Testing and scripting your applications with plac

Introduction

plac has been designed to be simple to use for simple stuff, but in truth it is a quite advanced tool with a
field of applicability which far outreaches the specific domain of command-line arguments parsers. In
reality plac is a generic tool to write domain specific languages (DSL). This document explains how you
can use plac to test your application, and how you can use it to provide a scripting interface to your
application. Notice that your application does not need to be a command-line application: you can use
plac whenever you have an API with strings in input and strings in output.

Testing applications with plac

In the standard usage, pl ac. cal | is called only once on the main function; however in the tests it quite
natural to invoke pl ac. cal I multiple times on the same function with different arguments. For instance,
suppose you want to store the configuration of your application into a Python shelve; then, you may want
to write a command-line tool to edit your configuration, i.e. a shelve interface. A possible implementation
could be the following:

i nport shel ve
i nport plac

@l ac. annot at i ons(
hel p=(" show help', 'flag'),

all =('show all paraneters in the shelve', 'flag'),
clear=('clear the shelve', 'flag'),

del ete=('delete an elenent', 'option'),
filename=('filenane of the shelve', 'option'),

par ans=' nanes of the paraneters in the shelve',
setters='"setters paramrval ue')
def ishelve(help, all, clear, delete, filename='conf.shelve',
*parans, **setters):
sh = shel ve. open(fil enane)

try:
i f help:
yi el d ' Speci al commands:'
yield "help, all, clear, delete'
elif all:

for param nane in sh.itens():
yield '%=%" % (param nane)
elif clear:
sh. cl ear ()
yield 'cleared the shel ve'
elif delete:
try:
del sh[del et €]
except KeyError:
yield '%: not found %delete
el se:
yield "deleted %' %delete
for paramin parans:
try:
yi el d sh[paranm
except KeyError:

http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

yield '"%: not found % param
for param value in setters.itens():
sh[paran] = val ue
yield "setting %=%"' % (param val ue)
finally:
sh. cl ose()

i shel ve. add_help = False # there is a custom hel p

if name ="' rmin_

f or oafput in plac.call(ishelve):
pri nt (out put)

You can write the tests for such implementation as follows:

i mport plac
fromishelve inport ishelve

def test():
assert plac.call (ishelve, []) == []
assert plac.call(ishelve, ['--clear']) == ['cleared the shelve']
assert plac.call(ishelve, ['a=1"]) == ['setting a=1"]
assert plac.call(ishelve, ['a']) ==["'"1"]
assert plac.call(ishelve, ['--delete=a']) == ['deleted a']
assert plac.call(ishelve, ['a']) == ["a: not found']

There is a small optimization here: once pl ac. cal | (func) has been called, a . p attribute is attached
to func, containing the parser associated to the function annotations. The second time
pl ac. cal | (func) isinvoked, the parser is re-used.

Writing command-line interpreters with plac

Apart from testing, there is another typical use case where pl ac. cal | is invoked multiple times, in the
implementation of command interpreters. For instance, you could define an interative interpreter on top of
i shel ve as follows

i mport plac

fromishelve inport ishelve
i shel ve. prefix_chars = "."
i shel ve. add_hel p = Fal se

@ ac. annot at i ons(

interactive=('start interactive interface', 'flag'))
def main(interactive, *args):

if interactive:

i mport shl ex
whi | e True:
try:

line = raw input('i> ")
except EOFError:
br eak
cmd = shlex.split(line)
for out in plac.call(ishelve, cnd):

print (out)
el se:
pl ac. cal | (i shel ve, args)

if nanme_ =='_ main__

pl ac. cal | (mai n)

Here is an usage session, usinng r | wr ap to enable readline features:

$ riwap python shelve_interpreter.py -i

i> ..clear

cl eared the shel ve
i> a=1

setting a=1

i> a

1

i > b=2

setting b=2
i>ab

1
2
i>..delete a
del eted a
i> a

a: not found
i> ..all

b=2

i > [CTRL- D]

As you see, it is possibly to write command interpreters directly on top of pl ac. call and it is not
particularly difficult. However, the devil is in the details (I mean error management) and my
recommendation, if you want to implement an interpreter of commands, is to use the class
pl ac. | nterpreter which is especially suited for this task. pl ac. | nt er pr et er is available only if you
are using a recent version of Python (>= 2.5), because it is a context manager object to be used with the
wi t h statement. The only important method of pl ac. | nt er pret er isthe.send method, which takes
a string in input and returns a string in output. Internally the input string is splitted with shl ex. split and
passed to pl ac. cal I, with some trick to manage exceptions correctly. Moreover long options are
managed with a single prefix character.

"""Call this script with rlwap and you will be happy"""
from__future__ inport wth_statenent

from plac_shell inport Interpreter

fromshelve interface inport interpreter

if nane_ =="'_main__"':
with Interpreter(interpreter) as i:
whil e True:
try:

line = raw_input('i>")
except EOFError:

br eak
print(i.send(line))

Multi-parsers

As we saw, plac is able to infer an arguments parser from the signature of a function. In addition, plac is
also able to infer a multi-parser from a container of commands, by inferring the subparsers from the
commands. That is useful if you want to implement subcommands (a familiar example of a command-line
application featuring subcommands is subversion).

A container of commands is any object with a . commands attribute listing a set of functions or methods
which are valid commands. In particular, a Python module is a perfect container of commands. As an
example, consider the following module implementing a fake Version Control System:

"A Fake Version Control Systent
i mport plac
commands = 'checkout', 'commt', 'status'

@ ac. annot at i ons(

url=(C"url of the source code', 'positional'))
def checkout (url):
return ('checkout ', url)

@ ac. annot at i ons(

message=('conmt nessage', 'option'))
def conmt (nmessage):
return (‘commt ', message)
@! ac. annot ati ons(qui et=('summary information', 'flag'))
def status(quiet):
return ('status ', quiet)
i f nane =="'__min__'

_rnpor?___naiﬁ:_ o
print(plac.call(__min_))

Here is the usage message:

usage: vcs.py [-h] {status,commt, checkout}
A Fake Version Control System

optional argunents:
-h, --help show this hel p message and exit

subcomands:
{status, comit, checkout}
-h to get additional help

If the commands are completely independent, a module is a good fit for a method container. In other
situations, it is best to use a custom class. For instance, suppose you want to store the configuration of
your application into a Python shelve; then, you may want to write a command-line tool to edit your
configuration, i.e. a shelve interface:

http://pypi.python.org/pypi/plac
http://pypi.python.org/pypi/plac

i mport shel ve
i mport plac

error checking is mssing: this is left to the reader
cl ass Shel vel nterface(object):
"A mnimal interface over a shelve object"
commands = 'set', 'show, 'show all', 'delete
def __init__ (self, fnane):
sel f.fname = fnane
sel f.sh = shel ve. open(f nane)
def set(self, name, value):
"set name val ue"
yield "setting %=%"' % (nanme, val ue)
sel f.sh[name] = val ue
def show(sel f, *nanes):
"show gi ven paraneters"”
for name in names:
yield "% = %\n' % (nanme, self.sh[nane])
def show all (self):
"show al | paraneters"”
for name in self.sh:
yield "% = %\n' % (nanme, self.sh[nane])
def del ete(sel f, nane=None):
"del ete given paraneter (or everything)"
if name i s None:
yield "del eting everything'
sel f.sh.clear ()
el se:
yield "deleting %' % nane
del sel f.sh[nane]

if _nane__ =="'__main__":
interface = Shelvelnterface(' conf.shelve')
try:

for output in plac.call(interface):
pri nt (out put)
finally:
i nterface. sh. cl ose()

Here is a session of usage on an Unix-like operating system:

$ alias conf="python shel ve_interface. py"
$ conf set a pippo

setting a=pi ppo

$ conf set b |lippo

setting b=lippo

$ conf show all

b = 1ippo

a = pippo

$ conf show a b
a = pippo

b = 1ippo

$ conf delete a
deleting a

$ conf show all
b =1ippo

Technically a multi-parser is a parser object with an attribute . subp which is a dictionary of subparsers;
each of the methods listed in the attribute . conmands corresponds to a subparser inferred from the
method signature. The original object gets a . p attribute containing the main parser which is associated
to an internal function which dispatches on the right method depending on the method name.

Here is the usage message:
i mport plac

cl ass FVCS(object):
"A Fake Version Control Systent
commands = 'checkout', 'commt', 'status', ' help'

@l ac. annot at i ons(

nane=('a recogni zed command', 'positional’', None, str, commands))
def hel p(sel f, nane):

sel f. p. subp[nane] . print _hel p()

@l ac. annot at i ons(

url=("url of the source code', 'positional'))
def checkout (self, url):

print (' checkout', url)

def commit(self):

print('conmt')
@l ac. annot ations(quiet=('sumary information', 'flag'))
def status(self, quiet):

print('status', quiet)

mai n = FVCS()

if _ nane =="'_ min

pl ac. cal | (mai_ﬁ)

usage: exanpl el3.py [-h] {status, commt, checkout, hel p}
A Fake Version Control System

optional argunents:
-h, --help show this hel p message and exit

subcommuands:
{status, commit, checkout, hel p}
-h to get additional help

Advanced usage

plac relies on a argparse for all of the heavy lifting work and it is possible to leverage on argparse features
directly or indirectly.

http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://argparse.googlecode.com

For instance, you can make invisible an argument in the usage message simply by using
' ==SUPPRESS=="' as help string (or ar gpar se. SUPPRESS). Similarly, you can use argparse.FileType
directly.

It is also possible to pass options to the underlying ar gpar se. Ar gunrent Par ser object (currently it
accepts the default arguments descri pti on, epi | og, pr og, usage, add_hel p, argunment _def aul t,
parents, prefix_chars, fronfile_prefix_chars, conflict_handl er, formatter_cl ass). It
is enough to set such attributes on the mai n function. For instance

def main(...):
pass

mai n. add_hel p = Fal se

disable the recognition of the help flag - h, --hel p. This is not particularly elegant, but | assume the
typical user of plac will be happy with the defaults and would not want to change them; still it is possible if
she wants to. For instance, by setting the descri pti on attribute, it is possible to add a comment to the
usage message (by default the docstring of the mai n function is used as description). It is also possible
to change the option prefix; for instance if your script must run under Windows and you want to use "/* as
option prefix you can add the line:

mai n. prefix_chars="/-"'

prefi x_chars is an argparse feature. The first prefix char (/) is used as the default in the construction
of both short and long options; the second prefix char (-) is kept to keep the - h/ - - hel p option working:
however you can disable it and reimplement it if you like. For instance, here is how you could reimplement
the hel p command in the Fake VCS example:

i mport plac
from exanpl €13 i nport FVCS

class VCS with_hel p(FVCS):
commands = FVCS. commands + (' help',)

@l ac. annot at i ons(

nane=('a recogni zed command', 'positional’', None, str, commands))
def hel p(sel f, nane):

sel f. p. subp[nane] . print _hel p()

main = VCS with_hel p()

if nane_ =="'_main
pl ac. cal | (mai n)

Internally pl ac. call uses pl ac. parser_from and adds the parser as an attribute . p. This also
happers for multiparsers and you can take advantage of the .p attribute to invoke
ar gpar se. Ar gunent Par ser methods.

Interested readers should read the documentation of argparse to understand the meaning of the other
options. If there is a set of options that you use very often, you may consider writing a decorator adding
such options to the mai n function for you. For simplicity, plac does not perform any magic of that kind.

It is possible to access directly the underlying ArgumentParser object, by invoking the
pl ac. par ser _fr om utility function:

http://argparse.googlecode.com/svn/tags/r11/doc/other-utilities.html?highlight=filetype#FileType
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com
http://argparse.googlecode.com
http://pypi.python.org/pypi/plac
http://argparse.googlecode.com/svn/tags/r11/doc/ArgumentParser.html

>>> jnport plac
>>> def main(arg):
pass

>>> print plac.parser_fronmmain)

Ar gument Par ser (prog=""', usage=None, descripti on=None, versi on=None,
formatter _cl ass=<cl ass ' argparse. Hel pFormatter' >, conflict_handl er="error"',
add_hel p=Tr ue)

| use pl ac. par ser _from in the unit tests of the module, but regular users should never need to use it,
since the parser is also available as an attribute of the main function.

Custom annotation objects

Internally plac uses an Annot ati on class to convert the tuples in the function signature into annotation
objects, i.e. objects with six attributes hel p, ki nd, short, type, choices, netavar

Advanced users can implement their own annotation objects. For instance, here is an example of how you
could implement annotations for positional arguments:

annot ati ons. py
cl ass Positional (object):

def __init_ (self, help="', type=None, choi ces=None, netavar=None):
self.help = help
sel f.kind = 'positional

sel f. abbrev = None
self.type = type

sel f. choi ces = choi ces
sel f. metavar = netavar

You can use such annotations objects as follows:

exanpl ell. py
i mport plac
from annotations inport Positiona

@l ac. annot at i ons(
i =Positional ("This is an int", int),
n=Positional ("This is a float", float),
rest =Posi tional ("Q her argunments"))

def main(i, n, *rest):
print(i, n, rest)

if _nane_ =="_min_
i mport plac; plac.call(min)

Here is the usage message you get:

usage: exanplell.py [-h] i n [rest [rest ...]]

posi ti onal argunents:
i This is an int
n This is a float
rest Q her argunents

http://pypi.python.org/pypi/plac

optional argunents:
-h, --help show this help nessage and exit

You can go on and define Opti on and Fl ag classes, if you like. Using custom annotation objects you
could do advanced things like extracting the annotations from a configuration file or from a database, but |
expect such use cases to be quite rare: the default mechanism should work pretty well for most users.

	Introduction
	Testing applications with plac
	Writing command-line interpreters with plac
	Multi-parsers
	Advanced usage
	Custom annotation objects

