summaryrefslogtreecommitdiff
path: root/src/third_party/boost-1.56.0/boost/lambda/if.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/third_party/boost-1.56.0/boost/lambda/if.hpp')
-rw-r--r--src/third_party/boost-1.56.0/boost/lambda/if.hpp462
1 files changed, 0 insertions, 462 deletions
diff --git a/src/third_party/boost-1.56.0/boost/lambda/if.hpp b/src/third_party/boost-1.56.0/boost/lambda/if.hpp
deleted file mode 100644
index 08f45f984a3..00000000000
--- a/src/third_party/boost-1.56.0/boost/lambda/if.hpp
+++ /dev/null
@@ -1,462 +0,0 @@
-// Boost Lambda Library -- if.hpp ------------------------------------------
-
-// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
-// Copyright (C) 2000 Gary Powell (powellg@amazon.com)
-// Copyright (C) 2001-2002 Joel de Guzman
-//
-// Distributed under the Boost Software License, Version 1.0. (See
-// accompanying file LICENSE_1_0.txt or copy at
-// http://www.boost.org/LICENSE_1_0.txt)
-//
-// For more information, see www.boost.org
-
-// --------------------------------------------------------------------------
-
-#if !defined(BOOST_LAMBDA_IF_HPP)
-#define BOOST_LAMBDA_IF_HPP
-
-#include "boost/lambda/core.hpp"
-
-// Arithmetic type promotion needed for if_then_else_return
-#include "boost/lambda/detail/operator_actions.hpp"
-#include "boost/lambda/detail/operator_return_type_traits.hpp"
-
-namespace boost {
-namespace lambda {
-
-// -- if control construct actions ----------------------
-
-class ifthen_action {};
-class ifthenelse_action {};
-class ifthenelsereturn_action {};
-
-// Specialization for if_then.
-template<class Args>
-class
-lambda_functor_base<ifthen_action, Args> {
-public:
- Args args;
- template <class T> struct sig { typedef void type; };
-public:
- explicit lambda_functor_base(const Args& a) : args(a) {}
-
- template<class RET, CALL_TEMPLATE_ARGS>
- RET call(CALL_FORMAL_ARGS) const {
- if (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS))
- detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
- }
-};
-
-// If Then
-template <class Arg1, class Arg2>
-inline const
-lambda_functor<
- lambda_functor_base<
- ifthen_action,
- tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
- >
->
-if_then(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2) {
- return
- lambda_functor_base<
- ifthen_action,
- tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
- >
- ( tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >(a1, a2) );
-}
-
-
-// Specialization for if_then_else.
-template<class Args>
-class
-lambda_functor_base<ifthenelse_action, Args> {
-public:
- Args args;
- template <class T> struct sig { typedef void type; };
-public:
- explicit lambda_functor_base(const Args& a) : args(a) {}
-
- template<class RET, CALL_TEMPLATE_ARGS>
- RET call(CALL_FORMAL_ARGS) const {
- if (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS))
- detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
- else
- detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS);
- }
-};
-
-
-
-// If then else
-
-template <class Arg1, class Arg2, class Arg3>
-inline const
-lambda_functor<
- lambda_functor_base<
- ifthenelse_action,
- tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
- >
->
-if_then_else(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2,
- const lambda_functor<Arg3>& a3) {
- return
- lambda_functor_base<
- ifthenelse_action,
- tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
- >
- (tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> >
- (a1, a2, a3) );
-}
-
-// Our version of operator?:()
-
-template <class Arg1, class Arg2, class Arg3>
-inline const
- lambda_functor<
- lambda_functor_base<
- other_action<ifthenelsereturn_action>,
- tuple<lambda_functor<Arg1>,
- typename const_copy_argument<Arg2>::type,
- typename const_copy_argument<Arg3>::type>
- >
->
-if_then_else_return(const lambda_functor<Arg1>& a1,
- const Arg2 & a2,
- const Arg3 & a3) {
- return
- lambda_functor_base<
- other_action<ifthenelsereturn_action>,
- tuple<lambda_functor<Arg1>,
- typename const_copy_argument<Arg2>::type,
- typename const_copy_argument<Arg3>::type>
- > ( tuple<lambda_functor<Arg1>,
- typename const_copy_argument<Arg2>::type,
- typename const_copy_argument<Arg3>::type> (a1, a2, a3) );
-}
-
-namespace detail {
-
-// return type specialization for conditional expression begins -----------
-// start reading below and move upwards
-
-// PHASE 6:1
-// check if A is conbertible to B and B to A
-template<int Phase, bool AtoB, bool BtoA, bool SameType, class A, class B>
-struct return_type_2_ifthenelsereturn;
-
-// if A can be converted to B and vice versa -> ambiguous
-template<int Phase, class A, class B>
-struct return_type_2_ifthenelsereturn<Phase, true, true, false, A, B> {
- typedef
- detail::return_type_deduction_failure<return_type_2_ifthenelsereturn> type;
- // ambiguous type in conditional expression
-};
-// if A can be converted to B and vice versa and are of same type
-template<int Phase, class A, class B>
-struct return_type_2_ifthenelsereturn<Phase, true, true, true, A, B> {
- typedef A type;
-};
-
-
-// A can be converted to B
-template<int Phase, class A, class B>
-struct return_type_2_ifthenelsereturn<Phase, true, false, false, A, B> {
- typedef B type;
-};
-
-// B can be converted to A
-template<int Phase, class A, class B>
-struct return_type_2_ifthenelsereturn<Phase, false, true, false, A, B> {
- typedef A type;
-};
-
-// neither can be converted. Then we drop the potential references, and
-// try again
-template<class A, class B>
-struct return_type_2_ifthenelsereturn<1, false, false, false, A, B> {
- // it is safe to add const, since the result will be an rvalue and thus
- // const anyway. The const are needed eg. if the types
- // are 'const int*' and 'void *'. The remaining type should be 'const void*'
- typedef const typename boost::remove_reference<A>::type plainA;
- typedef const typename boost::remove_reference<B>::type plainB;
- // TODO: Add support for volatile ?
-
- typedef typename
- return_type_2_ifthenelsereturn<
- 2,
- boost::is_convertible<plainA,plainB>::value,
- boost::is_convertible<plainB,plainA>::value,
- boost::is_same<plainA,plainB>::value,
- plainA,
- plainB>::type type;
-};
-
-// PHASE 6:2
-template<class A, class B>
-struct return_type_2_ifthenelsereturn<2, false, false, false, A, B> {
- typedef
- detail::return_type_deduction_failure<return_type_2_ifthenelsereturn> type;
- // types_do_not_match_in_conditional_expression
-};
-
-
-
-// PHASE 5: now we know that types are not arithmetic.
-template<class A, class B>
-struct non_numeric_types {
- typedef typename
- return_type_2_ifthenelsereturn<
- 1, // phase 1
- is_convertible<A,B>::value,
- is_convertible<B,A>::value,
- is_same<A,B>::value,
- A,
- B>::type type;
-};
-
-// PHASE 4 :
-// the base case covers arithmetic types with differing promote codes
-// use the type deduction of arithmetic_actions
-template<int CodeA, int CodeB, class A, class B>
-struct arithmetic_or_not {
- typedef typename
- return_type_2<arithmetic_action<plus_action>, A, B>::type type;
- // plus_action is just a random pick, has to be a concrete instance
-};
-
-// this case covers the case of artihmetic types with the same promote codes.
-// non numeric deduction is used since e.g. integral promotion is not
-// performed with operator ?:
-template<int CodeA, class A, class B>
-struct arithmetic_or_not<CodeA, CodeA, A, B> {
- typedef typename non_numeric_types<A, B>::type type;
-};
-
-// if either A or B has promote code -1 it is not an arithmetic type
-template<class A, class B>
-struct arithmetic_or_not <-1, -1, A, B> {
- typedef typename non_numeric_types<A, B>::type type;
-};
-template<int CodeB, class A, class B>
-struct arithmetic_or_not <-1, CodeB, A, B> {
- typedef typename non_numeric_types<A, B>::type type;
-};
-template<int CodeA, class A, class B>
-struct arithmetic_or_not <CodeA, -1, A, B> {
- typedef typename non_numeric_types<A, B>::type type;
-};
-
-
-
-
-// PHASE 3 : Are the types same?
-// No, check if they are arithmetic or not
-template <class A, class B>
-struct same_or_not {
- typedef typename detail::remove_reference_and_cv<A>::type plainA;
- typedef typename detail::remove_reference_and_cv<B>::type plainB;
-
- typedef typename
- arithmetic_or_not<
- detail::promote_code<plainA>::value,
- detail::promote_code<plainB>::value,
- A,
- B>::type type;
-};
-// Yes, clear.
-template <class A> struct same_or_not<A, A> {
- typedef A type;
-};
-
-} // detail
-
-// PHASE 2 : Perform first the potential array_to_pointer conversion
-template<class A, class B>
-struct return_type_2<other_action<ifthenelsereturn_action>, A, B> {
-
- typedef typename detail::array_to_pointer<A>::type A1;
- typedef typename detail::array_to_pointer<B>::type B1;
-
- typedef typename
- boost::add_const<typename detail::same_or_not<A1, B1>::type>::type type;
-};
-
-// PHASE 1 : Deduction is based on the second and third operand
-
-
-// return type specialization for conditional expression ends -----------
-
-
-// Specialization of lambda_functor_base for if_then_else_return.
-template<class Args>
-class
-lambda_functor_base<other_action<ifthenelsereturn_action>, Args> {
-public:
- Args args;
-
- template <class SigArgs> struct sig {
- private:
- typedef typename detail::nth_return_type_sig<1, Args, SigArgs>::type ret1;
- typedef typename detail::nth_return_type_sig<2, Args, SigArgs>::type ret2;
- public:
- typedef typename return_type_2<
- other_action<ifthenelsereturn_action>, ret1, ret2
- >::type type;
- };
-
-public:
- explicit lambda_functor_base(const Args& a) : args(a) {}
-
- template<class RET, CALL_TEMPLATE_ARGS>
- RET call(CALL_FORMAL_ARGS) const {
- return (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) ?
- detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS)
- :
- detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS);
- }
-};
-
- // The code below is from Joel de Guzman, some name changes etc.
- // has been made.
-
-///////////////////////////////////////////////////////////////////////////////
-//
-// if_then_else_composite
-//
-// This composite has two (2) forms:
-//
-// if_(condition)
-// [
-// statement
-// ]
-//
-// and
-//
-// if_(condition)
-// [
-// true_statement
-// ]
-// .else_
-// [
-// false_statement
-// ]
-//
-// where condition is an lambda_functor that evaluates to bool. If condition
-// is true, the true_statement (again an lambda_functor) is executed
-// otherwise, the false_statement (another lambda_functor) is executed. The
-// result type of this is void. Note the trailing underscore after
-// if_ and the leading dot and the trailing underscore before
-// and after .else_.
-//
-///////////////////////////////////////////////////////////////////////////////
-template <typename CondT, typename ThenT, typename ElseT>
-struct if_then_else_composite {
-
- typedef if_then_else_composite<CondT, ThenT, ElseT> self_t;
-
- template <class SigArgs>
- struct sig { typedef void type; };
-
- if_then_else_composite(
- CondT const& cond_,
- ThenT const& then_,
- ElseT const& else__)
- : cond(cond_), then(then_), else_(else__) {}
-
- template <class Ret, CALL_TEMPLATE_ARGS>
- Ret call(CALL_FORMAL_ARGS) const
- {
- if (cond.internal_call(CALL_ACTUAL_ARGS))
- then.internal_call(CALL_ACTUAL_ARGS);
- else
- else_.internal_call(CALL_ACTUAL_ARGS);
- }
-
- CondT cond; ThenT then; ElseT else_; // lambda_functors
-};
-
-//////////////////////////////////
-template <typename CondT, typename ThenT>
-struct else_gen {
-
- else_gen(CondT const& cond_, ThenT const& then_)
- : cond(cond_), then(then_) {}
-
- template <typename ElseT>
- lambda_functor<if_then_else_composite<CondT, ThenT,
- typename as_lambda_functor<ElseT>::type> >
- operator[](ElseT const& else_)
- {
- typedef if_then_else_composite<CondT, ThenT,
- typename as_lambda_functor<ElseT>::type>
- result;
-
- return result(cond, then, to_lambda_functor(else_));
- }
-
- CondT cond; ThenT then;
-};
-
-//////////////////////////////////
-template <typename CondT, typename ThenT>
-struct if_then_composite {
-
- template <class SigArgs>
- struct sig { typedef void type; };
-
- if_then_composite(CondT const& cond_, ThenT const& then_)
- : cond(cond_), then(then_), else_(cond, then) {}
-
- template <class Ret, CALL_TEMPLATE_ARGS>
- Ret call(CALL_FORMAL_ARGS) const
- {
- if (cond.internal_call(CALL_ACTUAL_ARGS))
- then.internal_call(CALL_ACTUAL_ARGS);
- }
-
- CondT cond; ThenT then; // lambda_functors
- else_gen<CondT, ThenT> else_;
-};
-
-//////////////////////////////////
-template <typename CondT>
-struct if_gen {
-
- if_gen(CondT const& cond_)
- : cond(cond_) {}
-
- template <typename ThenT>
- lambda_functor<if_then_composite<
- typename as_lambda_functor<CondT>::type,
- typename as_lambda_functor<ThenT>::type> >
- operator[](ThenT const& then) const
- {
- typedef if_then_composite<
- typename as_lambda_functor<CondT>::type,
- typename as_lambda_functor<ThenT>::type>
- result;
-
- return result(
- to_lambda_functor(cond),
- to_lambda_functor(then));
- }
-
- CondT cond;
-};
-
-//////////////////////////////////
-template <typename CondT>
-inline if_gen<CondT>
-if_(CondT const& cond)
-{
- return if_gen<CondT>(cond);
-}
-
-
-
-} // lambda
-} // boost
-
-#endif // BOOST_LAMBDA_IF_HPP
-
-