
Plac: Parsing the Command Line the Easy Way
Author: Michele Simionato

E-mail: michele.simionato@gmail.com

Requires: Python 2.3+

Download
page:

http://pypi.python.org/pypi/plac

Project page: http://micheles.googlecode.com/hg/plac/doc/plac.html

Installation: easy_install plac

License: BSD license

Contents
The importance of scaling down 1

Scripts with required arguments 2

Scripts with default arguments 3

Scripts with options 5

Scripts with flags 7

plac for Python 2.X users 7

More features 8

Keyword arguments 9

A realistic example 10

Advanced usage 11

Custom annotation objects 12

plac vs argparse 13

plac vs the rest of the world 13

The future 14

Trivia: the story behind the name 14

The importance of scaling down
There is no want of command line arguments parsers in the Python world. The standard library alone
contains three different modules: getopt (from the stone age), optparse (from Python 2.3) and argparse
(from Python 2.7). All of them are quite powerful and especially argparse is an industrial strength solution;
unfortunately, all of them feature a non-zero learning curve and a certain verbosity. They do not scale
down well enough, at least in my opinion.

It should not be necessary to stress the importance scaling down; nevertheless most people are obsessed
with features and concerned with the possibility of scaling up, whereas I think that we should be even
more concerned with the issue of scaling down. This is an old meme in the computing world: programs
should address the common cases simply, simple things should be kept simple, while at the same
keeping difficult things possible. plac adhere as much as possible to this philosophy and it is designed to
handle well the simple cases, while retaining the ability to handle complex cases by relying on the
underlying power of argparse.

1

mailto:michele.simionato@gmail.com
http://pypi.python.org/pypi/plac
http://micheles.googlecode.com/hg/plac/doc/plac.html
http://docs.python.org/library/getopt.html
http://docs.python.org/library/optparse.html
http://argparse.googlecode.com
http://argparse.googlecode.com
http://www.welton.it/articles/scalable_systems
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com

Technically plac is just a simple wrapper over argparse which hides most of its complexity by using a
declarative interface: the argument parser is inferred rather than written down by imperatively. Still, plac is
surprisingly scalable upwards, even without using the underlying argparse. I have been using Python for 8
years and in my experience it is extremely unlikely that you will ever need to go beyond the features
provided by the declarative interface of plac: they should be more than enough for 99.9% of the use
cases.

plac is targetting especially unsophisticated users, programmers, sys-admins, scientists and in general
people writing throw-away scripts for themselves, choosing the command line interface because it is the
quick and simple. Such users are not interested in features, they are interested in a small learning curve:
they just want to be able to write a simple command line tool from a simple specification, not to build a
command line parser by hand. Unfortunately, the modules in the standard library forces them to go the
hard way. They are designed to implement power user tools and they have a non-trivial learning curve. On
the contrary, plac is designed to be simple to use and extremely concise, as the examples below will
show.

Scripts with required arguments
Let me start with the simplest possible thing: a script that takes a single argument and does something to
it. It cannot get simpler than that, unless you consider a script without command line arguments, where
there is nothing to parse. Still, it is a use case extremely common: I need to write scripts like that nearly
every day, I wrote hundreds of them in the last few years and I have never been happy. Here is a typical
example of code I have been writing by hand for years:

example1.py
def main(dsn):
 "Do something with the database"
 print(dsn)
 # ...

if __name__ == '__main__':
 import sys
 n = len(sys.argv[1:])
 if n == 0:
 sys.exit('usage: python %s dsn' % sys.argv[0])
 elif n == 1:
 main(sys.argv[1])
 else:
 sys.exit('Unrecognized arguments: %s' % ' '.join(sys.argv[2:]))

As you see the whole if __name__ == '__main__' block (nine lines) is essentially boilerplate that
should not exists. Actually I think the language should recognize the main function and pass to it the
command line arguments automatically; unfortunaly this is unlikely to happen. I have been writing
boilerplate like this in hundreds of scripts for years, and every time I hate it. The purpose of using a
scripting language is convenience and trivial things should be trivial. Unfortunately the standard library
does not help for this incredibly common use case. Using getopt and optparse does not help, since they
are intended to manage options and not positional arguments; the argparse module helps a bit and it is
able to reduce the boilerplate from nine lines to six lines:

example2.py
def main(dsn):
 "Do something on the database"
 print(dsn)
 # ...

2

http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://docs.python.org/library/getopt.html
http://docs.python.org/library/optparse.html
http://argparse.googlecode.com

if __name__ == '__main__':
 import argparse
 p = argparse.ArgumentParser()
 p.add_argument('dsn')
 arg = p.parse_args()
 main(arg.dsn)

However saving three lines does not justify introducing the external dependency: most people will not
switch to Python 2.7, which at the time of this writing is just about to be released, for many years.
Moreover, it just feels too complex to instantiate a class and to define a parser by hand for such a trivial
task.

The plac module is designed to manage well such use cases, and it is able to reduce the original nine
lines of boiler plate to two lines. With the plac module all you need to write is

example3.py
def main(dsn):
 "Do something with the database"
 print(dsn)
 # ...

if __name__ == '__main__':
 import plac; plac.call(main)

The plac module provides for free (actually the work is done by the underlying argparse module) a nice
usage message:

$ python example3.py -h
usage: example3.py [-h] dsn

positional arguments:
 dsn

optional arguments:
 -h, --help show this help message and exit

This is only the tip of the iceberg: plac is able to do much more than that.

Scripts with default arguments
The need to have suitable defaults for command line arguments is quite common. For instance I have
encountered this use case at work hundreds of times:

example4.py
from datetime import datetime

def main(dsn, table='product', today=datetime.today()):
 "Do something on the database"
 print(dsn, table, today)

if __name__ == '__main__':
 import sys
 args = sys.argv[1:]
 if not args:

3

http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac

 sys.exit('usage: python %s dsn' % sys.argv[0])
 elif len(args) > 2:
 sys.exit('Unrecognized arguments: %s' % ' '.join(argv[2:]))
 main(*args)

Here I want to perform a query on a database table, by extracting the today's data: it makes sense for
today to be a default argument. If there is a most used table (in this example a table called 'product')
it also makes sense to make it a default argument. Performing the parsing of the command lines
arguments by hand takes 8 ugly lines of boilerplate (using argparse would require about the same number
of lines). With plac the entire __main__ block reduces to the usual two lines:

if __name__ == '__main__':
 import plac; plac.call(main)

In other words, six lines of boilerplate have been removed, and we get the usage message for free:

usage: example5.py [-h] dsn [table] [today]

Do something on the database

positional arguments:
 dsn
 table
 today

optional arguments:
 -h, --help show this help message and exit

plac manages transparently even the case when you want to pass a variable number of arguments. Here
is an example, a script running on a database a series of SQL scripts:

example6.py
from datetime import datetime

def main(dsn, *scripts):
 "Run the given scripts on the database"
 for script in scripts:
 print('executing %s' % script)
 # ...

if __name__ == '__main__':
 import sys
 if len(sys.argv) < 2:
 sys.exit('usage: python %s dsn script.sql ...' % sys.argv[0])
 main(sys.argv[1:])

Using plac, you can just replace the __main__ block with the usual two lines (I have defined an Emacs
keybinding for them) and then you get the following nice usage message:

usage: example7.py [-h] dsn [scripts [scripts ...]]

Run the given scripts on the database

4

http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

positional arguments:
 dsn
 scripts

optional arguments:
 -h, --help show this help message and exit

The examples here should have made clear that plac is able to figure out the command line arguments
parser to use from the signature of the main function. This is the whole idea behind plac: if the intent is
clear, let's the machine take care of the details.

Scripts with options
It is surprising how few command line scripts with options I have written over the years (probably less than
a hundred), compared to the number of scripts with positional arguments I wrote (certainly more than a
thousand of them). Still, this use case cannot be neglected. The standard library modules (all of them) are
quite verbose when it comes to specifying the options and frankly I have never used them directly.
Instead, I have always relied on an old recipe of mine, the optionparse recipe, which provides a
convenient wrapper over optionparse. Alternatively, in the simplest cases, I have just performed the
parsing by hand.

plac is inspired to the optionparse recipe, in the sense that it delivers the programmer from the burden of
writing the parser, but is less of a hack: instead of extracting the parser from the docstring of the module, it
extracts it from the signature of the main function.

The idea comes from the function annotations concept, a new feature of Python 3. An example is worth a
thousand words, so here it is:

example8.py
def main(command: ("SQL query", 'option', 'c'), dsn):
 if command:
 print('executing %s on %s' % (command, dsn))
 # ...

if __name__ == '__main__':
 import plac; plac.call(main)

As you see, the argument command has been annotated with the tuple ("SQL query", 'option',
'c'): the first string is the help string which will appear in the usage message, the second string tell plac
that command is an option and the third string that it can be abbreviated with the letter c. Of course, the
long option format (--command=) comes from the argument name. The resulting usage message is the
following:

usage: example8.py [-h] [-c COMMAND] dsn

positional arguments:
 dsn

optional arguments:
 -h, --help show this help message and exit
 -c, --command COMMAND
 SQL query

Here are two examples of usage:

5

http://pypi.python.org/pypi/plac
http://code.activestate.com/recipes/278844-parsing-the-command-line/
http://code.activestate.com/recipes/278844-parsing-the-command-line/
http://pypi.python.org/pypi/plac
http://code.activestate.com/recipes/278844-parsing-the-command-line/
http://pypi.python.org/pypi/plac

$ python3 example8.py -c"select * from table" dsn
executing select * from table on dsn

$ python3 example8.py --command="select * from table" dsn
executing select * from table on dsn

Notice that if the option is not passed, the variable command will get the value None. It is possible to
specify a non-trivial default for an option. Here is an example:

example8_.py
def main(dsn, command: ("SQL query", 'option', 'c')='select * from table'):
 print('executing %r on %s' % (command, dsn))

if __name__ == '__main__':
 import plac; plac.call(main)

Now if you do not pass the command option, the default query will be executed:

$ python3 example8_.py dsn
executing 'select * from table' on dsn

Positional argument can be annotated too:

def main(command: ("SQL query", 'option', 'c'),
 dsn: ("Database dsn", 'positional', None)):
 ...

Of course explicit is better than implicit, an no special cases are special enough, but sometimes
practicality beats purity, so plac is able to use smart defaults; in particular you can omit the third argument
and write:

def main(command: ("SQL query", 'option'),
 dsn: ("Database dsn", 'positional')):
 ...

When omitted, the third argument is assumed to be the first letter of the variable name for options and
flags, and None for positional arguments. Moreover, smart enough to convert help messages into tuples;
in other words, you can just write "Database dsn" instead of ("Database dsn", 'positional').

I should notice that varargs (starred-arguments) can be annotated too; here is an example:

def main(dsn: "Database dsn", *scripts: "SQL scripts"):
 ...

This is a valid signature for plac, which will recognize the help strings for both dsn and scripts:

positional arguments:
 dsn Database dsn
 scripts SQL scripts

6

http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

Scripts with flags
plac also recognizes flags, i.e. boolean options which are True if they are passed to the command line
and False if they are absent. Here is an example:

example9.py

def main(verbose: ('prints more info', 'flag', 'v'), dsn: 'connection string'):
 if verbose:
 print('connecting to %s' % dsn)
 # ...

if __name__ == '__main__':
 import plac; plac.call(main)

usage: example9.py [-h] [-v] dsn

positional arguments:
 dsn connection string

optional arguments:
 -h, --help show this help message and exit
 -v, --verbose prints more info

$ python3 example9.py -v dsn
connecting to dsn

Notice that it is an error trying to specify a default for flags: the default value for a flag is always False. If
you feel the need to implement non-boolean flags, you should use an option with two choices, as
explained in the "more features" section.

For consistency with the way the usage message is printed, I suggest you to follow the
Flag-Option-Required-Default (FORD) convention: in the main function write first the flag arguments,
then the option arguments, then the required arguments and finally the default arguments. This is just a
convention and you are not forced to use it, except for the default arguments (including the varargs) which
must stay at the end as it is required by the Python syntax.

plac for Python 2.X users
I do not use Python 3. At work we are just starting to think about migrating to Python 2.6. It will take years
before we think to migrate to Python 3. I am pretty much sure most Pythonistas are in the same situation.
Therefore plac provides a way to work with function annotations even in Python 2.X (including Python
2.3). There is no magic involved; you just need to add the annotations by hand. For instance the annotate
function declaration

def main(dsn: "Database dsn", *scripts: "SQL scripts"):
 ...

is equivalent to the following code:

def main(dsn, *scripts):
 ...
main.__annotations__ = dict(

7

http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

 dsn="Database dsn",
 scripts="SQL scripts")

One should be careful to match the keys of the annotation dictionary with the names of the arguments in
the annotated function; for lazy people with Python 2.4 available the simplest way is to use the
plac.annotations decorator that performs the check for you:

@plac.annotations(
 dsn="Database dsn",
 scripts="SQL scripts")
def main(dsn, *scripts):
 ...

In the rest of this article I will assume that you are using Python 2.X with X >= 4 and I will use the
plac.annotations decorator. Notice however that the tests for plac runs even on Python 2.3.

More features
Even if one of the goals of plac is to have a learning curve of minutes, compared to the learning curve of
hours of argparse, it does not mean that I have removed all the features of argparse. Actually a lot of
argparse power persists in plac. Until now, I have only showed simple annotations, but in general an
annotation is a 5-tuple of the form

(help, kind, abbrev, type, choices, metavar)

where help is the help message, kind is a string in the set { "flag", "option", "positional"},
abbrev is a one-character string, type is a callable taking a string in input, choices is a discrete
sequence of values and metavar is a string.

type is used to automagically convert the command line arguments from the string type to any Python
type; by default there is no convertion and type=None.

choices is used to restrict the number of the valid options; by default there is no restriction i.e.
choices=None.

metavar is used to change the argument name in the usage message (and only there); by default the
metavar is None: this means that the name in the usage message is the same as the argument name,
unless the argument has a default and in such a case is equal to the stringified form of the default.

Here is an example showing many of the features (taken from the argparse documentation):

example10.py
import plac

@plac.annotations(
operator=("The name of an operator", 'positional', None, str, ['add', 'mul']),
numbers=("A number", 'positional', None, float, None, "n"))
def main(operator, *numbers):
 "A script to add and multiply numbers"
 op = getattr(float, '__%s__' % operator)
 result = dict(add=0.0, mul=1.0)[operator]
 for n in numbers:
 result = op(result, n)
 print(result)

if __name__ == '__main__':
 plac.call(main)

8

http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://argparse.googlecode.com
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com

Here is the usage:

usage: example10.py [-h] {add,mul} [n [n ...]]

A script to add and multiply numbers

positional arguments:
 {add,mul} The name of an operator
 n A number

optional arguments:
 -h, --help show this help message and exit

Notice that the docstring of the main function has been automatically added to the usage message. Here
are a couple of examples of use:

$ python example10.py add 1 2 3 4
10.0
$ python example10.py mul 1 2 3 4
24.0
$ python example10.py ad 1 2 3 4 # a mispelling error
usage: example10.py [-h] {add,mul} [n [n ...]]
example10.py: error: argument operator: invalid choice: 'ad' (choose from 'add', 'mul')

Keyword arguments
Starting from release 0.4, if your main function has keyword arguments, plac recognizes arguments of the
form "name=value" in the command line. Here is an example:

example12.py
import plac

@plac.annotations(
 opt=('some option', 'option'),
 args='default arguments',
 kw='keyword arguments')
def main(opt, *args, **kw):
 print(opt, args, kw)

if __name__ == '__main__':
 plac.call(main)

Here is the generated usage message:

usage: example12.py [-h] [-o OPT] [args [args ...]] [kw [kw ...]]

positional arguments:
 args default arguments
 kw keyword arguments

optional arguments:
 -h, --help show this help message and exit
 -o, --opt OPT some option

Here is how you call the script:

9

http://pypi.python.org/pypi/plac

$ python example12.py 1 2 kw1=1 kw2=2 --opt=0
('0', ('1', '2'), {'kw1': '1', 'kw2': '2'})

When using keyword arguments, one must be careful to use names which are not alreay taken; for
instance in this examples the name opt is taken:

$ python example12.py 1 2 kw1=1 kw2=2 opt=0
usage: example12.py [-h] [-o OPT] [args [args ...]] [kw [kw ...]]
example12.py: error: colliding keyword arguments: opt

The names taken are the names of the flags, of the options, and of the positional arguments, excepted
varargs and keywords. This limitation is a consequence of the way the argument names are managed in
function calls by the Python language.

A realistic example
Here is a more realistic script using most of the features of plac to run SQL queries on a database by
relying on SQLAlchemy. Notice the usage of the type feature to automagically convert a SQLAlchemy
connection string into a SqlSoup object:

dbcli.py
import plac
from sqlalchemy.ext.sqlsoup import SqlSoup

@plac.annotations(
 db=("Connection string", 'positional', None, SqlSoup),
 header=("Header", 'flag', 'H'),
 sqlcmd=("SQL command", 'option', 'c', str, None, "SQL"),
 delimiter=("Column separator", 'option', 'd'),
 scripts="SQL scripts",
)
def main(db, header, sqlcmd, delimiter="|", *scripts):
 "A script to run queries and SQL scripts on a database"
 print('Working on %s' % db.bind.url)
 if sqlcmd:
 result = db.bind.execute(sqlcmd)
 if header: # print the header
 print(delimiter.join(result.keys()))
 for row in result: # print the rows
 print(delimiter.join(map(str, row)))

 for script in scripts:
 db.bind.execute(file(script).read())

if __name__ == '__main__':
 plac.call(main)

Here is the usage message:

usage: dbcli.py [-h] [-H] [-c SQL] [-d |] db [scripts [scripts ...]]

A script to run queries and SQL scripts on a database

10

http://pypi.python.org/pypi/plac
http://www.sqlalchemy.org/
http://www.sqlalchemy.org/docs/reference/ext/sqlsoup.html

positional arguments:
 db Connection string
 scripts SQL scripts

optional arguments:
 -h, --help show this help message and exit
 -H, --header Header
 -c, --sqlcmd SQL SQL command
 -d, --delimiter | Column separator

Advanced usage
plac relies on a argparse for all of the heavy lifting work and it is possible to leverage on argparse features
directly or indirectly.

For instance, you can make invisible an argument in the usage message simply by using
'==SUPPRESS==' as help string (or argparse.SUPPRESS). Similarly, you can use argparse.FileType
directly.

It is also possible to pass options to the underlying argparse.ArgumentParser object (currently it
accepts the default arguments description, epilog, prog, usage, add_help, argument_default,
parents, prefix_chars, fromfile_prefix_chars, conflict_handler, formatter_class). It
is enough to set such attributes on the main function. For instance

def main(...):
 pass

main.add_help = False

disable the recognition of the help flag -h, --help. This is not particularly elegant, but I assume the
typical user of plac will be happy with the defaults and would not want to change them; still it is possible if
she wants to. For instance, by setting the description attribute, it is possible to add a comment to the
usage message (by default the docstring of the main function is used as description). It is also possible
to change the option prefix; for instance if your script must run under Windows and you want to use "/" as
option prefix you can add the lines:

main.prefix_chars='-/'
main.short_prefix = '/'

The recognition of the short_prefix attribute is a plac extension; there is also a companion
long_prefix attribute with default value of "--". prefix_chars is an argparse feature. Interested
readers should read the documentation of argparse to understand the meaning of the other options. If
there is a set of options that you use very often, you may consider writing a decorator adding such options
to the main function for you. For simplicity, plac does not perform any magic of that kind.

It is possible to access directly the underlying ArgumentParser object, by invoking the
plac.parser_from utility function:

>>> import plac
>>> def main(arg):
... pass
...
>>> print plac.parser_from(main)
ArgumentParser(prog='', usage=None, description=None, version=None,

11

http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://argparse.googlecode.com
http://argparse.googlecode.com/svn/tags/r11/doc/other-utilities.html?highlight=filetype#FileType
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com/svn/tags/r11/doc/ArgumentParser.html

formatter_class=<class 'argparse.HelpFormatter'>, conflict_handler='error',
add_help=True)

I use plac.parser_from in the unit tests of the module, but regular users should never need to use it.

Custom annotation objects
Internally plac uses an Annotation class to convert the tuples in the function signature into annotation
objects, i.e. objects with six attributes help, kind, short, type, choices, metavar.

Advanced users can implement their own annotation objects. For instance, here is an example of how you
could implement annotations for positional arguments:

annotations.py
class Positional(object):
 def __init__(self, help='', type=None, choices=None, metavar=None):
 self.help = help
 self.kind = 'positional'
 self.abbrev = None
 self.type = type
 self.choices = choices
 self.metavar = metavar

You can use such annotations objects as follows:

example11.py
import plac
from annotations import Positional

@plac.annotations(
 i=Positional("This is an int", int),
 n=Positional("This is a float", float),
 rest=Positional("Other arguments"))
def main(i, n, *rest):
 print(i, n, rest)

if __name__ == '__main__':
 import plac; plac.call(main)

Here is the usage message you get:

usage: example11.py [-h] i n [rest [rest ...]]

positional arguments:
 i This is an int
 n This is a float
 rest Other arguments

optional arguments:
 -h, --help show this help message and exit

You can go on and define Option and Flag classes, if you like. Using custom annotation objects you
could do advanced things like extracting the annotations from a configuration file or from a database, but I
expect such use cases to be quite rare: the default mechanism should work pretty well for most users.

12

http://pypi.python.org/pypi/plac

plac vs argparse
plac is opinionated and by design it does not try to make available all of the features of argparse in an
easy way. In particular you should be aware of the following limitations/differences (the following assumes
knowledge of argparse):

• plac automatically defines both a long and short form for each options, just like optparse. argparse
allows you to define only a long form, or only a short form, if you like. However, since I have always
been happy with the behavior of optparse, which I feel is pretty much consistent, I have decided not
to support this feature.

• plac does not support the destination concept: the destination coincides with the name of the
argument, always. This restriction has some drawbacks. For instance, suppose you want to define a
long option called --yield. In this case the destination would be yield, which is a Python
keyword, and since you cannot introduce an argument with that name in a function definition, it is
impossible to implement it. Your choices are to change the name of the long option, or to use
argparse with a suitable destination.

• plac does not support "required options". As the argparse documentation puts it: Required options
are generally considered bad form - normal users expect options to be optional. You should avoid
the use of required options whenever possible.

• plac supports only regular boolean flags. argparse has the ability to define generalized two-value
flags with values different from True and False. An earlier version of plac had this feature too, but
since you can use options with two choices instead, and in any case the conversion from {True,
False} to any couple of values can be trivially implemented with a ternary operator (value1 if
flag else value2), I have removed it (KISS rules!).

• plac does not support nargs options directly (it uses them internally, though, to implement flag
recognition). The reason it that all the use cases of interest to me are covered by plac and did not
feel the need to increase the learning curve by adding direct support for nargs.

• plac does not support subparsers directly. For the moment, this looks like a feature too advanced for
the goals of plac.

• plac does not support actions directly. This also looks like a feature too advanced for the goals of
plac. Notice however that the ability to define your own annotation objects may mitigate the need for
custom actions.

I should stress again that if you want to access all of the argparse features from plac you can use
plac.parser_from and you will get the underlying ArgumentParser object. The the full power of
argparse is then available to you: you can use add_argument, add_subparsers(), etc. In other
words, while some features are not supported directly, all features are supported indirectly.

plac vs the rest of the world
Originally plac boasted about being "the easiest command-line arguments parser in the world". Since
then, people started pointing out to me various projects which are based on the same idea (extracting the
parser from the main function signature) and are arguably even easier than plac:

• opterator by Dusty Phillips

• CLIArgs by Pavel Panchekha

Luckily for me none of such projects had the idea of using function annotations and argparse; as a
consequence, they are no match for the capabilities of plac.

Of course, there are tons of other libraries to parse the command line. For instance Clap by Matthew
Frazier which appeared on PyPI just the day before plac; Clap is fine but it is certainly not easier than
plac.

13

http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://docs.python.org/library/optparse.html
http://argparse.googlecode.com
http://docs.python.org/library/optparse.html
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com/svn/tags/r11/doc/ArgumentParser.html
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/opterator
http://pypi.python.org/pypi/CLIArgs
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/Clap/0.7
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/Clap/0.7
http://pypi.python.org/pypi/plac

The future
Currently plac is around 140 lines of code, not counting blanks, comments and docstrings. I do not plan to
extend it much in the future. The idea is to keep the module short: it is and it should remain a little wrapper
over argparse. Actually I have thought about contributing the code back to argparse if plac becomes
successfull and gains a reasonable number of users. For the moment it should be considered
experimental: after all I wrote the first version of it in three days, including the tests, the documentation
and the time to learn argparse.

Trivia: the story behind the name
The plac project started very humble: I just wanted to make easy_installable my old optionparse recipe,
and to publish it on PyPI. The original name of plac was optionparser and the idea behind it was to build
an OptionParser object from the docstring of the module. However, before doing that, I decided to check
out the argparse module, since I knew it was going into Python 2.7 and Python 2.7 was coming out. Soon
enough I realized two things:

1. the single greatest idea of argparse was unifying the positional arguments and the options in a single
namespace object;

2. parsing the docstring was so old-fashioned, considering the existence of functions annotations in
Python 3.

Putting together these two observations with the original idea of inferring the parser I decided to build an
ArgumentParser object from function annotations. The optionparser name was ruled out, since I was
now using argparse; a name like argparse_plus was also ruled out, since the typical usage was
completely different from the argparse usage.

I made a research on PyPI and the name clap (Command Line Arguments Parser) was not taken, so I
renamed everything to clap. After two days a Clap module appeared on PyPI <expletives deleted>!

Having little imagination, I decided to rename everything again to plac, an anagram of clap: since it is a
non-existing English name, I hope nobody will steal it from me!

That's all, I hope you will enjoy working with plac!

14

http://argparse.googlecode.com
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://code.activestate.com/recipes/278844-parsing-the-command-line/
http://pypi.python.org/pypi/plac
http://docs.python.org/library/optparse.html?highlight=optionparser#optparse.OptionParser
http://argparse.googlecode.com
http://argparse.googlecode.com
http://argparse.googlecode.com/svn/tags/r11/doc/ArgumentParser.html
http://argparse.googlecode.com
http://argparse.googlecode.com
http://pypi.python.org/pypi/Clap/0.7

	The importance of scaling down
	Scripts with required arguments
	Scripts with default arguments
	Scripts with options
	Scripts with flags
	plac for Python 2.X users
	More features
	Keyword arguments
	A realistic example
	Advanced usage
	Custom annotation objects
	plac vs argparse
	plac vs the rest of the world
	The future
	Trivia: the story behind the name

