in the examples before, or a function.
This is the most common usage, since typically you want to decorate a pre-existing function. A framework
author may want to use directly FunctionMaker.create instead of decorator, since it gives you
direct access to the body of the generated function. For instance, suppose you want to instrument the
__init__ methods of a set of classes, by preserving their signature (such use case is not made up; this
is done in SQAlchemy and in other frameworks). When the first argument of FunctionMaker.create
is a function, a FunctionMaker object is instantiated internally, with attributes args, varargs,
keywords and defaults which are the the return values of the standard library function
inspect.getargspec. For each argument in the args (which is a list of strings containing the names
of the mandatory arguments) an attribute arg0, arg1, ..., argN is also generated. Finally, there is a
signature attribute, a string with the signature of the original function.

Notice that while I do not have plans to change or remove the functionality provided in the
FunctionMaker class, I do not guarantee that it will stay unchanged forever. For instance, right now I
am using the traditional string interpolation syntax for function templates, but Python 2.6 and Python 3.0
provide a newer interpolation syntax and I may use the new syntax in the future. On the other hand, the
functionality provided by decorator has been there from version 0.1 and it is guaranteed to stay there
forever.

Getting the source code
Internally FunctionMaker.create uses exec to generate the decorated function. Therefore
inspect.getsource will not work for decorated functions. That means that the usual '??' trick in
IPython will give you the (right on the spot) message Dynamically generated function. No
source code available. In the past I have considered this acceptable, since inspect.getsource
does not really work even with regular decorators. In that case inspect.getsource gives you the
wrapper source code which is probably not what you want:

def identity_dec(func):
 def wrapper(*args, **kw):
 return func(*args, **kw)

 return wrapper

@identity_dec
def example(): pass

>>> print inspect.getsource(example)
 def wrapper(*args, **kw):
 return func(*args, **kw)
<BLANKLINE>

(see bug report 1764286 for an explanation of what is happening). Unfortunately the bug is still there,
even in Python 2.7 and 3.1. There is however a workaround. The decorator module adds an attribute
.undecorated to the decorated function, containing a reference to the original function. The easy way to
get the source code is to call inspect.getsource on the undecorated function:

>>> print inspect.getsource(factorial.undecorated)
@tail_recursive
def factorial(n, acc=1):
 "The good old factorial"
 if n == 0: return acc
 return factorial(n-1, n*acc)
<BLANKLINE>

Dealing with third party decorators
Sometimes you find on the net some cool decorator that you would like to include in your code. However,
more often than not the cool decorator is not signature-preserving. Therefore you may want an easy way
to upgrade third party decorators to signature-preserving decorators without having to rewrite them in
terms of decorator. You can use a FunctionMaker to implement that functionality as follows:

def decorator_apply(dec, func):
 """
 Decorate a function by preserving the signature even if dec
 is not a signature-preserving decorator.
 """
 return FunctionMaker.create(
 func, 'return decorated(%(signature)s)',
 dict(decorated=dec(func)), undecorated=func)

decorator_apply sets the attribute .undecorated of the generated function to the original function,
so that you can get the right source code.

Notice that I am not providing this functionality in the decorator module directly since I think it is best to
rewrite the decorator rather than adding an additional level of indirection. However, practicality beats
purity, so you can add decorator_apply to your toolbox and use it if you need to.

In order to give an example of usage of decorator_apply, I will show a pretty slick decorator that
converts a tail-recursive function in an iterative function. I have shamelessly stolen the basic idea from
Kay Schluehr's recipe in the Python Cookbook,
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691.

class TailRecursive(object):
 """
 tail_recursive decorator based on Kay Schluehr's recipe

http://bugs.python.org/issue1764286
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691

 http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691
 with improvements by me and George Sakkis.
 """

 def __init__(self, func):
 self.func = func
 self.firstcall = True
 self.CONTINUE = object() # sentinel

 def __call__(self, *args, **kwd):
 CONTINUE = self.CONTINUE
 if self.firstcall:
 func = self.func
 self.firstcall = False
 try:
 while True:
 result = func(*args, **kwd)
 if result is CONTINUE: # update arguments
 args, kwd = self.argskwd
 else: # last call
 return result
 finally:
 self.firstcall = True
 else: # return the arguments of the tail call
 self.argskwd = args, kwd
 return CONTINUE

Here the decorator is implemented as a class returning callable objects.

def tail_recursive(func):
 return decorator_apply(TailRecursive, func)

Here is how you apply the upgraded decorator to the good old factorial:

@tail_recursive
def factorial(n, acc=1):
 "The good old factorial"
 if n == 0: return acc
 return factorial(n-1, n*acc)

>>> print factorial(4)
24

This decorator is pretty impressive, and should give you some food for your mind ;) Notice that there is no
recursion limit now, and you can easily compute factorial(1001) or larger without filling the stack
frame. Notice also that the decorator will not work on functions which are not tail recursive, such as the
following

def fact(n): # this is not tail-recursive
 if n == 0: return 1
 return n * fact(n-1)

(reminder: a function is tail recursive if it either returns a value without making a recursive call, or returns
directly the result of a recursive call).

Caveats and limitations
The first thing you should be aware of, it the fact that decorators have a performance penalty. The worse
case is shown by the following example:

$ cat performance.sh
python -m timeit -s "
from decorator import decorator

@decorator
def do_nothing(func, *args, **kw):
 return func(*args, **kw)

@do_nothing
def f():
 pass
" "f()"

python -m timeit -s "
def f():
 pass
" "f()"

On my MacBook, using the do_nothing decorator instead of the plain function is more than three times
slower:

$ bash performance.sh
1000000 loops, best of 3: 0.995 usec per loop
1000000 loops, best of 3: 0.273 usec per loop

It should be noted that a real life function would probably do something more useful than f here, and
therefore in real life the performance penalty could be completely negligible. As always, the only way to
know if there is a penalty in your specific use case is to measure it.

You should be aware that decorators will make your tracebacks longer and more difficult to understand.
Consider this example:

>>> @trace
... def f():
... 1/0

Calling f() will give you a ZeroDivisionError, but since the function is decorated the traceback will
be longer:

>>> f()
Traceback (most recent call last):
 ...
 File "<string>", line 2, in f
 File "<doctest __main__[18]>", line 4, in trace
 return f(*args, **kw)
 File "<doctest __main__[47]>", line 3, in f
 1/0
ZeroDivisionError: integer division or modulo by zero

You see here the inner call to the decorator trace, which calls f(*args, **kw), and a reference to
File "<string>", line 2, in f. This latter reference is due to the fact that internally the decorator
module uses exec to generate the decorated function. Notice that exec is not responsibile for the
performance penalty, since is the called only once at function decoration time, and not every time the
decorated function is called.

At present, there is no clean way to avoid exec. A clean solution would require to change the CPython
implementation of functions and add an hook to make it possible to change their signature directly. That
could happen in future versions of Python (see PEP 362) and then the decorator module would become
obsolete. However, at present, even in Python 3.1 it is impossible to change the function signature
directly, therefore the decorator module is still useful. Actually, this is one of the main reasons why I
keep maintaining the module and releasing new versions.

In the present implementation, decorators generated by decorator can only be used on user-defined
Python functions or methods, not on generic callable objects, nor on built-in functions, due to limitations of
the inspect module in the standard library. Moreover, notice that you can decorate a method, but only
before if becomes a bound or unbound method, i.e. inside the class. Here is an example of valid
decoration:

>>> class C(object):
... @trace
... def meth(self):
... pass

Here is an example of invalid decoration, when the decorator in called too late:

>>> class C(object):
... def meth(self):
... pass
...
>>> trace(C.meth)
Traceback (most recent call last):
 ...
TypeError: You are decorating a non function: <unbound method C.meth>

The solution is to extract the inner function from the unbound method:

>>> trace(C.meth.im_func)
<function meth at 0x...>

There is a restriction on the names of the arguments: for instance, if try to call an argument _call_ or
func you will get a NameError:

>>> @trace
... def f(_func_): print f
...
Traceback (most recent call last):
 ...
NameError: _func_ is overridden in
def f(_func_):
 return _call_(_func_, _func_)

Finally, the implementation is such that the decorated function attribute .func_globals is a copy of the
original function attribute. Moreover the decorated function contains a copy of the original function
dictionary (vars(decorated_f) is not vars(f)):

http://www.python.org/dev/peps/pep-0362

>>> def f(): pass # the original function
>>> f.attr1 = "something" # setting an attribute
>>> f.attr2 = "something else" # setting another attribute

>>> traced_f = trace(f) # the decorated function

>>> traced_f.attr1
'something'
>>> traced_f.attr2 = "something different" # setting attr
>>> f.attr2 # the original attribute did not change
'something else'

Compatibility notes
Version 3.3 is the first version of the decorator module to fully support Python 3, including function
annotations. Version 3.2 was the first version to support Python 3 via the 2to3 conversion tool invoked in
the build process by the distribute project, the Python 3-compatible replacement of easy_install. The hard
work (for me) has been converting the documentation and the doctests. This has been possible only after
that docutils and pygments have been ported to Python 3.

Version 3 of the decorator module do not contain any backward incompatible change, apart from the
removal of the functions get_info and new_wrapper, which have been deprecated for years.
get_info has been removed since it was little used and since it had to be changed anyway to work with
Python 3.0; new_wrapper has been removed since it was useless: its major use case (converting
signature changing decorators to signature preserving decorators) has been subsumed by
decorator_apply, whereas the other use case can be managed with the FunctionMaker.

There are a few changes in the documentation: I removed the decorator_factory example, which
was confusing some of my users, and I removed the part about exotic signatures in the Python 3
documentation, since Python 3 does not support them.

Finally decorator cannot be used as a class decorator and the functionality introduced in version 2.3
has been removed. That means that in order to define decorator factories with classes you need to define
the __call__ method explicitly (no magic anymore). All these changes should not cause any trouble,
since they were all rarely used features. Should you have any trouble, you can always downgrade to the
2.3 version.

The examples shown here have been tested with Python 2.6. Python 2.4 is also supported - of course the
examples requiring the with statement will not work there. Python 2.5 works fine, but if you run the
examples in the interactive interpreter you will notice a few differences since getargspec returns an
ArgSpec namedtuple instead of a regular tuple. That means that running the file documentation.py
under Python 2.5 will print a few errors, but they are not serious.

LICENCE
Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Copyright (c) 2005, Michele Simionato
All rights reserved.

Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in bytecode form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the

http://www.python.org/dev/peps/pep-3107/
http://www.python.org/dev/peps/pep-3107/
http://packages.python.org/distribute/
http://docutils.sourceforge.net/
http://pygments.org/
http://www.phyast.pitt.edu/~micheles/python/documentation.html#class-decorators-and-decorator-factories

distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

If you use this software and you are happy with it, consider sending me a note, just to gratify my ego. On
the other hand, if you use this software and you are unhappy with it, send me a patch!

	Introduction
	Definitions
	Statement of the problem
	The solution
	A trace decorator
	decorator is a decorator
	blocking
	async
	The FunctionMaker class
	Getting the source code
	Dealing with third party decorators
	Caveats and limitations
	Compatibility notes
	LICENCE

