
Plac: Parsing the Command Line the Easy Way
Author: Michele Simionato

E-mail: michele.simionato@gmail.com

Date: August 2010

Download
page:

http://pypi.python.org/pypi/plac

Project page: http://plac.googlecode.com/hg/doc/plac.html

Requires: Python 2.3+

Installation: easy_install -U plac

License: BSD license

1

mailto:michele.simionato@gmail.com
http://pypi.python.org/pypi/plac
http://plac.googlecode.com/hg/doc/plac.html

Contents
Plac: Parsing the Command Line the Easy Way 1

The importance of scaling down 3

Scripts with required arguments 3

Scripts with default arguments 5

Scripts with options (and smart options) 7

Scripts with flags 9

plac for Python 2.X users 9

More features 10

A realistic example 12

Keyword arguments 13

Final example: a shelve interface 14

plac vs argparse 16

plac vs the rest of the world 18

The future 18

Trivia: the story behind the name 18

Advanced usages of plac 19

Introduction 19

From scripts to interactive applications 19

Testing a plac application 21

Plac easy tests 22

Plac batch scripts 23

Implementing subcommands 24

plac.Interpreter.call 26

Readline support 28

The plac runner 30

A non class-based example 31

Writing your own plac runner 33

Long running commands 35

Threaded commands 35

Running commands as external processes 37

Managing the output of concurrent commands 38

Monitor support 39

Parallel computing with plac 39

The plac server 42

Summary 42

Appendix: custom annotation objects 43

2

The importance of scaling down
There is no want of command line arguments parsers in the Python world. The standard library alone
contains three different modules: getopt (from the stone age), optparse (from Python 2.3) and argparse
(from Python 2.7). All of them are quite powerful and especially argparse is an industrial strength solution;
unfortunately, all of them feature a non-zero learning curve and a certain verbosity. They do not scale
down well, at least in my opinion.

It should not be necessary to stress the importance scaling down; nevertheless, a lot of people are
obsessed with features and concerned with the possibility of scaling up, forgetting the equally important
issue of scaling down. This is an old meme in the computing world: programs should address the common
cases simply and simple things should be kept simple, while at the same keeping difficult things possible.
plac adhere as much as possible to this philosophy and it is designed to handle well the simple cases,
while retaining the ability to handle complex cases by relying on the underlying power of argparse.

Technically plac is just a simple wrapper over argparse which hides most of its complexity by using a
declarative interface: the argument parser is inferred rather than written down by imperatively. Still, plac is
surprisingly scalable upwards, even without using the underlying argparse. I have been using Python for 8
years and in my experience it is extremely unlikely that you will ever need to go beyond the features
provided by the declarative interface of plac: they should be more than enough for 99.9% of the use
cases.

plac is targetting especially unsophisticated users, programmers, sys-admins, scientists and in general
people writing throw-away scripts for themselves, choosing the command line interface because it is the
quick and simple. Such users are not interested in features, they are interested in a small learning curve:
they just want to be able to write a simple command line tool from a simple specification, not to build a
command-line parser by hand. Unfortunately, the modules in the standard library forces them to go the
hard way. They are designed to implement power user tools and they have a non-trivial learning curve. On
the contrary, plac is designed to be simple to use and extremely concise, as the examples below will
show.

Scripts with required arguments
Let me start with the simplest possible thing: a script that takes a single argument and does something to
it. It cannot get simpler than that, unless you consider a script without command-line arguments, where
there is nothing to parse. Still, it is a use case extremely common: I need to write scripts like that nearly
every day, I wrote hundreds of them in the last few years and I have never been happy. Here is a typical
example of code I have been writing by hand for years:

example1.py
def main(dsn):
 "Do something with the database"
 print(dsn)
 # ...

if __name__ == '__main__':
 import sys
 n = len(sys.argv[1:])
 if n == 0:
 sys.exit('usage: python %s dsn' % sys.argv[0])
 elif n == 1:
 main(sys.argv[1])
 else:
 sys.exit('Unrecognized arguments: %s' % ' '.join(sys.argv[2:]))

As you see the whole if __name__ == '__main__' block (nine lines) is essentially boilerplate that
should not exist. Actually I think the language should recognize the main function and pass to it the

3

http://docs.python.org/library/getopt.html
http://docs.python.org/library/optparse.html
http://argparse.googlecode.com
http://argparse.googlecode.com
http://www.welton.it/articles/scalable_systems
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

command-line arguments automatically; unfortunaly this is unlikely to happen. I have been writing
boilerplate like this in hundreds of scripts for years, and every time I hate it. The purpose of using a
scripting language is convenience and trivial things should be trivial. Unfortunately the standard library
does not help for this incredibly common use case. Using getopt and optparse does not help, since they
are intended to manage options and not positional arguments; the argparse module helps a bit and it is
able to reduce the boilerplate from nine lines to six lines:

example2.py
def main(dsn):
 "Do something on the database"
 print(dsn)
 # ...

if __name__ == '__main__':
 import argparse
 p = argparse.ArgumentParser()
 p.add_argument('dsn')
 arg = p.parse_args()
 main(arg.dsn)

However, it just feels too complex to instantiate a class and to define a parser by hand for such a trivial
task.

The plac module is designed to manage well such use cases, and it is able to reduce the original nine
lines of boiler plate to two lines. With the plac module all you need to write is

example3.py
def main(dsn):
 "Do something with the database"
 print(dsn)
 # ...

if __name__ == '__main__':
 import plac; plac.call(main)

The plac module provides for free (actually the work is done by the underlying argparse module) a nice
usage message:

$ python example3.py -h

usage: example3.py [-h] dsn

Do something with the database

positional arguments:
 dsn

optional arguments:
 -h, --help show this help message and exit

Moreover plac manages the case of missing arguments and of too many arguments. This is only the tip of
the iceberg: plac is able to do much more than that.

4

http://docs.python.org/library/getopt.html
http://docs.python.org/library/optparse.html
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

Scripts with default arguments
The need to have suitable defaults for command-line scripts is quite common. For instance I have
encountered this use case at work hundreds of times:

example4.py
from datetime import datetime

def main(dsn, table='product', today=datetime.today()):
 "Do something on the database"
 print(dsn, table, today)

if __name__ == '__main__':
 import sys
 args = sys.argv[1:]
 if not args:
 sys.exit('usage: python %s dsn' % sys.argv[0])
 elif len(args) > 2:
 sys.exit('Unrecognized arguments: %s' % ' '.join(argv[2:]))
 main(*args)

Here I want to perform a query on a database table, by extracting the most recent data: it makes sense for
today to be a default argument. If there is a most used table (in this example a table called 'product')
it also makes sense to make it a default argument. Performing the parsing of the command-line
arguments by hand takes 8 ugly lines of boilerplate (using argparse would require about the same number
of lines). With plac the entire __main__ block reduces to the usual two lines:

if __name__ == '__main__':
 import plac; plac.call(main)

In other words, six lines of boilerplate have been removed, and we get the usage message for free:

usage: example5.py [-h] dsn [table] [today]

Do something on the database

positional arguments:
 dsn
 table [product]
 today [YYYY-MM-DD]

optional arguments:
 -h, --help show this help message and exit

Notice that by default plac prints the string representation of the default values (with square brackets) in
the usage message. plac manages transparently even the case when you want to pass a variable number
of arguments. Here is an example, a script running on a database a series of SQL scripts:

example7.py
from datetime import datetime

def main(dsn, *scripts):
 "Run the given scripts on the database"
 for script in scripts:

5

http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

 print('executing %s' % script)
 # ...

if __name__ == '__main__':
 import plac; plac.call(main)

Here is the usage message:

usage: example7.py [-h] dsn [scripts [scripts ...]]

Run the given scripts on the database

positional arguments:
 dsn
 scripts

optional arguments:
 -h, --help show this help message and exit

The examples here should have made clear that plac is able to figure out the command-line arguments
parser to use from the signature of the main function. This is the whole idea behind plac: if the intent is
clear, let's the machine take care of the details.

plac is inspired to an old Python Cookbook recipe of mine (optionparse), in the sense that it delivers the
programmer from the burden of writing the parser, but is less of a hack: instead of extracting the parser
from the docstring of the module, it extracts it from the signature of the main function.

The idea comes from the function annotations concept, a new feature of Python 3. An example is worth a
thousand words, so here it is:

example7_.py
from datetime import datetime

def main(dsn: "Database dsn", *scripts: "SQL scripts"):
 "Run the given scripts on the database"
 for script in scripts:
 print('executing %s' % script)
 # ...

if __name__ == '__main__':
 import plac; plac.call(main)

Here the arguments of the main function have been annotated with strings which are intented to be used
in the help message:

usage: example7_.py [-h] dsn [scripts [scripts ...]]

Run the given scripts on the database

positional arguments:
 dsn Database dsn
 scripts SQL scripts

optional arguments:

6

http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://code.activestate.com/recipes/278844-parsing-the-command-line/

 -h, --help show this help message and exit

plac is able to recognize much more complex annotations, as I will show in the next paragraphs.

Scripts with options (and smart options)
It is surprising how few command-line scripts with options I have written over the years (probably less than
a hundred), compared to the number of scripts with positional arguments I wrote (certainly more than a
thousand of them). Still, this use case cannot be neglected. The standard library modules (all of them) are
quite verbose when it comes to specifying the options and frankly I have never used them directly.
Instead, I have always relied on the optionparse recipe, which provides a convenient wrapper over
optionparse. Alternatively, in the simplest cases, I have just performed the parsing by hand. In plac the
parser is inferred by the function annotations. Here is an example:

example8.py
def main(command: ("SQL query", 'option', 'c'), dsn):
 if command:
 print('executing %s on %s' % (command, dsn))
 # ...

if __name__ == '__main__':
 import plac; plac.call(main)

Here the argument command has been annotated with the tuple ("SQL query", 'option', 'c'):
the first string is the help string which will appear in the usage message, the second string tells plac that
command is an option and the third string that there is also a short form of the option -c, the long form
being --command. The usage message is the following:

usage: example8.py [-h] [-c COMMAND] dsn

positional arguments:
 dsn

optional arguments:
 -h, --help show this help message and exit
 -c COMMAND, --command COMMAND
 SQL query

Here are two examples of usage:

$ python3 example8.py -c"select * from table" dsn
executing select * from table on dsn

$ python3 example8.py --command="select * from table" dsn
executing select * from table on dsn

The third argument in the function annotation can be omitted: in such case it will be assumed to be None.
The consequence is that the usual dichotomy between long and short options (GNU-style options)
disappears: we get smart options, which have the single character prefix of short options and behave like
both long and short options, since they can be abbreviated. Here is an example featuring smart options:

example6.py
def main(dsn, command: ("SQL query", 'option')):

7

http://pypi.python.org/pypi/plac
http://code.activestate.com/recipes/278844-parsing-the-command-line/
http://code.activestate.com/recipes/278844-parsing-the-command-line/
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

 print('executing %r on %s' % (command, dsn))

if __name__ == '__main__':
 import plac; plac.call(main)

usage: example6.py [-h] [-command COMMAND] dsn

positional arguments:
 dsn

optional arguments:
 -h, --help show this help message and exit
 -command COMMAND SQL query

The following are all valid invocations ot the script:

$ python3 example6.py -c "select" dsn
executing 'select' on dsn
$ python3 example6.py -com "select" dsn
executing 'select' on dsn
$ python3 example6.py -command="select" dsn
executing 'select' on dsn

Notice that the form -command=SQL is recognized only for the full option, not for its abbreviations:

$ python3 example6.py -com="select" dsn
usage: example6.py [-h] [-command COMMAND] dsn
example6.py: error: unrecognized arguments: -com=select

If the option is not passed, the variable command will get the value None. However, it is possible to
specify a non-trivial default. Here is an example:

example8_.py
def main(dsn, command: ("SQL query", 'option')='select * from table'):
 print('executing %r on %s' % (command, dsn))

if __name__ == '__main__':
 import plac; plac.call(main)

Notice that the default value appears in the help message:

usage: example8_.py [-h] [-command select * from table] dsn

positional arguments:
 dsn

optional arguments:
 -h, --help show this help message and exit
 -command select * from table
 SQL query

When you run the script and you do not pass the -command option, the default query will be executed:

8

$ python3 example8_.py dsn
executing 'select * from table' on dsn

Scripts with flags
plac is able to recognize flags, i.e. boolean options which are True if they are passed to the command
line and False if they are absent. Here is an example:

example9.py

def main(verbose: ('prints more info', 'flag', 'v'), dsn: 'connection string'):
 if verbose:
 print('connecting to %s' % dsn)
 # ...

if __name__ == '__main__':
 import plac; plac.call(main)

usage: example9.py [-h] [-v] dsn

positional arguments:
 dsn connection string

optional arguments:
 -h, --help show this help message and exit
 -v, --verbose prints more info

$ python3 example9.py -v dsn
connecting to dsn

Notice that it is an error trying to specify a default for flags: the default value for a flag is always False. If
you feel the need to implement non-boolean flags, you should use an option with two choices, as
explained in the "more features" section.

For consistency with the way the usage message is printed, I suggest you to follow the
Flag-Option-Required-Default (FORD) convention: in the main function write first the flag arguments,
then the option arguments, then the required arguments and finally the default arguments. This is just a
convention and you are not forced to use it, except for the default arguments (including the varargs) which
must stay at the end as it is required by the Python syntax.

I also suggests to specify a one-character abbreviation for flags: in this way you can use the GNU-style
composition of flags (i.e. -zxvf is an abbreviation of -z -x -v -f). I usually do not provide the
one-character abbreviation for options, since it does not make sense to compose them.

plac for Python 2.X users
I do not use Python 3. At work we are just starting to think about migrating to Python 2.6. It will take years
before we think to migrate to Python 3. I am pretty much sure most Pythonistas are in the same situation.
Therefore plac provides a way to work with function annotations even in Python 2.X (including Python
2.3). There is no magic involved; you just need to add the annotations by hand. For instance the
annotated function declaration

9

http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

def main(dsn: "Database dsn", *scripts: "SQL scripts"):
 ...

is equivalent to the following code:

def main(dsn, *scripts):
 ...
main.__annotations__ = dict(
 dsn="Database dsn",
 scripts="SQL scripts")

One should be careful to match the keys of the annotation dictionary with the names of the arguments in
the annotated function; for lazy people with Python 2.4 available the simplest way is to use the
plac.annotations decorator that performs the check for you:

@plac.annotations(
 dsn="Database dsn",
 scripts="SQL scripts")
def main(dsn, *scripts):
 ...

In the rest of this article I will assume that you are using Python 2.X with X >= 4 and I will use the
plac.annotations decorator. Notice however that the core features of plac run even on Python 2.3.

More features
One of the goals of plac is to have a learning curve of minutes for its core features, compared to the
learning curve of hours of argparse. In order to reach this goal, I have not sacrificed all the features of
argparse. Actually a lot of argparse power persists in plac. Until now, I have only showed simple
annotations, but in general an annotation is a 6-tuple of the form

(help, kind, abbrev, type, choices, metavar)

where help is the help message, kind is a string in the set { "flag", "option", "positional"},
abbrev is a one-character string or None, type is a callable taking a string in input, choices is a
discrete sequence of values and metavar is a string.

type is used to automagically convert the command line arguments from the string type to any Python
type; by default there is no conversion and type=None.

choices is used to restrict the number of the valid options; by default there is no restriction i.e.
choices=None.

metavar has two meanings. For a positional argument it is used to change the argument name in the
usage message (and only there). By default the metavar is None and the name in the usage message is
the same as the argument name. For an option the metavar is used differently in the usage message,
which has now the form [--option-name METAVAR]. If the metavar is None, then it is equal to the
uppercased name of the argument, unless the argument has a default and in such a case is equal to the
stringified form of the default.

Here is an example showing many of the features (copied from the argparse documentation):

example10.py
import plac

@plac.annotations(

10

http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://argparse.googlecode.com
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com

operator=("The name of an operator", 'positional', None, str, ['add', 'mul']),
numbers=("A number", 'positional', None, float, None, "n"))
def main(operator, *numbers):
 "A script to add and multiply numbers"
 if operator == 'mul':
 op = float.__mul__
 result = 1.0
 else: # operator == 'add'
 op = float.__add__
 result = 0.0
 for n in numbers:
 result = op(result, n)
 return result

if __name__ == '__main__':
 print(plac.call(main))

Here is the usage:

usage: example10.py [-h] {add,mul} [n [n ...]]

A script to add and multiply numbers

positional arguments:
 {add,mul} The name of an operator
 n A number

optional arguments:
 -h, --help show this help message and exit

Notice that the docstring of the main function has been automatically added to the usage message. Here
are a couple of examples of use:

$ python example10.py add 1 2 3 4
10.0
$ python example10.py mul 1 2 3 4
24.0
$ python example10.py ad 1 2 3 4 # a mispelling error
usage: example10.py [-h] {add,mul} [n [n ...]]
example10.py: error: argument operator: invalid choice: 'ad' (choose from 'add', 'mul')

plac.call can also be used in doctests like this:

>>> import plac, example10
>>> plac.call(example10.main, ['add', '1', '2'])
3.0

plac.call works for generators too:

>>> def main(n):
... for i in range(int(n)):
... yield i
>>> plac.call(main, ['3'])
[0, 1, 2]

11

Internally plac.call tries to convert the output of the main function into a list, if possible. If the output is
not iterable or it is a string, it is left unchanged, but if it is iterable it is converted. In particular, generator
objects are exhausted by plac.call.

This behavior avoids mistakes like forgetting of applying list(result) to the result of plac.call;
moreover it makes errors visible early, and avoids mistakes in code like the following:

try:
 result = plac.call(main, args)
except:
 # do something

Without the "listify" functionality, a main function returning a generator object would not raise any
exception until the generator is iterated over.

If you are a fan of lazyness, you can still have it by setting the eager flag to False, as in the following
example:

for line in plac.call(main, args, eager=False):
 print(line)

If main returns a generator object this example will print each line as soon as available, whereas the
default behaviour is to print all the lines together and the end of the computation.

A realistic example
Here is a more realistic script using most of the features of plac to run SQL queries on a database by
relying on SQLAlchemy. Notice the usage of the type feature to automagically convert a SQLAlchemy
connection string into a SqlSoup object:

dbcli.py
import plac
from sqlalchemy.ext.sqlsoup import SqlSoup

@plac.annotations(
 db=("Connection string", 'positional', None, SqlSoup),
 header=("Header", 'flag', 'H'),
 sqlcmd=("SQL command", 'option', 'c', str, None, "SQL"),
 delimiter=("Column separator", 'option', 'd'),
 scripts="SQL scripts",
)
def main(db, header, sqlcmd, delimiter="|", *scripts):
 "A script to run queries and SQL scripts on a database"
 yield 'Working on %s' % db.bind.url

 if sqlcmd:
 result = db.bind.execute(sqlcmd)
 if header: # print the header
 yield delimiter.join(result.keys())
 for row in result: # print the rows
 yield delimiter.join(map(str, row))

 for script in scripts:
 db.bind.execute(file(script).read())
 yield 'executed %s' % script

12

http://pypi.python.org/pypi/plac
http://www.sqlalchemy.org/
http://www.sqlalchemy.org/docs/reference/ext/sqlsoup.html

if __name__ == '__main__':
 for output in plac.call(main):
 print(output)

You can see the yield-is-print pattern here: instead of using print in the main function, I use yield, and
I perform the print in the __main__ block. The advantage of the pattern is that tests invoking
plac.call and checking the result become trivial: had I performed the printing in the main function, the
test would have involved an ugly hack like redirecting sys.stdout to a StringIO object.

Here is the usage message:

usage: dbcli.py [-h] [-H] [-c SQL] [-d |] db [scripts [scripts ...]]

A script to run queries and SQL scripts on a database

positional arguments:
 db Connection string
 scripts SQL scripts

optional arguments:
 -h, --help show this help message and exit
 -H, --header Header
 -c SQL, --sqlcmd SQL SQL command
 -d |, --delimiter | Column separator

You can check for yourself that the script works.

Keyword arguments
Starting from release 0.4, plac supports keyword arguments. In practice that means that if your main
function has keyword arguments, plac treats specially arguments of the form "name=value" in the
command line. Here is an example:

example12.py
import plac

@plac.annotations(
 opt=('some option', 'option'),
 args='default arguments',
 kw='keyword arguments')
def main(opt, *args, **kw):
 if opt:
 yield 'opt=%s' % opt
 if args:
 yield 'args=%s' % str(args)
 if kw:
 yield 'kw=%s' % kw

if __name__ == '__main__':
 for output in plac.call(main):
 print(output)

Here is the generated usage message:

13

http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

usage: example12.py [-h] [-opt OPT] [args [args ...]] [kw [kw ...]]

positional arguments:
 args default arguments
 kw keyword arguments

optional arguments:
 -h, --help show this help message and exit
 -opt OPT some option

Here is how you call the script:

$ python example12.py -o X a1 a2 name=value
opt=X
args=('a1', 'a2')
kw={'name': 'value'}

When using keyword arguments, one must be careful to use names which are not alreay taken; for
instance in this examples the name opt is taken:

$ python example12.py 1 2 kw1=1 kw2=2 opt=0
usage: example12.py [-h] [-o OPT] [args [args ...]] [kw [kw ...]]
example12.py: error: colliding keyword arguments: opt

The names taken are the names of the flags, of the options, and of the positional arguments, excepted
varargs and keywords. This limitation is a consequence of the way the argument names are managed in
function calls by the Python language.

Final example: a shelve interface
Here is a less trivial example for the keyword arguments feature. The use case is the following: suppose
we have stored the configuration parameters of a given application into a Python shelve and we need a
command-line tool to edit the shelve. A possible implementation using plac could be the following:

ishelve.py
import os, shelve, plac

DEFAULT_SHELVE = os.path.expanduser('~/conf.shelve')

@plac.annotations(
 help=('show help', 'flag'),
 showall=('show all parameters in the shelve', 'flag'),
 clear=('clear the shelve', 'flag'),
 delete=('delete an element', 'option'),
 filename=('filename of the shelve', 'option'),
 params='names of the parameters in the shelve',
 setters='setters param=value')
def main(help, showall, clear, delete, filename=DEFAULT_SHELVE,
 *params, **setters):
 "A simple interface to a shelve. Use .help to see the available commands."
 sh = shelve.open(filename)
 try:
 if not any([help, showall, clear, delete, params, setters]):

14

http://pypi.python.org/pypi/plac

 yield 'no arguments passed, use .help to see the available commands'
 elif help: # custom help
 yield 'Commands: .help, .showall, .clear, .delete'
 yield '<param> ...'
 yield '<param=value> ...'
 elif showall:
 for param, name in sh.items():
 yield '%s=%s' % (param, name)
 elif clear:
 sh.clear()
 yield 'cleared the shelve'
 elif delete:
 try:
 del sh[delete]
 except KeyError:
 yield '%s: not found' % delete
 else:
 yield 'deleted %s' % delete
 for param in params:
 try:
 yield sh[param]
 except KeyError:
 yield '%s: not found' % param
 for param, value in setters.items():
 sh[param] = value
 yield 'setting %s=%s' % (param, value)
 finally:
 sh.close()

main.add_help = False # there is a custom help, remove the default one
main.prefix_chars = '.' # use dot-prefixed commands

if __name__ == '__main__':
 for output in plac.call(main):
 print(output)

A few notes are in order:

1. I have disabled the ordinary help provided by argparse and I have implemented a custom help
command.

2. I have changed the prefix character used to recognize the options to a dot.

3. Keyword arguments recognition (in the **setters) is used to make it possible to store a value in
the shelve with the syntax param_name=param_value.

4. *params are used to retrieve parameters from the shelve and some error checking is performed in
the case of missing parameters

5. A command to clear the shelve is implemented as a flag (.clear).

6. A command to delete a given parameter is implemented as an option (.delete).

7. There is an option with default (.filename=conf.shelve) to store the filename of the shelve.

8. All things considered, the code looks like a poor man object oriented interface implemented with a
chain of elifs instead of methods. Of course, plac can do better than that, but let me start from a
low-level approach first.

If you run ishelve.py without arguments you get the following message:

15

http://argparse.googlecode.com
http://pypi.python.org/pypi/plac

$ python ishelve.py
no arguments passed, use .help to see the available commands

If you run ishelve.py with the option .h (or any abbreviation of .help) you get:

$ python ishelve.py .h
Commands: .help, .showall, .clear, .delete
<param> ...
<param=value> ...

You can check by hand that the tool work:

$ python ishelve.py .clear # start from an empty shelve
cleared the shelve
$ python ishelve.py a=1 b=2
setting a=1
setting b=2
$ python ishelve.py .showall
b=2
a=1
$ python ishelve.py .del b # abbreviation for .delete
deleted b
$ python ishelve.py a
1
$ python ishelve.py b
b: not found
$ python ishelve.py .cler # mispelled command
usage: ishelve.py [.help] [.showall] [.clear] [.delete DELETE]
 [.filename /home/micheles/conf.shelve]
 [params [params ...]] [setters [setters ...]]
ishelve.py: error: unrecognized arguments: .cler

plac vs argparse
plac is opinionated and by design it does not try to make available all of the features of argparse in an
easy way. In particular you should be aware of the following limitations/differences (the following assumes
knowledge of argparse):

• plac does not support the destination concept: the destination coincides with the name of the
argument, always. This restriction has some drawbacks. For instance, suppose you want to define a
long option called --yield. In this case the destination would be yield, which is a Python
keyword, and since you cannot introduce an argument with that name in a function definition, it is
impossible to implement it. Your choices are to change the name of the long option, or to use
argparse with a suitable destination.

• plac does not support "required options". As the argparse documentation puts it: Required options
are generally considered bad form - normal users expect options to be optional. You should avoid
the use of required options whenever possible. Notice that since argparse supports them, plac can
manage them too, but not directly.

• plac supports only regular boolean flags. argparse has the ability to define generalized two-value
flags with values different from True and False. An earlier version of plac had this feature too, but
since you can use options with two choices instead, and in any case the conversion from {True,
False} to any couple of values can be trivially implemented with a ternary operator (value1 if
flag else value2), I have removed it (KISS rules!).

16

http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://argparse.googlecode.com
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac

• plac does not support nargs options directly (it uses them internally, though, to implement flag
recognition). The reason it that all the use cases of interest to me are covered by plac and did not
feel the need to increase the learning curve by adding direct support for nargs.

• plac does support subparsers, but you must read the advanced usage document to see how it
works.

• plac does not support actions directly. This also looks like a feature too advanced for the goals of
plac. Notice however that the ability to define your own annotation objects (again, see the advanced
usage document) may mitigate the need for custom actions.

plac can leverage directly on many argparse features.

For instance, you can make invisible an argument in the usage message simply by using
'==SUPPRESS==' as help string (or argparse.SUPPRESS). Similarly, you can use argparse.FileType
directly.

It is also possible to pass options to the underlying argparse.ArgumentParser object (currently it
accepts the default arguments description, epilog, prog, usage, add_help, argument_default,
parents, prefix_chars, fromfile_prefix_chars, conflict_handler, formatter_class). It
is enough to set such attributes on the main function. For instance

def main(...):
 pass

main.add_help = False

disables the recognition of the help flag -h, --help. This mechanism does not look particularly elegant,
but it works well enough. I assume that the typical user of plac will be happy with the defaults and would
not want to change them; still it is possible if she wants to.

For instance, by setting the description attribute, it is possible to add a comment to the usage
message (by default the docstring of the main function is used as description).

It is also possible to change the option prefix; for instance if your script must run under Windows and you
want to use "/" as option prefix you can add the line:

main.prefix_chars='/-'

The first prefix char (/) is used as the default for the recognition of options and flags; the second prefix
char (-) is kept to keep the -h/--help option working: however you can disable it and reimplement it, if
you like, as seen in the ishelve example.

It is possible to access directly the underlying ArgumentParser object, by invoking the
plac.parser_from utility function:

>>> import plac
>>> def main(arg):
... pass
...
>>> print(plac.parser_from(main)) #doctest: +ELLIPSIS
ArgumentParser(prog=...)

Internally plac.call uses plac.parser_from and adds the parser to the main function as an
attribute. When plac.call(func) is invoked multiple time, the parser is re-used and not rebuilt from
scratch again.

I use plac.parser_from in the unit tests of the module, but regular users should not need to use it,
unless they want to access all of the features of argparse directly without calling the main function.

17

http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
file:///home/micheles/Dropbox/md/gcodedev/plac/doc/in-writing
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
file:///home/micheles/Dropbox/md/gcodedev/plac/doc/in-writing
file:///home/micheles/Dropbox/md/gcodedev/plac/doc/in-writing
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://argparse.googlecode.com/svn/tags/r11/doc/other-utilities.html?highlight=filetype#FileType
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com/svn/tags/r11/doc/ArgumentParser.html
http://argparse.googlecode.com

Interested readers should read the documentation of argparse to understand the meaning of the other
options. If there is a set of options that you use very often, you may consider writing a decorator adding
such options to the main function for you. For simplicity, plac does not perform any magic except the
addition of the .p attribute.

plac vs the rest of the world
Originally plac boasted about being "the easiest command-line arguments parser in the world". Since
then, people started pointing out to me various projects which are based on the same idea (extracting the
parser from the main function signature) and are arguably even easier than plac:

• opterator by Dusty Phillips

• CLIArgs by Pavel Panchekha

• commandline by David Laban

Luckily for me none of such projects had the idea of using function annotations and argparse; as a
consequence, they are no match for the capabilities of plac.

Of course, there are tons of other libraries to parse the command line. For instance Clap by Matthew
Frazier which appeared on PyPI just the day before plac; Clap is fine but it is certainly not easier than
plac.

plac can also be used as a replacement of the cmd module in the standard library and as such it shares
many features with the module cmd2 by Catherine Devlin. However, this is completely coincidental, since
I became aware of the cmd2 module only after writing plac.

Command-line argument parsers keep coming out; between the newcomers I will notice marrow.script by
Alice Bevan-McGregor, which is quite similar to plac in spirit, but does not rely on argparse at all.

The future
Currently the core of plac is around 200 lines of code, not counting blanks, comments and docstrings. I do
not plan to extend the core much in the future. The idea is to keep the module short: it is and it should
remain a little wrapper over argparse. Actually I have thought about contributing the core back to argparse
if plac becomes successfull and gains a reasonable number of users. For the moment it should be
considered in alpha status.

Notice that even if plac has been designed to be simple to use for simple stuff, its power should not be
underestimated; it is actually a quite advanced tool with a domain of applicability which far exceeds the
realm of command-line arguments parsers.

Version 0.5 of plac doubled the code base and the documentation: it is based on the idea of using plac to
implement command-line interpreters, i.e. something akin to the cmd module in the standard library, only
better. The new features of plac are described in the advanced usage document . They are implemented
in a separated module (plac_ext.py), since they require Python 2.5 to work, whereas plac_core.py
only requires Python 2.3.

Trivia: the story behind the name
The plac project started very humbly: I just wanted to make easy_installable my old optionparse recipe,
and to publish it on PyPI. The original name of plac was optionparser and the idea behind it was to build
an OptionParser object from the docstring of the module. However, before doing that, I decided to check
out the argparse module, since I knew it was going into Python 2.7 and Python 2.7 was coming out. Soon
enough I realized two things:

1. the single greatest idea of argparse was unifying the positional arguments and the options in a single
namespace object;

18

http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/opterator
http://pypi.python.org/pypi/CLIArgs
http://pypi.python.org/pypi/commandline
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/Clap/0.7
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/Clap/0.7
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://docs.python.org/library/cmd.html
http://packages.python.org/cmd2/
http://packages.python.org/cmd2/
http://pypi.python.org/pypi/plac
https://github.com/pulp/marrow.script
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
file:///home/micheles/Dropbox/md/gcodedev/plac/doc/in-writing
http://pypi.python.org/pypi/plac
http://code.activestate.com/recipes/278844-parsing-the-command-line/
http://pypi.python.org/pypi/plac
http://docs.python.org/library/optparse.html?highlight=optionparser#optparse.OptionParser
http://argparse.googlecode.com
http://argparse.googlecode.com

2. parsing the docstring was so old-fashioned, considering the existence of functions annotations in
Python 3.

Putting together these two observations with the original idea of inferring the parser I decided to build an
ArgumentParser object from function annotations. The optionparser name was ruled out, since I was
now using argparse; a name like argparse_plus was also ruled out, since the typical usage was
completely different from the argparse usage.

I made a research on PyPI and the name clap (Command Line Arguments Parser) was not taken, so I
renamed everything to clap. After two days a Clap module appeared on PyPI <expletives deleted>!

Having little imagination, I decided to rename everything again to plac, an anagram of clap: since it is a
non-existing English name, I hope nobody will steal it from me!

That's all, I hope you will enjoy working with plac!

Advanced usages of plac

Introduction
One of the design goals of plac is to make it dead easy to write a scriptable and testable interface for an
application. You can use plac whenever you have an API with strings in input and strings in output, and
that includes a huge domain of applications.

A string-oriented interface is a scriptable interface by construction. That means that you can define a
command language for your application and that it is possible to write scripts which are interpretable by
plac and can be run as batch scripts.

Actually, at the most general level, you can see plac as a generic tool to write domain specific languages
(DSL). With plac you can test your application interactively as well as with batch scripts, and even with the
analogous of Python doctests for your defined language.

You can easily replace the cmd module of the standard library and you could easily write an application
like twill with plac. Or you could use it to script your building procedure. plac also supports parallel
execution of multiple commands and can be used as task manager and monitor. It is also quite easy to
build a GUI or a Web application on top of plac. When speaking of things you can do with plac, your
imagination is the only limit!

From scripts to interactive applications
Command-line scripts have many advantages, but they are no substitute for interactive applications. In
particular, if you have a script with a large startup time which must be run multiple times, it is best to turn it
into an interactive application, so that the startup is performed only once. plac provides an
Interpreter class just for this purpose.

The Interpreter class wraps the main function of a script and provides an .interact method to
start an interactive interpreter reading commands from the console.

For instance, you can define an interactive interpreter on top of the ishelve script introduced in the
basic documentation as follows:

shelve_interpreter.py
import plac, ishelve

@plac.annotations(
 interactive=('start interactive interface', 'flag'),
 subcommands='the commands of the underlying ishelve interpreter')
def main(interactive, *subcommands):
 """

19

http://argparse.googlecode.com/svn/tags/r11/doc/ArgumentParser.html
http://argparse.googlecode.com
http://argparse.googlecode.com
http://pypi.python.org/pypi/Clap/0.7
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://twill.idyll.org/
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://plac.googlecode.com/hg/doc/plac.html

 This script works both interactively and non-interactively.
 Use .help to see the internal commands.
 """
 if interactive:
 plac.Interpreter(ishelve.main).interact()
 else:
 for out in plac.call(ishelve.main, subcommands):
 print(out)

if __name__ == '__main__':
 plac.call(main)

A trick has been used here: the ishelve command-line interface has been hidden inside an external
interface. They are distinct: for instance the external interface recognizes the -h/--help flag whereas
the internal interface only recognizes the .help command:

$ python shelve_interpreter.py -h

usage: shelve_interpreter.py [-h] [-interactive]
 [subcommands [subcommands ...]]

 This script works both interactively and non-interactively.
 Use .help to see the internal commands.

positional arguments:
 subcommands the commands of the underlying ishelve interpreter

optional arguments:
 -h, --help show this help message and exit
 -interactive start interactive interface

Thanks to this ingenuous trick, the script can be run both interactively and non-interactively:

$ python shelve_interpreter.py .clear # non-interactive use
cleared the shelve

Here is an usage session:

$ python shelve_interpreter.py -i # interactive use
A simple interface to a shelve. Use .help to see the available commands.
i> .help
Commands: .help, .showall, .clear, .delete
<param> ...
<param=value> ...
i> a=1
setting a=1
i> a
1
i> b=2
setting b=2
i> a b
1

20

2
i> .del a
deleted a
i> a
a: not found
i> .show
b=2
i> [CTRL-D]

The .interact method reads commands from the console and send them to the underlying interpreter,
until the user send a CTRL-D command (CTRL-Z in Windows). There is a default argument prompt='i>
' which can be used to change the prompt. The text displayed at the beginning of the interactive session
is the docstring of the main function. plac also understands command abbreviations: in this example
del is an abbreviation for delete. In case of ambiguous abbreviations plac raises a NameError.

Finally I must notice that the plac.Interpreter is available only if you are using a recent version of
Python (>= 2.5), because it is a context manager object which uses extended generators internally.

Testing a plac application
You can conveniently test your application in interactive mode. However manual testing is a poor
substitute for automatic testing.

In principle, one could write automatic tests for the ishelve application by using plac.call directly:

test_ishelve.py
import plac, ishelve

def test():
 assert plac.call(ishelve.main, ['.clear']) == ['cleared the shelve']
 assert plac.call(ishelve.main, ['a=1']) == ['setting a=1']
 assert plac.call(ishelve.main, ['a']) == ['1']
 assert plac.call(ishelve.main, ['.delete=a']) == ['deleted a']
 assert plac.call(ishelve.main, ['a']) == ['a: not found']

if __name__ == '__main__':
 test()

However, using plac.call is not especially nice. The big issue is that plac.call responds to invalid
input by printing an error message on stderr and by raising a SystemExit: this is certainly not a nice
thing to do in a test.

As a consequence of this behavior it is impossible to test for invalid commands, unless you wrap the
SystemExit exception by hand each time (a possibly you do something with the error message in stderr
too). Luckily, plac offers a better testing support through the check method of Interpreter objects:

test_ishelve_more.py
from __future__ import with_statement
import plac, ishelve

def test():
 with plac.Interpreter(ishelve.main) as i:
 i.check('.clear', 'cleared the shelve')
 i.check('a=1', 'setting a=1')
 i.check('a', '1')

21

http://pypi.python.org/pypi/plac

 i.check('.delete=a', 'deleted a')
 i.check('a', 'a: not found')

The method .check(given_input, expected_output) works on strings and raises an
AssertionError if the output produced by the interpreter is different from the expected output for the
given input. Notice that AssertionError is catched by tools like py.test and nosetests and
actually plac tests are intended to be run with such tools.

Interpreters offer a minor syntactic advantage with respect to calling plac.call directly, but they offer a
major semantic advantage when things go wrong (read exceptions): an Interpreter object internally
invokes something like plac.call, but it wraps all exceptions, so that i.check is guaranteed not to
raise any exception except AssertionError.

Even the SystemExit exception is captured and you can write your test as

i.check('-cler', 'SystemExit: unrecognized arguments: -cler')

without risk of exiting from the Python interpreter.

There is a second advantage of interpreters: if the main function contains some initialization code and
finalization code (__enter__ and __exit__ functions) they will be run only once at the beginning and
at the end of the interpreter loop. plac.call instead ignores the initialization/finalization code.

Plac easy tests
Writing your tests in terms of Interpreter.check is certainly an improvement over writing them in
terms of plac.call, but they are still too low-level for my taste. The Interpreter class provides
support for doctest-style tests, a.k.a. plac easy tests.

By using plac easy tests you can cut and paste your interactive session and turn it into a runnable
automatics test. Consider for instance the following file ishelve.placet (the .placet extension is a
mnemonic for plac easy tests):

#!ishelve.py
i> .clear # start from a clean state
cleared the shelve
i> a=1
setting a=1
i> a
1
i> .del a
deleted a
i> a
a: not found
i> .cler # spelling error
.cler: not found

Notice the precence of the shebang line containing the name of the plac tool to test (a plac tool is just a
Python module with a function called main). The shebang is ignored by the interpreter (it looks like a
comment to it) but it is there so that external tools (say a test runner) can infer the plac interpreter to use
to test the file.

You can test ishelve.placet file by calling the .doctest method of the interpreter, as in this
example:

$ python -c"import plac, ishelve
plac.Interpreter(ishelve.main).doctest(open('ishelve.placet'), verbose=True)"

22

http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

Internally Interpreter.doctests invokes something like Interpreter.check multiple times
inside the same context and compare the output with the expected output: if even a check fails, the whole
test fail.

You should realize tha the easy tests supported by plac are not unittests: they are functional tests. They
model then user interaction and the order of the operations generally matters. The single subtests in a
.placet file are not independent and it makes sense to exit immediately at the first failure.

The support for doctests in plac comes nearly for free, thanks to the shlex module in the standard library,
which is able to parse simple languages as the ones you can implement with plac. In particular, thanks to
shlex, plac is able to recognize comments (the default comment character is #), escape sequences and
more. Look at the shlex documentation if you need to customize how the language is interpreted. For
more flexibility, it is even possible to pass to the interpreter a custom split function with signature
split(line, commentchar).

In addition, I have implemented from scratch some support for line number recognition, so that if a test fail
you get the line number of the failing command. This is especially useful if your tests are stored in external
files, even if plac easy tests does not need to be in a file: you can just pass to the .doctest method a
list of strings corresponding to the lines of the file.

At the present plac does not use any code from the doctest module, but the situation may change in the
future (it would be nice if plac could reuse doctests directives like ELLIPSIS).

It is straighforward to integrate your .placet tests with standard testing tools. For instance, you can
integrate your doctests with nose or py.test as follow:

import os, shlex, plac

def test_doct():
 """
 Find all the doctests in the current directory and run them with the
 corresponding plac interpreter (the shebang rules!)
 """
 placets = [f for f in os.listdir('.') if f.endswith('.placet')]
 for placet in placets:
 lines = list(open(placet))
 assert lines[0].startswith('#!'), 'Missing or incorrect shebang line!'
 firstline = lines[0][2:] # strip the shebang
 main = plac.import_main(*shlex.split(firstline))
 yield plac.Interpreter(main).doctest, lines[1:]

Here you should notice that usage of plac.import_main, an utility which is able to import the main
function of the script specified in the shebang line. You can use both the full path name of the tool, or a
relative path name. In this case the runner look at the environment variable PLACPATH and it searches
the plac tool in the directories specified there (PLACPATH is just a string containing directory names
separated by colons). If the variable PLACPATH is not defined, it just looks in the current directory. If the
plac tool is not found, an ImportError is raised.

Plac batch scripts
It is pretty easy to realize that an interactive interpreter can also be used to run batch scripts: instead of
reading the commands from the console, it is enough to read the commands from a file. plac interpreters
provide an .execute method to perform just that.

There is just a subtle point to notice: whereas in an interactive loop one wants to manage all exceptions, a
batch script should not in the background in case of unexpected errors. The implementation of
Interpreter.execute makes sure that any error raised by plac.call internally is re-raised. In other
words, plac interpreters wrap the errors, but does not eat them: the errors are always accessible and can
be re-raised on demand.

23

http://pypi.python.org/pypi/plac
http://docs.python.org/library/shlex.html
http://pypi.python.org/pypi/plac
http://docs.python.org/library/shlex.html
http://pypi.python.org/pypi/plac
http://docs.python.org/library/shlex.html
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

The exception is the case of invalid commands, which are skipped. Consider for instance the following
batch file, which contains a mispelled command (.dl instead of .del):

#!ishelve.py
.clear
a=1 b=2
.show
.del a
.dl b
.show

If you execute the batch file, the interpreter will print a .dl: not found at the .dl line and will
continue:

$ python -c "import plac, ishelve
plac.Interpreter(ishelve.main).execute(open('ishelve.plac'), verbose=True)"
i> .clear
cleared the shelve
i> a=1 b=2
setting a=1
setting b=2
i> .show
b=2
a=1
i> .del a
deleted a
i> .dl b
2
.dl: not found
i> .show
b=2

The verbose flag is there to show the lines which are being interpreted (prefixed by i>). This is done on
purpose, so that you can cut and paste the output of the batch script and turn it into a .placet test
(cool, isn't it?).

Implementing subcommands
When I discussed the ishelve implementation in the basic documentation, I said that it looked like a
poor man implementation of an object system as a chain of elifs; I also said that plac was able to do much
better than that. Here I will substantiate my claim.

plac is actually able to infer a set of subparsers from a generic container of commands. This is useful if
you want to implement subcommands (a familiar example of a command-line application featuring
subcommands is subversion).

Technically a container of commands is any object with a .commands attribute listing a set of functions or
methods which are valid commands. A command container may have initialization/finalization hooks
(__enter__/__exit__) and dispatch hooks (__missing__, invoked for invalid command names).
Moreover, only when using command containers plac is able to provide automatic autocompletion of
commands.

The shelve interface can be rewritten in an object-oriented way as follows:

ishelve2.py
import shelve, os, sys, plac

24

http://plac.googlecode.com/hg/doc/plac.html
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

class ShelveInterface(object):
 "A minimal interface over a shelve object."
 commands = 'set', 'show', 'showall', 'delete'
 @plac.annotations(
 configfile=('path name of the shelve', 'option'))
 def __init__(self, configfile):
 self.configfile = configfile or '~/conf.shelve'
 self.fname = os.path.expanduser(self.configfile)
 self.__doc__ += '\nOperating on %s.\n.help to see '\
 'the available commands.\n' % self.fname
 def __enter__(self):
 self.sh = shelve.open(self.fname)
 return self
 def __exit__(self, etype, exc, tb):
 self.sh.close()
 def set(self, name, value):
 "set name value"
 yield 'setting %s=%s' % (name, value)
 self.sh[name] = value
 def show(self, *names):
 "show given parameters"
 for name in names:
 yield '%s = %s' % (name, self.sh[name]) # no error checking
 def showall(self):
 "show all parameters"
 for name in self.sh:
 yield '%s = %s' % (name, self.sh[name])
 def delete(self, name=None):
 "delete given parameter (or everything)"
 if name is None:
 yield 'deleting everything'
 self.sh.clear()
 else:
 yield 'deleting %s' % name
 del self.sh[name] # no error checking

main = ShelveInterface # useful for the tests

if __name__ == '__main__':
 plac.Interpreter.call(ShelveInterface)

plac.Interpreter objects wrap context manager objects consistently. In other words, if you wrap an
object with __enter__ and __exit__ methods, they are invoked in the right order (__enter__
before the interpreter loop starts and __exit__ after the interpreter loop ends, both in the regular and in
the exceptional case). In our example, the methods __enter__ and __exit__ make sure the the
shelve is opened and closed correctly even in the case of exceptions. Notice that I have not implemented
any error checking in the show and delete methods on purpose, to verify that plac works correctly in
the presence of exceptions.

When working with command containers, plac automatically adds two special commands to the set of
provided commands: .help and .last_tb. The .help command is the easier to understand: when
invoked without arguments it displays the list of available commands with the same formatting of the cmd
module; when invoked with the name of a command it displays the usage message for that command.
The .last_tb command is useful when debugging: in case of errors, it allows you to display the
traceback of the last executed command.

25

http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://docs.python.org/library/cmd.html

Here is a session of usage on an Unix-like operating system:

$ python ishelve2.py
A minimal interface over a shelve object.
Operating on /home/micheles/conf.shelve.
.help to see the available commands.
i> .help

special commands
================
.help .last_tb

custom commands
===============
delete set show showall

i> delete
deleting everything
i> set a pippo
setting a=pippo
i> set b lippo
setting b=lippo
i> showall
b = lippo
a = pippo
i> show a b
a = pippo
b = lippo
i> del a
deleting a
i> showall
b = lippo
i> delete a
deleting a
KeyError: 'a'
i> .last_tb
 File "/usr/local/lib/python2.6/dist-packages/plac-0.6.0-py2.6.egg/plac_ext.py", line 190, in _wrap
 for value in genobj:
 File "./ishelve2.py", line 37, in delete
 del self.sh[name] # no error checking
 File "/usr/lib/python2.6/shelve.py", line 136, in __delitem__
 del self.dict[key]
i>

Notice that in interactive mode the traceback is hidden, unless you pass the verbose flag to the
Interpreter.interact method.

plac.Interpreter.call
At the core of plac there is the call function which invokes a callable with the list of arguments passed
at the command-line (sys.argv[1:]). Thanks to plac.call you can launch your module by simply
adding the lines:

if __name__ == '__main__':
 plac.call(main)

Everything works fine if main is a simple callable performing some action; however, in many cases, one
has a main "function" which is a actually a factory returning a command container object. For instance, in
my second shelve example the main function is the class ShelveInterface, and the two lines needed
to run the module are a bit ugly:

if __name__ == '__main__':
 plac.Interpreter(plac.call(ShelveInterface)).interact()

26

Moreover, now the program runs, but only in interactive mode, i.e. it is not possible to run it as a script.
Instead, it would be nice to be able to specify the command to execute on the command-line and have the
interpreter start, execute the command and finish properly (I mean by calling __enter__ and
__exit__) without needing user input. Then the script could be called from a batch shell script working in
the background. In order to provide such functionality plac.Interpreter provides a classmethod
named .call which takes the factory, instantiates it with the arguments read from the command line,
wraps the resulting container object as an interpreter and runs it with the rest arguments found in the
command line. Here is the code to turn the ShelveInterface into a script

ishelve3.py
from ishelve2 import ShelveInterface as main

if __name__ == '__main__':
 import plac; plac.Interpreter.call(main)

and here are a few examples of usage:

$ python ishelve3.py -h
usage: ishelve3.py [-h] [-i] [-configfile CONFIGFILE] [args [args ...]]

positional arguments:
 args

optional arguments:
 -h, --help show this help message and exit
 -i, --interact start interactive interpreter
 -configfile CONFIGFILE
 path name of the shelve

$ python ishelve3.py set a 1
setting a=1
$ python ishelve3.py show a
a = 1

If you pass the -i flag in the command line, then the script will enter in interactive mode and ask the user
for the commands to execute:

$ python ishelve3.py -i
A minimal interface over a shelve object.
Operating on /home/micheles/conf.shelve.
.help to see the available commands.

i>

In a sense, I have closed the circle: at the beginning of this document I discussed how to turn a script into
an interactive application (the shelve_interpreter.py example), whereas here I have show how to
turn an interactive application into a script.

The complete signature of plac.Interpreter.call is the following:

call(factory, arglist=sys.argv[1:],
 commentchar='#', split=shlex.split,
 stdin=sys.stdin, prompt='i> ', verbose=False)

27

The factory must have a fixed number of positional arguments (no default arguments, no varargs, no
kwargs), otherwise a TypeError is raised: the reason is that we want to be able to distinguish the
command-line arguments needed to instantiate the factory from the rest arguments that must be sent to
the corresponding interpreter object. It is also possible to specify a list of arguments different from
sys.argv[1:] (useful in tests), the character to be recognized as a comment, the splitting function, the
input source and the prompt to use while in interactive mode, and a verbose flag.

Readline support
Starting from release 0.6 plac offers full readline support. That means that if your Python was compiled
with readline support you get autocompletion and persistent command history for free. By default all
commands are autocomplete in a case sensitive way. If you want to add new words to the autocompletion
set, or you want to change the location of the .history file, or to change the case sensitivity, the way to
go is to pass a plac.ReadlineInput object to the interpreter. Here is an example, assuming you want
to build a database interface understanding SQL commands:

import os, plac
from sqlalchemy.ext.sqlsoup import SqlSoup

SQLKEYWORDS = set(['select', 'from', 'inner', 'join', 'outer', 'left', 'right']
) # and many others
DBTABLES = set(['table1', 'table2']) # you can read them from the db schema

COMPLETIONS = SQLKEYWORDS | DBTABLES

class SqlInterface(object):
 commands = ['SELECT']
 def __init__(self, dsn):
 self.soup = SqlSoup(dsn)
 def SELECT(self, argstring):
 sql = 'SELECT ' + argstring
 for row in self.soup.bind.execute(sql):
 yield str(row) # the formatting can be much improved

rl_input = plac.ReadlineInput(
 COMPLETIONS, histfile=os.path.expanduser('~/.sql_interface.history'),
 case_sensitive=False)

def split_on_first_space(line, commentchar):
 return line.strip().split(' ', 1) # ignoring comments

if __name__ == '__main__':
 plac.Interpreter.call(SqlInterface, split=split_on_first_space,
 stdin=rl_input, prompt='sql> ')

Here is an example of usage:

$ python sql_interface.py <some dsn>
sql> SELECT a.* FROM TABLE1 AS a INNER JOIN TABLE2 AS b ON a.id = b.id
...

You can check that entering just sel and pressing TAB the readline library completes the SELECT
keyword for you and makes it upper case; idem for FROM, INNER, JOIN and even for the names of the
tables. An obvious improvement is to read the names of the tables by introspecting the database: actually
you can even read the names of the views and of the columns, and have full autocompletion. All the
entered commands and recorded and saved in the file ~/.sql_interface.history when exiting

28

http://pypi.python.org/pypi/plac

from the command-line interface.

If the readline library is not available, my suggestion is to use the rlwrap tool which provides similar
features, at least on Unix-like platforms. plac should also work fine on Windows with the pyreadline library
(I do not use Windows, so this part is very little tested: I tried it only once and it worked, but your mileage
may vary). For people worried about licenses, I will notice that plac uses the readline library only if
available, it does not include it and it does not rely on it in any fundamental way, so that the plac licence
does not need to be the GPL (actually it is a BSD do-whatever-you-want-with-it licence).

The interactive mode of plac can be used as a replacement of the cmd module in the standard library. It
is actually better than cmd: for instance, the .help command is more powerful, since it provides
information about the arguments accepted by the given command:

i> .help set
usage: set name value

set name value

positional arguments:
 name
 value

i> .help delete
usage: delete [name]

delete given parameter (or everything)

positional arguments:
 name

i> .help show
usage: show [names [names ...]]

show given parameters

positional arguments:
 names

As you can imagine, the help message is provided by the underlying argparse subparser (there is a
subparser for each command). plac commands accept options, flags, varargs, keyword arguments,
arguments with defaults, arguments with a fixed number of choices, type conversion and all the features
provided of argparse which should be reimplemented from scratch using plac.

Moreover at the moment plac also understands command abbreviations. However, this feature may
disappear in future releases. It was meaningful in the past, when plac did not support readline.

Notice that if an abbreviation is ambiguous, plac warns you:

i> sh
NameError: Ambiguous command 'sh': matching ['showall', 'show']

29

http://freshmeat.net/projects/rlwrap/
http://pypi.python.org/pypi/plac
http://ipython.scipy.org/moin/PyReadline/Intro
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://docs.python.org/library/cmd.html
http://docs.python.org/library/cmd.html
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

The plac runner
The distribution of plac includes a runner script named plac_runner.py, which will be installed in a
suitable directory in your system by distutils (say in \usr\local\bin\plac_runner.py in a Unix-like
operative system). The runner provides many facilities to run .plac scripts and .placet files, as well
as Python modules containg a main object, which can be a function, a command container object or
even a command container class.

For instance, suppose you want to execute a script containing commands defined in the ishelve2
module like the following one:

#!ishelve2.py:ShelveInterface -c ~/conf.shelve
set a 1
del a
del a # intentional error

The first line of the .plac script contains the name of the python module containing the plac interpreter
and the arguments which must be passed to its main function in order to be able to instantiate an
interpreter object. In this case I appended :ShelveInterface to the name of the module to specify the
object that must be imported: if not specified, by default the object named 'main' is imported. The other
lines contains commands. You can run the script as follows:

$ plac_runner.py --batch ishelve2.plac
setting a=1
deleting a
Traceback (most recent call last):
 ...
_bsddb.DBNotFoundError: (-30988, 'DB_NOTFOUND: No matching key/data pair found')

The last command intentionally contained an error, to show that the plac runner does not eat the
traceback.

The runner can also be used to run Python modules in interactive mode and non-interactive mode. If you
put this alias in your bashrc

alias plac="plac_runner.py"

(or you define a suitable plac.bat script in Windows) you can run the ishelve2.py script in
interactive mode as follows:

$ plac -i ishelve2.py:ShelveInterface
A minimal interface over a shelve object.
Operating on /home/micheles/conf.shelve.
.help to see the available commands.

i> del
deleting everything
i> set a 1
setting a=1
i> set b 2
setting b=2
i> show b
b = 2

Now you can cut and paste the interactive session an turns into into a .placet file like the following:

30

http://pypi.python.org/pypi/plac
http://docs.python.org/distutils/

#!ishelve2.py:ShelveInterface -configfile=~/test.shelve
i> del
deleting everything
i> set a 1
setting a=1
i> set b 2
setting b=2
i> show a
a = 1

Notice that the first line specifies a test database ~/test.shelve, to avoid clobbering your default
shelve. If you mispell the arguments in the first line plac will give you an argparse error message (just try).

You can run placets following the shebang convention directly with the plac runner:

$ plac --test ishelve2.placet
run 1 plac test(s)

If you want to see the output of the tests, pass the -v/--verbose flag. Notice that he runner ignore the
extension, so you can actually use any extension your like, but it relies on the first line of the file to invoke
the corresponding plac tool with the given arguments.

The plac runner does not provide any test discovery facility, but you can use standard Unix tools to help.
For instance, you can run all the .placet files into a directory and its subdirectories as follows:

$ find . -name *.placet | xargs plac_runner.py -t

The plac runner expects the main function of your script to return a plac tool, i.e. a function or an object
with a .commands attribute. It this is not the case the runner gracefully exits.

It also works in non-interactive mode, if you call it as

$ plac module.py args ...

Here is an example:

$ plac ishelve.py a=1
setting a=1
$ plac ishelve.py .show
a=1

Notice that in non-interactive mode the runner just invokes plac.call on the main object of the Python
module.

A non class-based example
plac does not force you to use classes to define command containers. Even a simple function can be a
valid command container, it is enough to add to it a .commands attribute and possibly __enter__
and/or __exit__ attributes.

In particular, a Python module is a perfect container of commands. As an example, consider the following
module implementing a fake Version Control System:

"A Fake Version Control System"

import plac

31

http://argparse.googlecode.com
http://pypi.python.org/pypi/plac

commands = 'checkout', 'commit', 'status'

@plac.annotations(url='url of the source code')
def checkout(url):
 "A fake checkout command"
 return ('checkout ', url)

@plac.annotations(message=('commit message', 'option'))
def commit(message):
 "A fake commit command"
 return ('commit ', message)

@plac.annotations(quiet=('summary information', 'flag', 'q'))
def status(quiet):
 "A fake status command"
 return ('status ', quiet)

def __missing__(name):
 return 'Command %r does not exist' % name

def __exit__(etype, exc, tb):
 "Will be called automatically at the end of the call/cmdloop"
 if etype in (None, GeneratorExit): # success
 print('ok')

main = __import__(__name__) # the module imports itself!

Notice that I have defined both an __exit__ hook and a __missing__ hook, invoked for non-existing
commands. The real trick here is the line main = __import__(__name__), which define main to be
an alias for the current module.

The vcs module does not contain an if __name__ == '__main__' block, but you can still run it
through the plac runner (try plac vcs.py -h):

usage: plac_runner.py vcs.py [-h] {status,commit,checkout} ...

A Fake Version Control System

optional arguments:
 -h, --help show this help message and exit

subcommands:
 {status,commit,checkout}
 checkout A fake checkout command
 commit A fake commit command
 status A fake status command

You can get help for the subcommands by postponing -h after the name of the command:

$ plac vcs.py status -h
usage: vcs.py status [-h] [-q]

A fake status command

32

optional arguments:
 -h, --help show this help message and exit
 -q, --quiet summary information

Notice how the docstring of the command is automatically shown in usage message, as well as the
documentation for the sub flag -q.

Here is an example of a non-interactive session:

$ plac vcs.py check url
checkout
url
$ plac vcs.py st -q
status
True
$ plac vcs.py co
commit
None

and here is an interactive session:

$ plac -i vcs.py
usage: plac_runner.py vcs.py [-h] {status,commit,checkout} ...
i> check url
checkout
url
i> st -q
status
True
i> co
commit
None
i> sto
Command 'sto' does not exist
i> [CTRL-D]
ok

Notice the invocation of the __missing__ hook for non-existing commands. Notice also that the
__exit__ hook gets called only in interactive mode.

If the commands are completely independent, a module is a good fit for a method container. In other
situations, it is best to use a custom class.

Writing your own plac runner
The runner included in the plac distribution is intentionally kept small (around 50 lines of code) so that you
can study it and write your own runner if want to. If you need to go to such level of detail, you should know
that the most important method of the Interpreter class is the .send method, which takes strings in
input and returns a four-tuple with attributes .str, .etype, .exc and .tb:

• .str is the output of the command, if successful (a string);

• .etype is the class of the exception, if the command fail;

• .exc is the exception instance;

33

http://pypi.python.org/pypi/plac

• .tb is the traceback.

Moreover the __str__ representation of the output object is redefined to return the output string if the
command was successful or the error message if the command failed (actually it returns the error
message preceded by the name of the exception class).

For instance, if you send a mispelled option to the interpreter a SystemExit will be trapped:

>>> import plac
>>> from ishelve import ishelve
>>> with plac.Interpreter(ishelve) as i:
... print(i.send('.cler'))
...
SystemExit: unrecognized arguments: .cler

It is important to invoke the .send method inside the context manager, otherwise you will get a
RuntimeError.

For instance, suppose you want to implement a graphical runner for a plac-based interpreter with two text
widgets: one to enter the commands and one to display the results. Suppose you want to display the
errors with tracebacks in red. You will need to code something like that (pseudocode follows):

input_widget = WidgetReadingInput()
output_widget = WidgetDisplayingOutput()

def send(interpreter, line):
 out = interpreter.send(line)
 if out.tb: # there was an error
 output_widget.display(out.tb, color='red')
 else:
 output_widget.display(out.str)

main = plac.import_main(tool_path) # get the main object

with plac.Interpreter(main) as i:
 def callback(event):
 if event.user_pressed_ENTER():
 send(i, input_widget.last_line)
 input_widget.addcallback(callback)
 gui_mainloop.start()

You can adapt the pseudocode to your GUI toolkit of choice and you can also change the file associations
in such a way that clicking on a plac tool file the graphical user interface starts.

An example of GUI program built on top of plac is given later on, in the paragraph Managing the output of
concurrent commands (using Tkinter for simplicity and portability).

There is a final caveat: since the plac interpreter loop is implemented via extended generators, plac
interpreters are single threaded: you will get an error if you .send commands from separated threads.
You can circumvent the problem by using a queue. If EXIT is a sentinel value to signal exiting from the
interpreter look, you can write code like this:

with interpreter:
 for input_value in iter(input_queue.get, EXIT):
 output_queue.put(interpreter.send(input_value))

34

http://pypi.python.org/pypi/plac

The same trick also work for processes; you could run the interpreter loop in a separate process and send
commands to it via the Queue class provided by the multiprocessing module.

Long running commands
As we saw, by default a plac interpreter blocks until the command terminates. This is an issue, in the
sense that it makes the interactive experience quite painful for long running commands. An example is
better than a thousand words, so consider the following fake importer:

import time
import plac

class FakeImporter(object):
 "A fake importer with an import_file command"
 commands = ['import_file']
 def __init__(self, dsn):
 self.dsn = dsn
 def import_file(self, fname):
 "Import a file into the database"
 try:
 for n in range(10000):
 time.sleep(.01)
 if n % 100 == 99:
 yield 'Imported %d lines' % (n+1)
 finally:
 print('closing the file')

if __name__ == '__main__':
 plac.Interpreter.call(FakeImporter)

If you run the import_file command, you will have to wait for 200 seconds before entering a new
command:

$ python importer1.py dsn -i
A fake importer with an import_file command
i> import_file file1
... <wait 3+ minutes>
Imported 100 lines
Imported 200 lines
Imported 300 lines
...
Imported 10000 lines
closing the file

Being unable to enter any other command is quite annoying: in such situation one would like to run the
long running commands in the background, to keep the interface responsive. plac provides two ways to
reach this goal: threads and processes.

Threaded commands
The most familiar way to execute a task in the background (even if not necessarily the best way) is to run
it into a separated thread. In our example it is sufficient to replace the line

commands = ['import_file']

with

35

http://docs.python.org/library/multiprocessing.html
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

thcommands = ['import_file']

to tell to the plac interpreter that the command import_file should be run into a separated thread.
Here is an example session:

i> import_file file1
<ThreadedTask 1 [import_file file1] RUNNING>

The import task started in a separated thread. You can see the progress of the task by using the special
command .output:

i> .output 1
<ThreadedTask 1 [import_file file1] RUNNING>
Imported 100 lines
Imported 200 lines

If you look after a while, you will get more lines of output:

i> .output 1
<ThreadedTask 1 [import_file file1] RUNNING>
Imported 100 lines
Imported 200 lines
Imported 300 lines
Imported 400 lines

If you look after a time long enough, the task will be finished:

i> .output 1
<ThreadedTask 1 [import_file file1] FINISHED>

It is possible to store the output of a task into a file, to be read later (this is useful for tasks with a large
output):

i> .output 1 /tmp/out.txt
saved output of 1 into /tmp/out.txt

You can even skip the number argument: then .output will the return the output of the last launched
command (the special commands like .output do not count).

You can launch many tasks one after the other:

i> import_file file2
<ThreadedTask 5 [import_file file2] RUNNING>
i> import_file file3
<ThreadedTask 6 [import_file file3] RUNNING>

The .list command displays all the running tasks:

i> .list
<ThreadedTask 5 [import_file file2] RUNNING>
<ThreadedTask 6 [import_file file3] RUNNING>

It is even possible to kill a task:

36

http://pypi.python.org/pypi/plac

i> .kill 5
<ThreadedTask 5 [import_file file2] TOBEKILLED>
wait a bit ...
closing the file
i> .output 5
<ThreadedTask 5 [import_file file2] KILLED>

You should notice that since at the Python level it is impossible to kill a thread, the .kill commands
works by setting the status of the task to TOBEKILLED. Internally the generator corresponding to the
command is executed in the thread and the status is checked at each iteration: when the status become
TOBEKILLED a GeneratorExit exception is raised and the thread terminates (softly, so that the
finally clause is honored). In our example the generator is yielding back control once every 100
iterations, i.e. every two seconds (not much). In order to get a responsive interface it is a good idea to
yield more often, for instance every 10 iterations (i.e. 5 times per second), as in the following code:

import time
import plac

class FakeImporter(object):
 "A fake importer with an import_file command"
 thcommands = ['import_file']
 def __init__(self, dsn):
 self.dsn = dsn
 def import_file(self, fname):
 "Import a file into the database"
 try:
 for n in range(10000):
 time.sleep(.02)
 if n % 100 == 99: # every two seconds
 yield 'Imported %d lines' % (n+1)
 if n % 10 == 9: # every 0.2 seconds
 yield # go back and check the TOBEKILLED status
 finally:
 print('closing the file')

if __name__ == '__main__':
 plac.Interpreter.call(FakeImporter)

Running commands as external processes
Threads are not loved much in the Python world and actually most people prefer to use processes
instead. For this reason plac provides the option to execute long running commands as external
processes. Unfortunately the current implementation only works in Unix-like operating systems (including
Mac OS X) because it relies on fork via the multiprocessing module.

In our example, to enable the feature it is sufficient to replace the line

thcommands = ['import_file']

with

mpcommands = ['import_file'].

The user experience is exactly the same as with threads and you will not see any difference at the user
interface level:

37

http://pypi.python.org/pypi/plac
http://docs.python.org/library/multiprocessing.html

i> import_file file3
<MPTask 1 [import_file file3] SUBMITTED>
i> .kill 1
<MPTask 1 [import_file file3] RUNNING>
closing the file
i> .o 1
<MPTask 1 [import_file file3] KILLED>
Imported 100 lines
Imported 200 lines
i>

Still, using processes is quite different than using threads: in particular, when using processes you can
only yield pickleable values and you cannot re-raise an exception first raised in a different process,
because traceback objects are not pickleable. Moreover, you cannot rely on automatic sharing of your
objects.

On the plus side, when using processes you do not need to worry about killing a command: they are killed
immediately using a SIGTERM signal, and there is not a TOBEKILLED mechanism. Moreover, the killing
is guaranteed to be soft: internally a command receiving a SIGTERM raises a TerminatedProcess
exception which is trapped in the generator loop, so that the command is closed properly.

Using processes allows to take full advantage of multicore machines and it is safer than using threads, so
it is the recommended approach unless you are working on Windows.

Managing the output of concurrent commands
plac acts as a command-line task launcher and can be used as the base to build a GUI-based task
launcher and task monitor. To this aim the interpreter class provides a .submit method which returns a
task object and a .tasks method returning the list of all the tasks submitted to the interpreter. The
submit method does not start the task and thus it is nonblocking. Each task has an .outlist attribute
which is a list storing the value yielded by the generator underlying the task (the None values are skipped
though): the .outlist grows as the task runs and more values are yielded. Accessing the .outlist
is nonblocking and can be done freely. Finally there is a .result property which waits for the task to
finish and returns the last yielded value or raises an exception. The code below provides an example of
how you could implement a GUI over the importer example:

from __future__ import with_statement
from Tkinter import *
from importer3 import FakeImporter

def taskwidget(root, task, tick=500):
 "A Label widget showing the output of a task every 500 ms"
 sv = StringVar(root)
 lb = Label(root, textvariable=sv)
 def show_outlist():
 try:
 out = task.outlist[-1]
 except IndexError: # no output yet
 out = ''
 sv.set('%s %s' % (task, out))
 root.after(tick, show_outlist)
 root.after(0, show_outlist)
 return lb

def monitor(tasks):

38

http://pypi.python.org/pypi/plac

 root = Tk()
 for task in tasks:
 task.run()
 taskwidget(root, task).pack()
 root.mainloop()

if __name__ == '__main__':
 import plac
 with plac.Interpreter(plac.call(FakeImporter)) as i:
 tasks = [i.submit('import_file f1'), i.submit('import_file f2')]
 monitor(tasks)

Monitor support
Starting from release 0.8 plac provides builtin support for monitoring the output of concurrent commands,
at least for platforms where multiprocessing is fully supported. You can define your own monitor class,
simply by inheriting from plac.Monitor and by overriding the methods add_listener(self, no),
del_listener(self, taskno), notify_listener(self, taskno, msg), schedule(self,
seconds, func, arg) and run(self). Then, you can a monitor object to any plac.Interpreter
object by simply calling the add_monitor method. For convenience, plac comes with a very simple
TkMonitor based on Tkinter (I chose Tkinter because it is easy to use and it is in the standard library,
but you can use any GUI): you can just look at how the TkMonitor is implemented in plac_tk.py and
adapt it. Here is an example of usage of the TkMonitor:

from __future__ import with_statement
import plac

class Hello(object):
 mpcommands = ['hello']
 def hello(self):
 yield 'hello'

if __name__ == '__main__':
 i = plac.Interpreter(Hello())
 i.add_monitor(plac.TkMonitor('tkmon'))
 with i:
 i.interact()

Try to give the hello command from the interactive interpreter: each time a new text widget will be
added displaying the output of the command. Notice that if Tkinter is not installed correctly on your
system the TkMonitor class will not be available.

Parallel computing with plac
plac is certainly not intended as a tool for parallel computing, but still you can use it to launch a set of
commands and to collect the results, similarly to the MapReduce pattern popularized by Google. In order
to give an example, I will consider the "Hello World" of parallel computing, i.e. the computation of pi with
independent processes. There is a huge number of algorithms to compute pi; here I will describe a trivial
one chosen for simplicity, not per efficienty. The trick is to consider the first quadrant of a circle with radius
1 and to extract a number of points (x, y) with x and y random variables in the interval [0,1]. The
probability of extracting a number inside the quadrant (i.e. with x^2 + y^2 < 1) is proportional to the
area of the quadrant (i.e. pi/4). The value of pi therefore can be extracted by multiplying by 4 the ratio
between the number of points in the quadrant versus the total number of points N, for N large:

39

http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

def calc_pi(N):
 inside = 0
 for j in xrange(N):
 x, y = random(), random()
 if x*x + y*y < 1:
 inside += 1
 return (4.0 * inside) / N

The algorithm is trivially parallelizable: if you have n CPUs, you can compute pi n times with N/n iterations,
sum the results and divide the total by n. I have a Macbook with two cores, therefore I would expect a
speedup factor of 2 with respect to a sequential computation. Moreover, I would expect a threaded
computation to be even slower than a sequential computation, due to the GIL and the scheduling
overhead.

Here is a script implementing the algorithm and working in three different modes (parallel mode, threaded
mode and sequential mode) depending on a mode option:

from __future__ import with_statement
from random import random
import multiprocessing
import plac

class PiCalculator(object):
 """Compute pi in parallel with threads or processes"""

 @plac.annotations(
 npoints=('number of integration points', 'positional', None, int),
 mode=('sequential|parallel|threaded', 'option', 'm', str, 'SPT'))
 def __init__(self, npoints, mode='S'):
 self.npoints = npoints
 if mode == 'P':
 self.mpcommands = ['calc_pi']
 elif mode == 'T':
 self.thcommands = ['calc_pi']
 elif mode == 'S':
 self.commands = ['calc_pi']
 self.n_cpu = multiprocessing.cpu_count()

 def submit_tasks(self):
 self.i = plac.Interpreter(self).__enter__()
 return [self.i.submit('calc_pi %d' % (self.npoints / self.n_cpu))
 for _ in range(self.n_cpu)]

 def close(self):
 self.i.close()

 @plac.annotations(
 npoints=('npoints', 'positional', None, int))
 def calc_pi(self, npoints):
 counts = 0
 for j in xrange(npoints):
 n, r = divmod(j, 1000000)
 if r == 0:
 yield '%dM iterations' % n
 x, y = random(), random()

40

 if x*x + y*y < 1:
 counts += 1
 yield (4.0 * counts)/npoints

 def run(self):
 tasks = self.i.tasks()
 for t in tasks:
 t.run()
 try:
 total = 0
 for task in tasks:
 total += task.result
 except: # the task was killed
 print tasks
 return
 return total / self.n_cpu

if __name__ == '__main__':
 pc = plac.call(PiCalculator)
 pc.submit_tasks()
 try:
 import time; t0 = time.time()
 print '%f in %f seconds ' % (pc.run(), time.time() - t0)
 finally:
 pc.close()

Notice the submit_tasks method, which instantiates and initializes a plac.Interpreter object and
submits a number of commands corresponding to the number of available CPUs. The calc_pi
command yield a log message every million of interactions, just to monitor the progress of the
computation. The run method starts all the submitted commands in parallel and sums the results. It
returns the average value of pi after the slowest CPU has finished its job (if the CPUs are equal and
equally busy they should finish more or less at the same time).

Here are the results on my old Macbook with Ubuntu 10.04 and Python 2.6, for 10 million of iterations:

$ python picalculator.py -mP 10000000 # two processes
3.141904 in 5.744545 seconds
$ python picalculator.py -mT 10000000 # two threads
3.141272 in 13.875645 seconds
$ python picalculator.py -mS 10000000 # sequential
3.141586 in 11.353841 seconds

As you see using processes one gets a 2x speedup indeed, where the threaded mode is some 20%
slower than the sequential mode.

Since the pattern submit a bunch of tasks, starts them and collect the results is so common, plac provides
an utility function runp(genseq, mode='p', monitors=(), start=True) to start a bunch a
generators and return a list of task objects. By default runp use processes, but you can use threads by
passing mode='t'. If you do not wont to start the tasks, you can say so (start=False). With runp the
parallel pi calculation becomes a one-liner:

sum(task.result for task in plac.runp(calc_pi(N) for i in range(ncpus)))/ncpus

The file test_runp in the doc directory of the plac distribution shows another couple of examples of
usage, including how to show the results of the running computation on a TkMonitor.

41

http://pypi.python.org/pypi/plac

The plac server
A command-line oriented interface can be easily converted into a socket-based interface. Starting from
release 0.7 plac features a builtin server which is able to accept commands from multiple clients and to
execute them. The server works by instantiating a separate interpreter for each client, so that if a client
interpreter dies for any reason the other interpreters keep working. To avoid external dependencies the
server is based on the asynchat module in the standard library, but it would not be difficult to replace
the server with a different one (for instance, a Twisted server). Since asynchat-based servers are
asynchronous, any blocking command in the interpreter should be run in a separated process or thread.
The default port for the plac server is 2199, and the command to signal end-of-connection is EOF. For
instance, here is how you could manage remote import on a database (say a SQLite db):

import plac
from importer2 import FakeImporter

def main(port=2199):
 main = FakeImporter('dsn')
 plac.Interpreter(main).start_server(port)

if __name__ == '__main__':
 plac.call(main)

You can connect to the server with telnet on port 2199, as follows:

$ telnet localhost 2199
Trying ::1...
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
i> import_file f1
i> .list
<ThreadedTask 1 [import_file f1] RUNNING>
i> .out
Imported 100 lines
Imported 200 lines
i> EOF
Connection closed by foreign host.

Summary
Once plac claimed to be the easiest command-line arguments parser in the world. Having read this
document you may think that it is not so easy after all. But it is a false impression. Actually the rules are
quite simple:

1. if you want to implement a command-line script, use plac.call;

2. if you want to implement a command interpreter, use plac.Interpreter:

• for an interactive interpreter, call the .interact method;

• for an batch interpreter, call the .execute method;

3. for testing call the Interpreter.check method in the appropriate context or use the
Interpreter.doctest feature;

4. if you need to go at a lower level, you may need to call the Interpreter.send method which
returns a (finished) Task object.

42

http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

5. long running command can be executed in the background as threads or processes: just declare
them in the lists thcommands and mpcommands respectively.

6. the .start_server method starts an asynchronous server on the given port number (default
2199)

Moreover, remember that plac_runner.py is your friend.

Appendix: custom annotation objects
Internally plac uses an Annotation class to convert the tuples in the function signature into annotation
objects, i.e. objects with six attributes help, kind, short, type, choices, metavar.

Advanced users can implement their own annotation objects. For instance, here is an example of how you
could implement annotations for positional arguments:

annotations.py
class Positional(object):
 def __init__(self, help='', type=None, choices=None, metavar=None):
 self.help = help
 self.kind = 'positional'
 self.abbrev = None
 self.type = type
 self.choices = choices
 self.metavar = metavar

You can use such annotations objects as follows:

example11.py
import plac
from annotations import Positional

@plac.annotations(
 i=Positional("This is an int", int),
 n=Positional("This is a float", float),
 rest=Positional("Other arguments"))
def main(i, n, *rest):
 print(i, n, rest)

if __name__ == '__main__':
 import plac; plac.call(main)

Here is the usage message you get:

usage: example11.py [-h] i n [rest [rest ...]]

positional arguments:
 i This is an int
 n This is a float
 rest Other arguments

optional arguments:
 -h, --help show this help message and exit

43

http://pypi.python.org/pypi/plac

You can go on and define Option and Flag classes, if you like. Using custom annotation objects you
could do advanced things like extracting the annotations from a configuration file or from a database, but I
expect such use cases to be quite rare: the default mechanism should work pretty well for most users.

44

	Plac: Parsing the Command Line the Easy Way
	The importance of scaling down
	Scripts with required arguments
	Scripts with default arguments
	Scripts with options (and smart options)
	Scripts with flags
	plac for Python 2.X users
	More features
	A realistic example
	Keyword arguments
	Final example: a shelve interface
	plac vs argparse
	plac vs the rest of the world
	The future
	Trivia: the story behind the name

	Advanced usages of plac
	Introduction
	From scripts to interactive applications
	Testing a plac application
	Plac easy tests
	Plac batch scripts
	Implementing subcommands
	plac.Interpreter.call
	Readline support
	The plac runner
	A non class-based example
	Writing your own plac runner
	Long running commands
	Threaded commands
	Running commands as external processes
	Managing the output of concurrent commands
	Monitor support
	Parallel computing with plac
	The plac server
	Summary
	Appendix: custom annotation objects

