summaryrefslogtreecommitdiff
path: root/src/third_party/boost-1.56.0/boost/lambda/detail/ret.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/third_party/boost-1.56.0/boost/lambda/detail/ret.hpp')
-rw-r--r--src/third_party/boost-1.56.0/boost/lambda/detail/ret.hpp325
1 files changed, 0 insertions, 325 deletions
diff --git a/src/third_party/boost-1.56.0/boost/lambda/detail/ret.hpp b/src/third_party/boost-1.56.0/boost/lambda/detail/ret.hpp
deleted file mode 100644
index 96f5fc18bb6..00000000000
--- a/src/third_party/boost-1.56.0/boost/lambda/detail/ret.hpp
+++ /dev/null
@@ -1,325 +0,0 @@
-// Boost Lambda Library ret.hpp -----------------------------------------
-
-// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
-//
-// Distributed under the Boost Software License, Version 1.0. (See
-// accompanying file LICENSE_1_0.txt or copy at
-// http://www.boost.org/LICENSE_1_0.txt)
-//
-// For more information, see www.boost.org
-
-
-#ifndef BOOST_LAMBDA_RET_HPP
-#define BOOST_LAMBDA_RET_HPP
-
-namespace boost {
-namespace lambda {
-
- // TODO:
-
-// Add specializations for function references for ret, protect and unlambda
-// e.g void foo(); unlambda(foo); fails, as it would add a const qualifier
- // for a function type.
- // on the other hand unlambda(*foo) does work
-
-
-// -- ret -------------------------
-// the explicit return type template
-
- // TODO: It'd be nice to make ret a nop for other than lambda functors
- // but causes an ambiguiyty with gcc (not with KCC), check what is the
- // right interpretation.
-
- // // ret for others than lambda functors has no effect
- // template <class U, class T>
- // inline const T& ret(const T& t) { return t; }
-
-
-template<class RET, class Arg>
-inline const
-lambda_functor<
- lambda_functor_base<
- explicit_return_type_action<RET>,
- tuple<lambda_functor<Arg> >
- >
->
-ret(const lambda_functor<Arg>& a1)
-{
- return
- lambda_functor_base<
- explicit_return_type_action<RET>,
- tuple<lambda_functor<Arg> >
- >
- (tuple<lambda_functor<Arg> >(a1));
-}
-
-// protect ------------------
-
- // protecting others than lambda functors has no effect
-template <class T>
-inline const T& protect(const T& t) { return t; }
-
-template<class Arg>
-inline const
-lambda_functor<
- lambda_functor_base<
- protect_action,
- tuple<lambda_functor<Arg> >
- >
->
-protect(const lambda_functor<Arg>& a1)
-{
- return
- lambda_functor_base<
- protect_action,
- tuple<lambda_functor<Arg> >
- >
- (tuple<lambda_functor<Arg> >(a1));
-}
-
-// -------------------------------------------------------------------
-
-// Hides the lambda functorness of a lambda functor.
-// After this, the functor is immune to argument substitution, etc.
-// This can be used, e.g. to make it safe to pass lambda functors as
-// arguments to functions, which might use them as target functions
-
-// note, unlambda and protect are different things. Protect hides the lambda
-// functor for one application, unlambda for good.
-
-template <class LambdaFunctor>
-class non_lambda_functor
-{
- LambdaFunctor lf;
-public:
-
- // This functor defines the result_type typedef.
- // The result type must be deducible without knowing the arguments
-
- template <class SigArgs> struct sig {
- typedef typename
- LambdaFunctor::inherited::
- template sig<typename SigArgs::tail_type>::type type;
- };
-
- explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {}
-
- typename LambdaFunctor::nullary_return_type
- operator()() const {
- return lf.template
- call<typename LambdaFunctor::nullary_return_type>
- (cnull_type(), cnull_type(), cnull_type(), cnull_type());
- }
-
- template<class A>
- typename sig<tuple<const non_lambda_functor, A&> >::type
- operator()(A& a) const {
- return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
- }
-
- template<class A, class B>
- typename sig<tuple<const non_lambda_functor, A&, B&> >::type
- operator()(A& a, B& b) const {
- return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type());
- }
-
- template<class A, class B, class C>
- typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type
- operator()(A& a, B& b, C& c) const {
- return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type());
- }
-};
-
-template <class Arg>
-inline const Arg& unlambda(const Arg& a) { return a; }
-
-template <class Arg>
-inline const non_lambda_functor<lambda_functor<Arg> >
-unlambda(const lambda_functor<Arg>& a)
-{
- return non_lambda_functor<lambda_functor<Arg> >(a);
-}
-
- // Due to a language restriction, lambda functors cannot be made to
- // accept non-const rvalue arguments. Usually iterators do not return
- // temporaries, but sometimes they do. That's why a workaround is provided.
- // Note, that this potentially breaks const correctness, so be careful!
-
-// any lambda functor can be turned into a const_incorrect_lambda_functor
-// The operator() takes arguments as consts and then casts constness
-// away. So this breaks const correctness!!! but is a necessary workaround
-// in some cases due to language limitations.
-// Note, that this is not a lambda_functor anymore, so it can not be used
-// as a sub lambda expression.
-
-template <class LambdaFunctor>
-struct const_incorrect_lambda_functor {
- LambdaFunctor lf;
-public:
-
- explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {}
-
- template <class SigArgs> struct sig {
- typedef typename
- LambdaFunctor::inherited::template
- sig<typename SigArgs::tail_type>::type type;
- };
-
- // The nullary case is not needed (no arguments, no parameter type problems)
-
- template<class A>
- typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type
- operator()(const A& a) const {
- return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type());
- }
-
- template<class A, class B>
- typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type
- operator()(const A& a, const B& b) const {
- return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type());
- }
-
- template<class A, class B, class C>
- typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type
- operator()(const A& a, const B& b, const C& c) const {
- return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type());
- }
-};
-
-// ------------------------------------------------------------------------
-// any lambda functor can be turned into a const_parameter_lambda_functor
-// The operator() takes arguments as const.
-// This is useful if lambda functors are called with non-const rvalues.
-// Note, that this is not a lambda_functor anymore, so it can not be used
-// as a sub lambda expression.
-
-template <class LambdaFunctor>
-struct const_parameter_lambda_functor {
- LambdaFunctor lf;
-public:
-
- explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {}
-
- template <class SigArgs> struct sig {
- typedef typename
- LambdaFunctor::inherited::template
- sig<typename SigArgs::tail_type>::type type;
- };
-
- // The nullary case is not needed: no arguments, no constness problems.
-
- template<class A>
- typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type
- operator()(const A& a) const {
- return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
- }
-
- template<class A, class B>
- typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type
- operator()(const A& a, const B& b) const {
- return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type());
- }
-
- template<class A, class B, class C>
- typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&>
->::type
- operator()(const A& a, const B& b, const C& c) const {
- return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type());
- }
-};
-
-template <class Arg>
-inline const const_incorrect_lambda_functor<lambda_functor<Arg> >
-break_const(const lambda_functor<Arg>& lf)
-{
- return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf);
-}
-
-
-template <class Arg>
-inline const const_parameter_lambda_functor<lambda_functor<Arg> >
-const_parameters(const lambda_functor<Arg>& lf)
-{
- return const_parameter_lambda_functor<lambda_functor<Arg> >(lf);
-}
-
-// make void ------------------------------------------------
-// make_void( x ) turns a lambda functor x with some return type y into
-// another lambda functor, which has a void return type
-// when called, the original return type is discarded
-
-// we use this action. The action class will be called, which means that
-// the wrapped lambda functor is evaluated, but we just don't do anything
-// with the result.
-struct voidifier_action {
- template<class Ret, class A> static void apply(A&) {}
-};
-
-template<class Args> struct return_type_N<voidifier_action, Args> {
- typedef void type;
-};
-
-template<class Arg1>
-inline const
-lambda_functor<
- lambda_functor_base<
- action<1, voidifier_action>,
- tuple<lambda_functor<Arg1> >
- >
->
-make_void(const lambda_functor<Arg1>& a1) {
-return
- lambda_functor_base<
- action<1, voidifier_action>,
- tuple<lambda_functor<Arg1> >
- >
- (tuple<lambda_functor<Arg1> > (a1));
-}
-
-// for non-lambda functors, make_void does nothing
-// (the argument gets evaluated immediately)
-
-template<class Arg1>
-inline const
-lambda_functor<
- lambda_functor_base<do_nothing_action, null_type>
->
-make_void(const Arg1&) {
-return
- lambda_functor_base<do_nothing_action, null_type>();
-}
-
-// std_functor -----------------------------------------------------
-
-// The STL uses the result_type typedef as the convention to let binders know
-// the return type of a function object.
-// LL uses the sig template.
-// To let LL know that the function object has the result_type typedef
-// defined, it can be wrapped with the std_functor function.
-
-
-// Just inherit form the template parameter (the standard functor),
-// and provide a sig template. So we have a class which is still the
-// same functor + the sig template.
-
-template<class T>
-struct result_type_to_sig : public T {
- template<class Args> struct sig { typedef typename T::result_type type; };
- result_type_to_sig(const T& t) : T(t) {}
-};
-
-template<class F>
-inline result_type_to_sig<F> std_functor(const F& f) { return f; }
-
-
-} // namespace lambda
-} // namespace boost
-
-#endif
-
-
-
-
-
-
-