summaryrefslogtreecommitdiff
path: root/src/third_party/boost-1.56.0/boost/math/special_functions/beta.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/third_party/boost-1.56.0/boost/math/special_functions/beta.hpp')
-rw-r--r--src/third_party/boost-1.56.0/boost/math/special_functions/beta.hpp1490
1 files changed, 0 insertions, 1490 deletions
diff --git a/src/third_party/boost-1.56.0/boost/math/special_functions/beta.hpp b/src/third_party/boost-1.56.0/boost/math/special_functions/beta.hpp
deleted file mode 100644
index e48d713e3b1..00000000000
--- a/src/third_party/boost-1.56.0/boost/math/special_functions/beta.hpp
+++ /dev/null
@@ -1,1490 +0,0 @@
-// (C) Copyright John Maddock 2006.
-// Use, modification and distribution are subject to the
-// Boost Software License, Version 1.0. (See accompanying file
-// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-
-#ifndef BOOST_MATH_SPECIAL_BETA_HPP
-#define BOOST_MATH_SPECIAL_BETA_HPP
-
-#ifdef _MSC_VER
-#pragma once
-#endif
-
-#include <boost/math/special_functions/math_fwd.hpp>
-#include <boost/math/tools/config.hpp>
-#include <boost/math/special_functions/gamma.hpp>
-#include <boost/math/special_functions/factorials.hpp>
-#include <boost/math/special_functions/erf.hpp>
-#include <boost/math/special_functions/log1p.hpp>
-#include <boost/math/special_functions/expm1.hpp>
-#include <boost/math/special_functions/trunc.hpp>
-#include <boost/math/tools/roots.hpp>
-#include <boost/static_assert.hpp>
-#include <boost/config/no_tr1/cmath.hpp>
-
-namespace boost{ namespace math{
-
-namespace detail{
-
-//
-// Implementation of Beta(a,b) using the Lanczos approximation:
-//
-template <class T, class Lanczos, class Policy>
-T beta_imp(T a, T b, const Lanczos&, const Policy& pol)
-{
- BOOST_MATH_STD_USING // for ADL of std names
-
- if(a <= 0)
- return policies::raise_domain_error<T>("boost::math::beta<%1%>(%1%,%1%)", "The arguments to the beta function must be greater than zero (got a=%1%).", a, pol);
- if(b <= 0)
- return policies::raise_domain_error<T>("boost::math::beta<%1%>(%1%,%1%)", "The arguments to the beta function must be greater than zero (got b=%1%).", b, pol);
-
- T result;
-
- T prefix = 1;
- T c = a + b;
-
- // Special cases:
- if((c == a) && (b < tools::epsilon<T>()))
- return boost::math::tgamma(b, pol);
- else if((c == b) && (a < tools::epsilon<T>()))
- return boost::math::tgamma(a, pol);
- if(b == 1)
- return 1/a;
- else if(a == 1)
- return 1/b;
-
- /*
- //
- // This code appears to be no longer necessary: it was
- // used to offset errors introduced from the Lanczos
- // approximation, but the current Lanczos approximations
- // are sufficiently accurate for all z that we can ditch
- // this. It remains in the file for future reference...
- //
- // If a or b are less than 1, shift to greater than 1:
- if(a < 1)
- {
- prefix *= c / a;
- c += 1;
- a += 1;
- }
- if(b < 1)
- {
- prefix *= c / b;
- c += 1;
- b += 1;
- }
- */
-
- if(a < b)
- std::swap(a, b);
-
- // Lanczos calculation:
- T agh = a + Lanczos::g() - T(0.5);
- T bgh = b + Lanczos::g() - T(0.5);
- T cgh = c + Lanczos::g() - T(0.5);
- result = Lanczos::lanczos_sum_expG_scaled(a) * Lanczos::lanczos_sum_expG_scaled(b) / Lanczos::lanczos_sum_expG_scaled(c);
- T ambh = a - T(0.5) - b;
- if((fabs(b * ambh) < (cgh * 100)) && (a > 100))
- {
- // Special case where the base of the power term is close to 1
- // compute (1+x)^y instead:
- result *= exp(ambh * boost::math::log1p(-b / cgh, pol));
- }
- else
- {
- result *= pow(agh / cgh, a - T(0.5) - b);
- }
- if(cgh > 1e10f)
- // this avoids possible overflow, but appears to be marginally less accurate:
- result *= pow((agh / cgh) * (bgh / cgh), b);
- else
- result *= pow((agh * bgh) / (cgh * cgh), b);
- result *= sqrt(boost::math::constants::e<T>() / bgh);
-
- // If a and b were originally less than 1 we need to scale the result:
- result *= prefix;
-
- return result;
-} // template <class T, class Lanczos> beta_imp(T a, T b, const Lanczos&)
-
-//
-// Generic implementation of Beta(a,b) without Lanczos approximation support
-// (Caution this is slow!!!):
-//
-template <class T, class Policy>
-T beta_imp(T a, T b, const lanczos::undefined_lanczos& /* l */, const Policy& pol)
-{
- BOOST_MATH_STD_USING
-
- if(a <= 0)
- return policies::raise_domain_error<T>("boost::math::beta<%1%>(%1%,%1%)", "The arguments to the beta function must be greater than zero (got a=%1%).", a, pol);
- if(b <= 0)
- return policies::raise_domain_error<T>("boost::math::beta<%1%>(%1%,%1%)", "The arguments to the beta function must be greater than zero (got b=%1%).", b, pol);
-
- T result;
-
- T prefix = 1;
- T c = a + b;
-
- // special cases:
- if((c == a) && (b < tools::epsilon<T>()))
- return boost::math::tgamma(b, pol);
- else if((c == b) && (a < tools::epsilon<T>()))
- return boost::math::tgamma(a, pol);
- if(b == 1)
- return 1/a;
- else if(a == 1)
- return 1/b;
-
- // shift to a and b > 1 if required:
- if(a < 1)
- {
- prefix *= c / a;
- c += 1;
- a += 1;
- }
- if(b < 1)
- {
- prefix *= c / b;
- c += 1;
- b += 1;
- }
- if(a < b)
- std::swap(a, b);
-
- // set integration limits:
- T la = (std::max)(T(10), a);
- T lb = (std::max)(T(10), b);
- T lc = (std::max)(T(10), T(a+b));
-
- // calculate the fraction parts:
- T sa = detail::lower_gamma_series(a, la, pol) / a;
- sa += detail::upper_gamma_fraction(a, la, ::boost::math::policies::get_epsilon<T, Policy>());
- T sb = detail::lower_gamma_series(b, lb, pol) / b;
- sb += detail::upper_gamma_fraction(b, lb, ::boost::math::policies::get_epsilon<T, Policy>());
- T sc = detail::lower_gamma_series(c, lc, pol) / c;
- sc += detail::upper_gamma_fraction(c, lc, ::boost::math::policies::get_epsilon<T, Policy>());
-
- // and the exponent part:
- result = exp(lc - la - lb) * pow(la/lc, a) * pow(lb/lc, b);
-
- // and combine:
- result *= sa * sb / sc;
-
- // if a and b were originally less than 1 we need to scale the result:
- result *= prefix;
-
- return result;
-} // template <class T>T beta_imp(T a, T b, const lanczos::undefined_lanczos& l)
-
-
-//
-// Compute the leading power terms in the incomplete Beta:
-//
-// (x^a)(y^b)/Beta(a,b) when normalised, and
-// (x^a)(y^b) otherwise.
-//
-// Almost all of the error in the incomplete beta comes from this
-// function: particularly when a and b are large. Computing large
-// powers are *hard* though, and using logarithms just leads to
-// horrendous cancellation errors.
-//
-template <class T, class Lanczos, class Policy>
-T ibeta_power_terms(T a,
- T b,
- T x,
- T y,
- const Lanczos&,
- bool normalised,
- const Policy& pol)
-{
- BOOST_MATH_STD_USING
-
- if(!normalised)
- {
- // can we do better here?
- return pow(x, a) * pow(y, b);
- }
-
- T result;
-
- T prefix = 1;
- T c = a + b;
-
- // combine power terms with Lanczos approximation:
- T agh = a + Lanczos::g() - T(0.5);
- T bgh = b + Lanczos::g() - T(0.5);
- T cgh = c + Lanczos::g() - T(0.5);
- result = Lanczos::lanczos_sum_expG_scaled(c) / (Lanczos::lanczos_sum_expG_scaled(a) * Lanczos::lanczos_sum_expG_scaled(b));
-
- // l1 and l2 are the base of the exponents minus one:
- T l1 = (x * b - y * agh) / agh;
- T l2 = (y * a - x * bgh) / bgh;
- if(((std::min)(fabs(l1), fabs(l2)) < 0.2))
- {
- // when the base of the exponent is very near 1 we get really
- // gross errors unless extra care is taken:
- if((l1 * l2 > 0) || ((std::min)(a, b) < 1))
- {
- //
- // This first branch handles the simple cases where either:
- //
- // * The two power terms both go in the same direction
- // (towards zero or towards infinity). In this case if either
- // term overflows or underflows, then the product of the two must
- // do so also.
- // *Alternatively if one exponent is less than one, then we
- // can't productively use it to eliminate overflow or underflow
- // from the other term. Problems with spurious overflow/underflow
- // can't be ruled out in this case, but it is *very* unlikely
- // since one of the power terms will evaluate to a number close to 1.
- //
- if(fabs(l1) < 0.1)
- {
- result *= exp(a * boost::math::log1p(l1, pol));
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- else
- {
- result *= pow((x * cgh) / agh, a);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- if(fabs(l2) < 0.1)
- {
- result *= exp(b * boost::math::log1p(l2, pol));
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- else
- {
- result *= pow((y * cgh) / bgh, b);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- }
- else if((std::max)(fabs(l1), fabs(l2)) < 0.5)
- {
- //
- // Both exponents are near one and both the exponents are
- // greater than one and further these two
- // power terms tend in opposite directions (one towards zero,
- // the other towards infinity), so we have to combine the terms
- // to avoid any risk of overflow or underflow.
- //
- // We do this by moving one power term inside the other, we have:
- //
- // (1 + l1)^a * (1 + l2)^b
- // = ((1 + l1)*(1 + l2)^(b/a))^a
- // = (1 + l1 + l3 + l1*l3)^a ; l3 = (1 + l2)^(b/a) - 1
- // = exp((b/a) * log(1 + l2)) - 1
- //
- // The tricky bit is deciding which term to move inside :-)
- // By preference we move the larger term inside, so that the
- // size of the largest exponent is reduced. However, that can
- // only be done as long as l3 (see above) is also small.
- //
- bool small_a = a < b;
- T ratio = b / a;
- if((small_a && (ratio * l2 < 0.1)) || (!small_a && (l1 / ratio > 0.1)))
- {
- T l3 = boost::math::expm1(ratio * boost::math::log1p(l2, pol), pol);
- l3 = l1 + l3 + l3 * l1;
- l3 = a * boost::math::log1p(l3, pol);
- result *= exp(l3);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- else
- {
- T l3 = boost::math::expm1(boost::math::log1p(l1, pol) / ratio, pol);
- l3 = l2 + l3 + l3 * l2;
- l3 = b * boost::math::log1p(l3, pol);
- result *= exp(l3);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- }
- else if(fabs(l1) < fabs(l2))
- {
- // First base near 1 only:
- T l = a * boost::math::log1p(l1, pol)
- + b * log((y * cgh) / bgh);
- result *= exp(l);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- else
- {
- // Second base near 1 only:
- T l = b * boost::math::log1p(l2, pol)
- + a * log((x * cgh) / agh);
- result *= exp(l);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- }
- else
- {
- // general case:
- T b1 = (x * cgh) / agh;
- T b2 = (y * cgh) / bgh;
- l1 = a * log(b1);
- l2 = b * log(b2);
- BOOST_MATH_INSTRUMENT_VARIABLE(b1);
- BOOST_MATH_INSTRUMENT_VARIABLE(b2);
- BOOST_MATH_INSTRUMENT_VARIABLE(l1);
- BOOST_MATH_INSTRUMENT_VARIABLE(l2);
- if((l1 >= tools::log_max_value<T>())
- || (l1 <= tools::log_min_value<T>())
- || (l2 >= tools::log_max_value<T>())
- || (l2 <= tools::log_min_value<T>())
- )
- {
- // Oops, overflow, sidestep:
- if(a < b)
- result *= pow(pow(b2, b/a) * b1, a);
- else
- result *= pow(pow(b1, a/b) * b2, b);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- else
- {
- // finally the normal case:
- result *= pow(b1, a) * pow(b2, b);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- }
- // combine with the leftover terms from the Lanczos approximation:
- result *= sqrt(bgh / boost::math::constants::e<T>());
- result *= sqrt(agh / cgh);
- result *= prefix;
-
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
-
- return result;
-}
-//
-// Compute the leading power terms in the incomplete Beta:
-//
-// (x^a)(y^b)/Beta(a,b) when normalised, and
-// (x^a)(y^b) otherwise.
-//
-// Almost all of the error in the incomplete beta comes from this
-// function: particularly when a and b are large. Computing large
-// powers are *hard* though, and using logarithms just leads to
-// horrendous cancellation errors.
-//
-// This version is generic, slow, and does not use the Lanczos approximation.
-//
-template <class T, class Policy>
-T ibeta_power_terms(T a,
- T b,
- T x,
- T y,
- const boost::math::lanczos::undefined_lanczos&,
- bool normalised,
- const Policy& pol)
-{
- BOOST_MATH_STD_USING
-
- if(!normalised)
- {
- return pow(x, a) * pow(y, b);
- }
-
- T result= 0; // assignment here silences warnings later
-
- T c = a + b;
-
- // integration limits for the gamma functions:
- //T la = (std::max)(T(10), a);
- //T lb = (std::max)(T(10), b);
- //T lc = (std::max)(T(10), a+b);
- T la = a + 5;
- T lb = b + 5;
- T lc = a + b + 5;
- // gamma function partials:
- T sa = detail::lower_gamma_series(a, la, pol) / a;
- sa += detail::upper_gamma_fraction(a, la, ::boost::math::policies::get_epsilon<T, Policy>());
- T sb = detail::lower_gamma_series(b, lb, pol) / b;
- sb += detail::upper_gamma_fraction(b, lb, ::boost::math::policies::get_epsilon<T, Policy>());
- T sc = detail::lower_gamma_series(c, lc, pol) / c;
- sc += detail::upper_gamma_fraction(c, lc, ::boost::math::policies::get_epsilon<T, Policy>());
- // gamma function powers combined with incomplete beta powers:
-
- T b1 = (x * lc) / la;
- T b2 = (y * lc) / lb;
- T e1 = lc - la - lb;
- T lb1 = a * log(b1);
- T lb2 = b * log(b2);
-
- if((lb1 >= tools::log_max_value<T>())
- || (lb1 <= tools::log_min_value<T>())
- || (lb2 >= tools::log_max_value<T>())
- || (lb2 <= tools::log_min_value<T>())
- || (e1 >= tools::log_max_value<T>())
- || (e1 <= tools::log_min_value<T>())
- )
- {
- result = exp(lb1 + lb2 - e1);
- }
- else
- {
- T p1, p2;
- if((fabs(b1 - 1) * a < 10) && (a > 1))
- p1 = exp(a * boost::math::log1p((x * b - y * la) / la, pol));
- else
- p1 = pow(b1, a);
- if((fabs(b2 - 1) * b < 10) && (b > 1))
- p2 = exp(b * boost::math::log1p((y * a - x * lb) / lb, pol));
- else
- p2 = pow(b2, b);
- T p3 = exp(e1);
- result = p1 * p2 / p3;
- }
- // and combine with the remaining gamma function components:
- result /= sa * sb / sc;
-
- return result;
-}
-//
-// Series approximation to the incomplete beta:
-//
-template <class T>
-struct ibeta_series_t
-{
- typedef T result_type;
- ibeta_series_t(T a_, T b_, T x_, T mult) : result(mult), x(x_), apn(a_), poch(1-b_), n(1) {}
- T operator()()
- {
- T r = result / apn;
- apn += 1;
- result *= poch * x / n;
- ++n;
- poch += 1;
- return r;
- }
-private:
- T result, x, apn, poch;
- int n;
-};
-
-template <class T, class Lanczos, class Policy>
-T ibeta_series(T a, T b, T x, T s0, const Lanczos&, bool normalised, T* p_derivative, T y, const Policy& pol)
-{
- BOOST_MATH_STD_USING
-
- T result;
-
- BOOST_ASSERT((p_derivative == 0) || normalised);
-
- if(normalised)
- {
- T c = a + b;
-
- // incomplete beta power term, combined with the Lanczos approximation:
- T agh = a + Lanczos::g() - T(0.5);
- T bgh = b + Lanczos::g() - T(0.5);
- T cgh = c + Lanczos::g() - T(0.5);
- result = Lanczos::lanczos_sum_expG_scaled(c) / (Lanczos::lanczos_sum_expG_scaled(a) * Lanczos::lanczos_sum_expG_scaled(b));
- if(a * b < bgh * 10)
- result *= exp((b - 0.5f) * boost::math::log1p(a / bgh, pol));
- else
- result *= pow(cgh / bgh, b - 0.5f);
- result *= pow(x * cgh / agh, a);
- result *= sqrt(agh / boost::math::constants::e<T>());
-
- if(p_derivative)
- {
- *p_derivative = result * pow(y, b);
- BOOST_ASSERT(*p_derivative >= 0);
- }
- }
- else
- {
- // Non-normalised, just compute the power:
- result = pow(x, a);
- }
- if(result < tools::min_value<T>())
- return s0; // Safeguard: series can't cope with denorms.
- ibeta_series_t<T> s(a, b, x, result);
- boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
- result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, s0);
- policies::check_series_iterations<T>("boost::math::ibeta<%1%>(%1%, %1%, %1%) in ibeta_series (with lanczos)", max_iter, pol);
- return result;
-}
-//
-// Incomplete Beta series again, this time without Lanczos support:
-//
-template <class T, class Policy>
-T ibeta_series(T a, T b, T x, T s0, const boost::math::lanczos::undefined_lanczos&, bool normalised, T* p_derivative, T y, const Policy& pol)
-{
- BOOST_MATH_STD_USING
-
- T result;
- BOOST_ASSERT((p_derivative == 0) || normalised);
-
- if(normalised)
- {
- T c = a + b;
-
- // figure out integration limits for the gamma function:
- //T la = (std::max)(T(10), a);
- //T lb = (std::max)(T(10), b);
- //T lc = (std::max)(T(10), a+b);
- T la = a + 5;
- T lb = b + 5;
- T lc = a + b + 5;
-
- // calculate the gamma parts:
- T sa = detail::lower_gamma_series(a, la, pol) / a;
- sa += detail::upper_gamma_fraction(a, la, ::boost::math::policies::get_epsilon<T, Policy>());
- T sb = detail::lower_gamma_series(b, lb, pol) / b;
- sb += detail::upper_gamma_fraction(b, lb, ::boost::math::policies::get_epsilon<T, Policy>());
- T sc = detail::lower_gamma_series(c, lc, pol) / c;
- sc += detail::upper_gamma_fraction(c, lc, ::boost::math::policies::get_epsilon<T, Policy>());
-
- // and their combined power-terms:
- T b1 = (x * lc) / la;
- T b2 = lc/lb;
- T e1 = lc - la - lb;
- T lb1 = a * log(b1);
- T lb2 = b * log(b2);
-
- if((lb1 >= tools::log_max_value<T>())
- || (lb1 <= tools::log_min_value<T>())
- || (lb2 >= tools::log_max_value<T>())
- || (lb2 <= tools::log_min_value<T>())
- || (e1 >= tools::log_max_value<T>())
- || (e1 <= tools::log_min_value<T>()) )
- {
- T p = lb1 + lb2 - e1;
- result = exp(p);
- }
- else
- {
- result = pow(b1, a);
- if(a * b < lb * 10)
- result *= exp(b * boost::math::log1p(a / lb, pol));
- else
- result *= pow(b2, b);
- result /= exp(e1);
- }
- // and combine the results:
- result /= sa * sb / sc;
-
- if(p_derivative)
- {
- *p_derivative = result * pow(y, b);
- BOOST_ASSERT(*p_derivative >= 0);
- }
- }
- else
- {
- // Non-normalised, just compute the power:
- result = pow(x, a);
- }
- if(result < tools::min_value<T>())
- return s0; // Safeguard: series can't cope with denorms.
- ibeta_series_t<T> s(a, b, x, result);
- boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
- result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, s0);
- policies::check_series_iterations<T>("boost::math::ibeta<%1%>(%1%, %1%, %1%) in ibeta_series (without lanczos)", max_iter, pol);
- return result;
-}
-
-//
-// Continued fraction for the incomplete beta:
-//
-template <class T>
-struct ibeta_fraction2_t
-{
- typedef std::pair<T, T> result_type;
-
- ibeta_fraction2_t(T a_, T b_, T x_, T y_) : a(a_), b(b_), x(x_), y(y_), m(0) {}
-
- result_type operator()()
- {
- T aN = (a + m - 1) * (a + b + m - 1) * m * (b - m) * x * x;
- T denom = (a + 2 * m - 1);
- aN /= denom * denom;
-
- T bN = m;
- bN += (m * (b - m) * x) / (a + 2*m - 1);
- bN += ((a + m) * (a * y - b * x + 1 + m *(2 - x))) / (a + 2*m + 1);
-
- ++m;
-
- return std::make_pair(aN, bN);
- }
-
-private:
- T a, b, x, y;
- int m;
-};
-//
-// Evaluate the incomplete beta via the continued fraction representation:
-//
-template <class T, class Policy>
-inline T ibeta_fraction2(T a, T b, T x, T y, const Policy& pol, bool normalised, T* p_derivative)
-{
- typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
- BOOST_MATH_STD_USING
- T result = ibeta_power_terms(a, b, x, y, lanczos_type(), normalised, pol);
- if(p_derivative)
- {
- *p_derivative = result;
- BOOST_ASSERT(*p_derivative >= 0);
- }
- if(result == 0)
- return result;
-
- ibeta_fraction2_t<T> f(a, b, x, y);
- T fract = boost::math::tools::continued_fraction_b(f, boost::math::policies::get_epsilon<T, Policy>());
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- return result / fract;
-}
-//
-// Computes the difference between ibeta(a,b,x) and ibeta(a+k,b,x):
-//
-template <class T, class Policy>
-T ibeta_a_step(T a, T b, T x, T y, int k, const Policy& pol, bool normalised, T* p_derivative)
-{
- typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
-
- BOOST_MATH_INSTRUMENT_VARIABLE(k);
-
- T prefix = ibeta_power_terms(a, b, x, y, lanczos_type(), normalised, pol);
- if(p_derivative)
- {
- *p_derivative = prefix;
- BOOST_ASSERT(*p_derivative >= 0);
- }
- prefix /= a;
- if(prefix == 0)
- return prefix;
- T sum = 1;
- T term = 1;
- // series summation from 0 to k-1:
- for(int i = 0; i < k-1; ++i)
- {
- term *= (a+b+i) * x / (a+i+1);
- sum += term;
- }
- prefix *= sum;
-
- return prefix;
-}
-//
-// This function is only needed for the non-regular incomplete beta,
-// it computes the delta in:
-// beta(a,b,x) = prefix + delta * beta(a+k,b,x)
-// it is currently only called for small k.
-//
-template <class T>
-inline T rising_factorial_ratio(T a, T b, int k)
-{
- // calculate:
- // (a)(a+1)(a+2)...(a+k-1)
- // _______________________
- // (b)(b+1)(b+2)...(b+k-1)
-
- // This is only called with small k, for large k
- // it is grossly inefficient, do not use outside it's
- // intended purpose!!!
- BOOST_MATH_INSTRUMENT_VARIABLE(k);
- if(k == 0)
- return 1;
- T result = 1;
- for(int i = 0; i < k; ++i)
- result *= (a+i) / (b+i);
- return result;
-}
-//
-// Routine for a > 15, b < 1
-//
-// Begin by figuring out how large our table of Pn's should be,
-// quoted accuracies are "guestimates" based on empiracal observation.
-// Note that the table size should never exceed the size of our
-// tables of factorials.
-//
-template <class T>
-struct Pn_size
-{
- // This is likely to be enough for ~35-50 digit accuracy
- // but it's hard to quantify exactly:
- BOOST_STATIC_CONSTANT(unsigned, value = 50);
- BOOST_STATIC_ASSERT(::boost::math::max_factorial<T>::value >= 100);
-};
-template <>
-struct Pn_size<float>
-{
- BOOST_STATIC_CONSTANT(unsigned, value = 15); // ~8-15 digit accuracy
- BOOST_STATIC_ASSERT(::boost::math::max_factorial<float>::value >= 30);
-};
-template <>
-struct Pn_size<double>
-{
- BOOST_STATIC_CONSTANT(unsigned, value = 30); // 16-20 digit accuracy
- BOOST_STATIC_ASSERT(::boost::math::max_factorial<double>::value >= 60);
-};
-template <>
-struct Pn_size<long double>
-{
- BOOST_STATIC_CONSTANT(unsigned, value = 50); // ~35-50 digit accuracy
- BOOST_STATIC_ASSERT(::boost::math::max_factorial<long double>::value >= 100);
-};
-
-template <class T, class Policy>
-T beta_small_b_large_a_series(T a, T b, T x, T y, T s0, T mult, const Policy& pol, bool normalised)
-{
- typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
- BOOST_MATH_STD_USING
- //
- // This is DiDonato and Morris's BGRAT routine, see Eq's 9 through 9.6.
- //
- // Some values we'll need later, these are Eq 9.1:
- //
- T bm1 = b - 1;
- T t = a + bm1 / 2;
- T lx, u;
- if(y < 0.35)
- lx = boost::math::log1p(-y, pol);
- else
- lx = log(x);
- u = -t * lx;
- // and from from 9.2:
- T prefix;
- T h = regularised_gamma_prefix(b, u, pol, lanczos_type());
- if(h <= tools::min_value<T>())
- return s0;
- if(normalised)
- {
- prefix = h / boost::math::tgamma_delta_ratio(a, b, pol);
- prefix /= pow(t, b);
- }
- else
- {
- prefix = full_igamma_prefix(b, u, pol) / pow(t, b);
- }
- prefix *= mult;
- //
- // now we need the quantity Pn, unfortunatately this is computed
- // recursively, and requires a full history of all the previous values
- // so no choice but to declare a big table and hope it's big enough...
- //
- T p[ ::boost::math::detail::Pn_size<T>::value ] = { 1 }; // see 9.3.
- //
- // Now an initial value for J, see 9.6:
- //
- T j = boost::math::gamma_q(b, u, pol) / h;
- //
- // Now we can start to pull things together and evaluate the sum in Eq 9:
- //
- T sum = s0 + prefix * j; // Value at N = 0
- // some variables we'll need:
- unsigned tnp1 = 1; // 2*N+1
- T lx2 = lx / 2;
- lx2 *= lx2;
- T lxp = 1;
- T t4 = 4 * t * t;
- T b2n = b;
-
- for(unsigned n = 1; n < sizeof(p)/sizeof(p[0]); ++n)
- {
- /*
- // debugging code, enable this if you want to determine whether
- // the table of Pn's is large enough...
- //
- static int max_count = 2;
- if(n > max_count)
- {
- max_count = n;
- std::cerr << "Max iterations in BGRAT was " << n << std::endl;
- }
- */
- //
- // begin by evaluating the next Pn from Eq 9.4:
- //
- tnp1 += 2;
- p[n] = 0;
- T mbn = b - n;
- unsigned tmp1 = 3;
- for(unsigned m = 1; m < n; ++m)
- {
- mbn = m * b - n;
- p[n] += mbn * p[n-m] / boost::math::unchecked_factorial<T>(tmp1);
- tmp1 += 2;
- }
- p[n] /= n;
- p[n] += bm1 / boost::math::unchecked_factorial<T>(tnp1);
- //
- // Now we want Jn from Jn-1 using Eq 9.6:
- //
- j = (b2n * (b2n + 1) * j + (u + b2n + 1) * lxp) / t4;
- lxp *= lx2;
- b2n += 2;
- //
- // pull it together with Eq 9:
- //
- T r = prefix * p[n] * j;
- sum += r;
- if(r > 1)
- {
- if(fabs(r) < fabs(tools::epsilon<T>() * sum))
- break;
- }
- else
- {
- if(fabs(r / tools::epsilon<T>()) < fabs(sum))
- break;
- }
- }
- return sum;
-} // template <class T, class Lanczos>T beta_small_b_large_a_series(T a, T b, T x, T y, T s0, T mult, const Lanczos& l, bool normalised)
-
-//
-// For integer arguments we can relate the incomplete beta to the
-// complement of the binomial distribution cdf and use this finite sum.
-//
-template <class T>
-inline T binomial_ccdf(T n, T k, T x, T y)
-{
- BOOST_MATH_STD_USING // ADL of std names
- T result = pow(x, n);
- T term = result;
- for(unsigned i = itrunc(T(n - 1)); i > k; --i)
- {
- term *= ((i + 1) * y) / ((n - i) * x) ;
- result += term;
- }
-
- return result;
-}
-
-
-//
-// The incomplete beta function implementation:
-// This is just a big bunch of spagetti code to divide up the
-// input range and select the right implementation method for
-// each domain:
-//
-template <class T, class Policy>
-T ibeta_imp(T a, T b, T x, const Policy& pol, bool inv, bool normalised, T* p_derivative)
-{
- static const char* function = "boost::math::ibeta<%1%>(%1%, %1%, %1%)";
- typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
- BOOST_MATH_STD_USING // for ADL of std math functions.
-
- BOOST_MATH_INSTRUMENT_VARIABLE(a);
- BOOST_MATH_INSTRUMENT_VARIABLE(b);
- BOOST_MATH_INSTRUMENT_VARIABLE(x);
- BOOST_MATH_INSTRUMENT_VARIABLE(inv);
- BOOST_MATH_INSTRUMENT_VARIABLE(normalised);
-
- bool invert = inv;
- T fract;
- T y = 1 - x;
-
- BOOST_ASSERT((p_derivative == 0) || normalised);
-
- if(p_derivative)
- *p_derivative = -1; // value not set.
-
- if((x < 0) || (x > 1))
- return policies::raise_domain_error<T>(function, "Parameter x outside the range [0,1] in the incomplete beta function (got x=%1%).", x, pol);
-
- if(normalised)
- {
- if(a < 0)
- return policies::raise_domain_error<T>(function, "The argument a to the incomplete beta function must be >= zero (got a=%1%).", a, pol);
- if(b < 0)
- return policies::raise_domain_error<T>(function, "The argument b to the incomplete beta function must be >= zero (got b=%1%).", b, pol);
- // extend to a few very special cases:
- if(a == 0)
- {
- if(b == 0)
- return policies::raise_domain_error<T>(function, "The arguments a and b to the incomplete beta function cannot both be zero, with x=%1%.", x, pol);
- if(b > 0)
- return inv ? 0 : 1;
- }
- else if(b == 0)
- {
- if(a > 0)
- return inv ? 1 : 0;
- }
- }
- else
- {
- if(a <= 0)
- return policies::raise_domain_error<T>(function, "The argument a to the incomplete beta function must be greater than zero (got a=%1%).", a, pol);
- if(b <= 0)
- return policies::raise_domain_error<T>(function, "The argument b to the incomplete beta function must be greater than zero (got b=%1%).", b, pol);
- }
-
- if(x == 0)
- {
- if(p_derivative)
- {
- *p_derivative = (a == 1) ? (T)1 : (a < 1) ? T(tools::max_value<T>() / 2) : T(tools::min_value<T>() * 2);
- }
- return (invert ? (normalised ? T(1) : boost::math::beta(a, b, pol)) : T(0));
- }
- if(x == 1)
- {
- if(p_derivative)
- {
- *p_derivative = (b == 1) ? T(1) : (b < 1) ? T(tools::max_value<T>() / 2) : T(tools::min_value<T>() * 2);
- }
- return (invert == 0 ? (normalised ? 1 : boost::math::beta(a, b, pol)) : 0);
- }
- if((a == 0.5f) && (b == 0.5f))
- {
- // We have an arcsine distribution:
- if(p_derivative)
- {
- *p_derivative = (invert ? -1 : 1) / constants::pi<T>() * sqrt(y * x);
- }
- T p = invert ? asin(sqrt(y)) / constants::half_pi<T>() : asin(sqrt(x)) / constants::half_pi<T>();
- if(!normalised)
- p *= constants::pi<T>();
- return p;
- }
- if(a == 1)
- {
- std::swap(a, b);
- std::swap(x, y);
- invert = !invert;
- }
- if(b == 1)
- {
- //
- // Special case see: http://functions.wolfram.com/GammaBetaErf/BetaRegularized/03/01/01/
- //
- if(a == 1)
- {
- if(p_derivative)
- *p_derivative = invert ? -1 : 1;
- return invert ? y : x;
- }
-
- if(p_derivative)
- {
- *p_derivative = (invert ? -1 : 1) * a * pow(x, a - 1);
- }
- T p;
- if(y < 0.5)
- p = invert ? T(-boost::math::expm1(a * boost::math::log1p(-y, pol), pol)) : T(exp(a * boost::math::log1p(-y, pol)));
- else
- p = invert ? T(-boost::math::powm1(x, a, pol)) : T(pow(x, a));
- if(!normalised)
- p /= a;
- return p;
- }
-
- if((std::min)(a, b) <= 1)
- {
- if(x > 0.5)
- {
- std::swap(a, b);
- std::swap(x, y);
- invert = !invert;
- BOOST_MATH_INSTRUMENT_VARIABLE(invert);
- }
- if((std::max)(a, b) <= 1)
- {
- // Both a,b < 1:
- if((a >= (std::min)(T(0.2), b)) || (pow(x, a) <= 0.9))
- {
- if(!invert)
- {
- fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- else
- {
- fract = -(normalised ? 1 : boost::math::beta(a, b, pol));
- invert = false;
- fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- }
- else
- {
- std::swap(a, b);
- std::swap(x, y);
- invert = !invert;
- if(y >= 0.3)
- {
- if(!invert)
- {
- fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- else
- {
- fract = -(normalised ? 1 : boost::math::beta(a, b, pol));
- invert = false;
- fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- }
- else
- {
- // Sidestep on a, and then use the series representation:
- T prefix;
- if(!normalised)
- {
- prefix = rising_factorial_ratio(T(a+b), a, 20);
- }
- else
- {
- prefix = 1;
- }
- fract = ibeta_a_step(a, b, x, y, 20, pol, normalised, p_derivative);
- if(!invert)
- {
- fract = beta_small_b_large_a_series(T(a + 20), b, x, y, fract, prefix, pol, normalised);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- else
- {
- fract -= (normalised ? 1 : boost::math::beta(a, b, pol));
- invert = false;
- fract = -beta_small_b_large_a_series(T(a + 20), b, x, y, fract, prefix, pol, normalised);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- }
- }
- }
- else
- {
- // One of a, b < 1 only:
- if((b <= 1) || ((x < 0.1) && (pow(b * x, a) <= 0.7)))
- {
- if(!invert)
- {
- fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- else
- {
- fract = -(normalised ? 1 : boost::math::beta(a, b, pol));
- invert = false;
- fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- }
- else
- {
- std::swap(a, b);
- std::swap(x, y);
- invert = !invert;
-
- if(y >= 0.3)
- {
- if(!invert)
- {
- fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- else
- {
- fract = -(normalised ? 1 : boost::math::beta(a, b, pol));
- invert = false;
- fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- }
- else if(a >= 15)
- {
- if(!invert)
- {
- fract = beta_small_b_large_a_series(a, b, x, y, T(0), T(1), pol, normalised);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- else
- {
- fract = -(normalised ? 1 : boost::math::beta(a, b, pol));
- invert = false;
- fract = -beta_small_b_large_a_series(a, b, x, y, fract, T(1), pol, normalised);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- }
- else
- {
- // Sidestep to improve errors:
- T prefix;
- if(!normalised)
- {
- prefix = rising_factorial_ratio(T(a+b), a, 20);
- }
- else
- {
- prefix = 1;
- }
- fract = ibeta_a_step(a, b, x, y, 20, pol, normalised, p_derivative);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- if(!invert)
- {
- fract = beta_small_b_large_a_series(T(a + 20), b, x, y, fract, prefix, pol, normalised);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- else
- {
- fract -= (normalised ? 1 : boost::math::beta(a, b, pol));
- invert = false;
- fract = -beta_small_b_large_a_series(T(a + 20), b, x, y, fract, prefix, pol, normalised);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- }
- }
- }
- }
- else
- {
- // Both a,b >= 1:
- T lambda;
- if(a < b)
- {
- lambda = a - (a + b) * x;
- }
- else
- {
- lambda = (a + b) * y - b;
- }
- if(lambda < 0)
- {
- std::swap(a, b);
- std::swap(x, y);
- invert = !invert;
- BOOST_MATH_INSTRUMENT_VARIABLE(invert);
- }
-
- if(b < 40)
- {
- if((floor(a) == a) && (floor(b) == b) && (a < (std::numeric_limits<int>::max)() - 100))
- {
- // relate to the binomial distribution and use a finite sum:
- T k = a - 1;
- T n = b + k;
- fract = binomial_ccdf(n, k, x, y);
- if(!normalised)
- fract *= boost::math::beta(a, b, pol);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- else if(b * x <= 0.7)
- {
- if(!invert)
- {
- fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- else
- {
- fract = -(normalised ? 1 : boost::math::beta(a, b, pol));
- invert = false;
- fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- }
- else if(a > 15)
- {
- // sidestep so we can use the series representation:
- int n = itrunc(T(floor(b)), pol);
- if(n == b)
- --n;
- T bbar = b - n;
- T prefix;
- if(!normalised)
- {
- prefix = rising_factorial_ratio(T(a+bbar), bbar, n);
- }
- else
- {
- prefix = 1;
- }
- fract = ibeta_a_step(bbar, a, y, x, n, pol, normalised, static_cast<T*>(0));
- fract = beta_small_b_large_a_series(a, bbar, x, y, fract, T(1), pol, normalised);
- fract /= prefix;
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- else if(normalised)
- {
- // the formula here for the non-normalised case is tricky to figure
- // out (for me!!), and requires two pochhammer calculations rather
- // than one, so leave it for now....
- int n = itrunc(T(floor(b)), pol);
- T bbar = b - n;
- if(bbar <= 0)
- {
- --n;
- bbar += 1;
- }
- fract = ibeta_a_step(bbar, a, y, x, n, pol, normalised, static_cast<T*>(0));
- fract += ibeta_a_step(a, bbar, x, y, 20, pol, normalised, static_cast<T*>(0));
- if(invert)
- fract -= (normalised ? 1 : boost::math::beta(a, b, pol));
- //fract = ibeta_series(a+20, bbar, x, fract, l, normalised, p_derivative, y);
- fract = beta_small_b_large_a_series(T(a+20), bbar, x, y, fract, T(1), pol, normalised);
- if(invert)
- {
- fract = -fract;
- invert = false;
- }
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- else
- {
- fract = ibeta_fraction2(a, b, x, y, pol, normalised, p_derivative);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- }
- else
- {
- fract = ibeta_fraction2(a, b, x, y, pol, normalised, p_derivative);
- BOOST_MATH_INSTRUMENT_VARIABLE(fract);
- }
- }
- if(p_derivative)
- {
- if(*p_derivative < 0)
- {
- *p_derivative = ibeta_power_terms(a, b, x, y, lanczos_type(), true, pol);
- }
- T div = y * x;
-
- if(*p_derivative != 0)
- {
- if((tools::max_value<T>() * div < *p_derivative))
- {
- // overflow, return an arbitarily large value:
- *p_derivative = tools::max_value<T>() / 2;
- }
- else
- {
- *p_derivative /= div;
- }
- }
- }
- return invert ? (normalised ? 1 : boost::math::beta(a, b, pol)) - fract : fract;
-} // template <class T, class Lanczos>T ibeta_imp(T a, T b, T x, const Lanczos& l, bool inv, bool normalised)
-
-template <class T, class Policy>
-inline T ibeta_imp(T a, T b, T x, const Policy& pol, bool inv, bool normalised)
-{
- return ibeta_imp(a, b, x, pol, inv, normalised, static_cast<T*>(0));
-}
-
-template <class T, class Policy>
-T ibeta_derivative_imp(T a, T b, T x, const Policy& pol)
-{
- static const char* function = "ibeta_derivative<%1%>(%1%,%1%,%1%)";
- //
- // start with the usual error checks:
- //
- if(a <= 0)
- return policies::raise_domain_error<T>(function, "The argument a to the incomplete beta function must be greater than zero (got a=%1%).", a, pol);
- if(b <= 0)
- return policies::raise_domain_error<T>(function, "The argument b to the incomplete beta function must be greater than zero (got b=%1%).", b, pol);
- if((x < 0) || (x > 1))
- return policies::raise_domain_error<T>(function, "Parameter x outside the range [0,1] in the incomplete beta function (got x=%1%).", x, pol);
- //
- // Now the corner cases:
- //
- if(x == 0)
- {
- return (a > 1) ? 0 :
- (a == 1) ? 1 / boost::math::beta(a, b, pol) : policies::raise_overflow_error<T>(function, 0, pol);
- }
- else if(x == 1)
- {
- return (b > 1) ? 0 :
- (b == 1) ? 1 / boost::math::beta(a, b, pol) : policies::raise_overflow_error<T>(function, 0, pol);
- }
- //
- // Now the regular cases:
- //
- typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
- T f1 = ibeta_power_terms<T>(a, b, x, 1 - x, lanczos_type(), true, pol);
- T y = (1 - x) * x;
-
- if(f1 == 0)
- return 0;
-
- if((tools::max_value<T>() * y < f1))
- {
- // overflow:
- return policies::raise_overflow_error<T>(function, 0, pol);
- }
-
- f1 /= y;
-
- return f1;
-}
-//
-// Some forwarding functions that dis-ambiguate the third argument type:
-//
-template <class RT1, class RT2, class Policy>
-inline typename tools::promote_args<RT1, RT2>::type
- beta(RT1 a, RT2 b, const Policy&, const mpl::true_*)
-{
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<RT1, RT2>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
-
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::beta_imp(static_cast<value_type>(a), static_cast<value_type>(b), evaluation_type(), forwarding_policy()), "boost::math::beta<%1%>(%1%,%1%)");
-}
-template <class RT1, class RT2, class RT3>
-inline typename tools::promote_args<RT1, RT2, RT3>::type
- beta(RT1 a, RT2 b, RT3 x, const mpl::false_*)
-{
- return boost::math::beta(a, b, x, policies::policy<>());
-}
-} // namespace detail
-
-//
-// The actual function entry-points now follow, these just figure out
-// which Lanczos approximation to use
-// and forward to the implementation functions:
-//
-template <class RT1, class RT2, class A>
-inline typename tools::promote_args<RT1, RT2, A>::type
- beta(RT1 a, RT2 b, A arg)
-{
- typedef typename policies::is_policy<A>::type tag;
- return boost::math::detail::beta(a, b, arg, static_cast<tag*>(0));
-}
-
-template <class RT1, class RT2>
-inline typename tools::promote_args<RT1, RT2>::type
- beta(RT1 a, RT2 b)
-{
- return boost::math::beta(a, b, policies::policy<>());
-}
-
-template <class RT1, class RT2, class RT3, class Policy>
-inline typename tools::promote_args<RT1, RT2, RT3>::type
- beta(RT1 a, RT2 b, RT3 x, const Policy&)
-{
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
-
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy(), false, false), "boost::math::beta<%1%>(%1%,%1%,%1%)");
-}
-
-template <class RT1, class RT2, class RT3, class Policy>
-inline typename tools::promote_args<RT1, RT2, RT3>::type
- betac(RT1 a, RT2 b, RT3 x, const Policy&)
-{
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
-
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy(), true, false), "boost::math::betac<%1%>(%1%,%1%,%1%)");
-}
-template <class RT1, class RT2, class RT3>
-inline typename tools::promote_args<RT1, RT2, RT3>::type
- betac(RT1 a, RT2 b, RT3 x)
-{
- return boost::math::betac(a, b, x, policies::policy<>());
-}
-
-template <class RT1, class RT2, class RT3, class Policy>
-inline typename tools::promote_args<RT1, RT2, RT3>::type
- ibeta(RT1 a, RT2 b, RT3 x, const Policy&)
-{
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
-
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy(), false, true), "boost::math::ibeta<%1%>(%1%,%1%,%1%)");
-}
-template <class RT1, class RT2, class RT3>
-inline typename tools::promote_args<RT1, RT2, RT3>::type
- ibeta(RT1 a, RT2 b, RT3 x)
-{
- return boost::math::ibeta(a, b, x, policies::policy<>());
-}
-
-template <class RT1, class RT2, class RT3, class Policy>
-inline typename tools::promote_args<RT1, RT2, RT3>::type
- ibetac(RT1 a, RT2 b, RT3 x, const Policy&)
-{
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
-
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy(), true, true), "boost::math::ibetac<%1%>(%1%,%1%,%1%)");
-}
-template <class RT1, class RT2, class RT3>
-inline typename tools::promote_args<RT1, RT2, RT3>::type
- ibetac(RT1 a, RT2 b, RT3 x)
-{
- return boost::math::ibetac(a, b, x, policies::policy<>());
-}
-
-template <class RT1, class RT2, class RT3, class Policy>
-inline typename tools::promote_args<RT1, RT2, RT3>::type
- ibeta_derivative(RT1 a, RT2 b, RT3 x, const Policy&)
-{
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
-
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_derivative_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy()), "boost::math::ibeta_derivative<%1%>(%1%,%1%,%1%)");
-}
-template <class RT1, class RT2, class RT3>
-inline typename tools::promote_args<RT1, RT2, RT3>::type
- ibeta_derivative(RT1 a, RT2 b, RT3 x)
-{
- return boost::math::ibeta_derivative(a, b, x, policies::policy<>());
-}
-
-} // namespace math
-} // namespace boost
-
-#include <boost/math/special_functions/detail/ibeta_inverse.hpp>
-#include <boost/math/special_functions/detail/ibeta_inv_ab.hpp>
-
-#endif // BOOST_MATH_SPECIAL_BETA_HPP
-
-
-
-
-