summaryrefslogtreecommitdiff
path: root/src/third_party/boost-1.60.0/boost/math/tools/toms748_solve.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/third_party/boost-1.60.0/boost/math/tools/toms748_solve.hpp')
-rw-r--r--src/third_party/boost-1.60.0/boost/math/tools/toms748_solve.hpp613
1 files changed, 613 insertions, 0 deletions
diff --git a/src/third_party/boost-1.60.0/boost/math/tools/toms748_solve.hpp b/src/third_party/boost-1.60.0/boost/math/tools/toms748_solve.hpp
new file mode 100644
index 00000000000..dca6bf02183
--- /dev/null
+++ b/src/third_party/boost-1.60.0/boost/math/tools/toms748_solve.hpp
@@ -0,0 +1,613 @@
+// (C) Copyright John Maddock 2006.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
+#define BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+#include <boost/math/tools/precision.hpp>
+#include <boost/math/policies/error_handling.hpp>
+#include <boost/math/tools/config.hpp>
+#include <boost/math/special_functions/sign.hpp>
+#include <boost/cstdint.hpp>
+#include <limits>
+
+#ifdef BOOST_MATH_LOG_ROOT_ITERATIONS
+# define BOOST_MATH_LOGGER_INCLUDE <boost/math/tools/iteration_logger.hpp>
+# include BOOST_MATH_LOGGER_INCLUDE
+# undef BOOST_MATH_LOGGER_INCLUDE
+#else
+# define BOOST_MATH_LOG_COUNT(count)
+#endif
+
+namespace boost{ namespace math{ namespace tools{
+
+template <class T>
+class eps_tolerance
+{
+public:
+ eps_tolerance()
+ {
+ eps = 4 * tools::epsilon<T>();
+ }
+ eps_tolerance(unsigned bits)
+ {
+ BOOST_MATH_STD_USING
+ eps = (std::max)(T(ldexp(1.0F, 1-bits)), T(4 * tools::epsilon<T>()));
+ }
+ bool operator()(const T& a, const T& b)
+ {
+ BOOST_MATH_STD_USING
+ return fabs(a - b) <= (eps * (std::min)(fabs(a), fabs(b)));
+ }
+private:
+ T eps;
+};
+
+struct equal_floor
+{
+ equal_floor(){}
+ template <class T>
+ bool operator()(const T& a, const T& b)
+ {
+ BOOST_MATH_STD_USING
+ return floor(a) == floor(b);
+ }
+};
+
+struct equal_ceil
+{
+ equal_ceil(){}
+ template <class T>
+ bool operator()(const T& a, const T& b)
+ {
+ BOOST_MATH_STD_USING
+ return ceil(a) == ceil(b);
+ }
+};
+
+struct equal_nearest_integer
+{
+ equal_nearest_integer(){}
+ template <class T>
+ bool operator()(const T& a, const T& b)
+ {
+ BOOST_MATH_STD_USING
+ return floor(a + 0.5f) == floor(b + 0.5f);
+ }
+};
+
+namespace detail{
+
+template <class F, class T>
+void bracket(F f, T& a, T& b, T c, T& fa, T& fb, T& d, T& fd)
+{
+ //
+ // Given a point c inside the existing enclosing interval
+ // [a, b] sets a = c if f(c) == 0, otherwise finds the new
+ // enclosing interval: either [a, c] or [c, b] and sets
+ // d and fd to the point that has just been removed from
+ // the interval. In other words d is the third best guess
+ // to the root.
+ //
+ BOOST_MATH_STD_USING // For ADL of std math functions
+ T tol = tools::epsilon<T>() * 2;
+ //
+ // If the interval [a,b] is very small, or if c is too close
+ // to one end of the interval then we need to adjust the
+ // location of c accordingly:
+ //
+ if((b - a) < 2 * tol * a)
+ {
+ c = a + (b - a) / 2;
+ }
+ else if(c <= a + fabs(a) * tol)
+ {
+ c = a + fabs(a) * tol;
+ }
+ else if(c >= b - fabs(b) * tol)
+ {
+ c = b - fabs(b) * tol;
+ }
+ //
+ // OK, lets invoke f(c):
+ //
+ T fc = f(c);
+ //
+ // if we have a zero then we have an exact solution to the root:
+ //
+ if(fc == 0)
+ {
+ a = c;
+ fa = 0;
+ d = 0;
+ fd = 0;
+ return;
+ }
+ //
+ // Non-zero fc, update the interval:
+ //
+ if(boost::math::sign(fa) * boost::math::sign(fc) < 0)
+ {
+ d = b;
+ fd = fb;
+ b = c;
+ fb = fc;
+ }
+ else
+ {
+ d = a;
+ fd = fa;
+ a = c;
+ fa= fc;
+ }
+}
+
+template <class T>
+inline T safe_div(T num, T denom, T r)
+{
+ //
+ // return num / denom without overflow,
+ // return r if overflow would occur.
+ //
+ BOOST_MATH_STD_USING // For ADL of std math functions
+
+ if(fabs(denom) < 1)
+ {
+ if(fabs(denom * tools::max_value<T>()) <= fabs(num))
+ return r;
+ }
+ return num / denom;
+}
+
+template <class T>
+inline T secant_interpolate(const T& a, const T& b, const T& fa, const T& fb)
+{
+ //
+ // Performs standard secant interpolation of [a,b] given
+ // function evaluations f(a) and f(b). Performs a bisection
+ // if secant interpolation would leave us very close to either
+ // a or b. Rationale: we only call this function when at least
+ // one other form of interpolation has already failed, so we know
+ // that the function is unlikely to be smooth with a root very
+ // close to a or b.
+ //
+ BOOST_MATH_STD_USING // For ADL of std math functions
+
+ T tol = tools::epsilon<T>() * 5;
+ T c = a - (fa / (fb - fa)) * (b - a);
+ if((c <= a + fabs(a) * tol) || (c >= b - fabs(b) * tol))
+ return (a + b) / 2;
+ return c;
+}
+
+template <class T>
+T quadratic_interpolate(const T& a, const T& b, T const& d,
+ const T& fa, const T& fb, T const& fd,
+ unsigned count)
+{
+ //
+ // Performs quadratic interpolation to determine the next point,
+ // takes count Newton steps to find the location of the
+ // quadratic polynomial.
+ //
+ // Point d must lie outside of the interval [a,b], it is the third
+ // best approximation to the root, after a and b.
+ //
+ // Note: this does not guarentee to find a root
+ // inside [a, b], so we fall back to a secant step should
+ // the result be out of range.
+ //
+ // Start by obtaining the coefficients of the quadratic polynomial:
+ //
+ T B = safe_div(T(fb - fa), T(b - a), tools::max_value<T>());
+ T A = safe_div(T(fd - fb), T(d - b), tools::max_value<T>());
+ A = safe_div(T(A - B), T(d - a), T(0));
+
+ if(A == 0)
+ {
+ // failure to determine coefficients, try a secant step:
+ return secant_interpolate(a, b, fa, fb);
+ }
+ //
+ // Determine the starting point of the Newton steps:
+ //
+ T c;
+ if(boost::math::sign(A) * boost::math::sign(fa) > 0)
+ {
+ c = a;
+ }
+ else
+ {
+ c = b;
+ }
+ //
+ // Take the Newton steps:
+ //
+ for(unsigned i = 1; i <= count; ++i)
+ {
+ //c -= safe_div(B * c, (B + A * (2 * c - a - b)), 1 + c - a);
+ c -= safe_div(T(fa+(B+A*(c-b))*(c-a)), T(B + A * (2 * c - a - b)), T(1 + c - a));
+ }
+ if((c <= a) || (c >= b))
+ {
+ // Oops, failure, try a secant step:
+ c = secant_interpolate(a, b, fa, fb);
+ }
+ return c;
+}
+
+template <class T>
+T cubic_interpolate(const T& a, const T& b, const T& d,
+ const T& e, const T& fa, const T& fb,
+ const T& fd, const T& fe)
+{
+ //
+ // Uses inverse cubic interpolation of f(x) at points
+ // [a,b,d,e] to obtain an approximate root of f(x).
+ // Points d and e lie outside the interval [a,b]
+ // and are the third and forth best approximations
+ // to the root that we have found so far.
+ //
+ // Note: this does not guarentee to find a root
+ // inside [a, b], so we fall back to quadratic
+ // interpolation in case of an erroneous result.
+ //
+ BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b
+ << " d = " << d << " e = " << e << " fa = " << fa << " fb = " << fb
+ << " fd = " << fd << " fe = " << fe);
+ T q11 = (d - e) * fd / (fe - fd);
+ T q21 = (b - d) * fb / (fd - fb);
+ T q31 = (a - b) * fa / (fb - fa);
+ T d21 = (b - d) * fd / (fd - fb);
+ T d31 = (a - b) * fb / (fb - fa);
+ BOOST_MATH_INSTRUMENT_CODE(
+ "q11 = " << q11 << " q21 = " << q21 << " q31 = " << q31
+ << " d21 = " << d21 << " d31 = " << d31);
+ T q22 = (d21 - q11) * fb / (fe - fb);
+ T q32 = (d31 - q21) * fa / (fd - fa);
+ T d32 = (d31 - q21) * fd / (fd - fa);
+ T q33 = (d32 - q22) * fa / (fe - fa);
+ T c = q31 + q32 + q33 + a;
+ BOOST_MATH_INSTRUMENT_CODE(
+ "q22 = " << q22 << " q32 = " << q32 << " d32 = " << d32
+ << " q33 = " << q33 << " c = " << c);
+
+ if((c <= a) || (c >= b))
+ {
+ // Out of bounds step, fall back to quadratic interpolation:
+ c = quadratic_interpolate(a, b, d, fa, fb, fd, 3);
+ BOOST_MATH_INSTRUMENT_CODE(
+ "Out of bounds interpolation, falling back to quadratic interpolation. c = " << c);
+ }
+
+ return c;
+}
+
+} // namespace detail
+
+template <class F, class T, class Tol, class Policy>
+std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
+{
+ //
+ // Main entry point and logic for Toms Algorithm 748
+ // root finder.
+ //
+ BOOST_MATH_STD_USING // For ADL of std math functions
+
+ static const char* function = "boost::math::tools::toms748_solve<%1%>";
+
+ boost::uintmax_t count = max_iter;
+ T a, b, fa, fb, c, u, fu, a0, b0, d, fd, e, fe;
+ static const T mu = 0.5f;
+
+ // initialise a, b and fa, fb:
+ a = ax;
+ b = bx;
+ if(a >= b)
+ return boost::math::detail::pair_from_single(policies::raise_domain_error(
+ function,
+ "Parameters a and b out of order: a=%1%", a, pol));
+ fa = fax;
+ fb = fbx;
+
+ if(tol(a, b) || (fa == 0) || (fb == 0))
+ {
+ max_iter = 0;
+ if(fa == 0)
+ b = a;
+ else if(fb == 0)
+ a = b;
+ return std::make_pair(a, b);
+ }
+
+ if(boost::math::sign(fa) * boost::math::sign(fb) > 0)
+ return boost::math::detail::pair_from_single(policies::raise_domain_error(
+ function,
+ "Parameters a and b do not bracket the root: a=%1%", a, pol));
+ // dummy value for fd, e and fe:
+ fe = e = fd = 1e5F;
+
+ if(fa != 0)
+ {
+ //
+ // On the first step we take a secant step:
+ //
+ c = detail::secant_interpolate(a, b, fa, fb);
+ detail::bracket(f, a, b, c, fa, fb, d, fd);
+ --count;
+ BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
+
+ if(count && (fa != 0) && !tol(a, b))
+ {
+ //
+ // On the second step we take a quadratic interpolation:
+ //
+ c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
+ e = d;
+ fe = fd;
+ detail::bracket(f, a, b, c, fa, fb, d, fd);
+ --count;
+ BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
+ }
+ }
+
+ while(count && (fa != 0) && !tol(a, b))
+ {
+ // save our brackets:
+ a0 = a;
+ b0 = b;
+ //
+ // Starting with the third step taken
+ // we can use either quadratic or cubic interpolation.
+ // Cubic interpolation requires that all four function values
+ // fa, fb, fd, and fe are distinct, should that not be the case
+ // then variable prof will get set to true, and we'll end up
+ // taking a quadratic step instead.
+ //
+ T min_diff = tools::min_value<T>() * 32;
+ bool prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
+ if(prof)
+ {
+ c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
+ BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
+ }
+ else
+ {
+ c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
+ }
+ //
+ // re-bracket, and check for termination:
+ //
+ e = d;
+ fe = fd;
+ detail::bracket(f, a, b, c, fa, fb, d, fd);
+ if((0 == --count) || (fa == 0) || tol(a, b))
+ break;
+ BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
+ //
+ // Now another interpolated step:
+ //
+ prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
+ if(prof)
+ {
+ c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 3);
+ BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
+ }
+ else
+ {
+ c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
+ }
+ //
+ // Bracket again, and check termination condition, update e:
+ //
+ detail::bracket(f, a, b, c, fa, fb, d, fd);
+ if((0 == --count) || (fa == 0) || tol(a, b))
+ break;
+ BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
+ //
+ // Now we take a double-length secant step:
+ //
+ if(fabs(fa) < fabs(fb))
+ {
+ u = a;
+ fu = fa;
+ }
+ else
+ {
+ u = b;
+ fu = fb;
+ }
+ c = u - 2 * (fu / (fb - fa)) * (b - a);
+ if(fabs(c - u) > (b - a) / 2)
+ {
+ c = a + (b - a) / 2;
+ }
+ //
+ // Bracket again, and check termination condition:
+ //
+ e = d;
+ fe = fd;
+ detail::bracket(f, a, b, c, fa, fb, d, fd);
+ BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
+ BOOST_MATH_INSTRUMENT_CODE(" tol = " << T((fabs(a) - fabs(b)) / fabs(a)));
+ if((0 == --count) || (fa == 0) || tol(a, b))
+ break;
+ //
+ // And finally... check to see if an additional bisection step is
+ // to be taken, we do this if we're not converging fast enough:
+ //
+ if((b - a) < mu * (b0 - a0))
+ continue;
+ //
+ // bracket again on a bisection:
+ //
+ e = d;
+ fe = fd;
+ detail::bracket(f, a, b, T(a + (b - a) / 2), fa, fb, d, fd);
+ --count;
+ BOOST_MATH_INSTRUMENT_CODE("Not converging: Taking a bisection!!!!");
+ BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
+ } // while loop
+
+ max_iter -= count;
+ if(fa == 0)
+ {
+ b = a;
+ }
+ else if(fb == 0)
+ {
+ a = b;
+ }
+ BOOST_MATH_LOG_COUNT(max_iter)
+ return std::make_pair(a, b);
+}
+
+template <class F, class T, class Tol>
+inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter)
+{
+ return toms748_solve(f, ax, bx, fax, fbx, tol, max_iter, policies::policy<>());
+}
+
+template <class F, class T, class Tol, class Policy>
+inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
+{
+ max_iter -= 2;
+ std::pair<T, T> r = toms748_solve(f, ax, bx, f(ax), f(bx), tol, max_iter, pol);
+ max_iter += 2;
+ return r;
+}
+
+template <class F, class T, class Tol>
+inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter)
+{
+ return toms748_solve(f, ax, bx, tol, max_iter, policies::policy<>());
+}
+
+template <class F, class T, class Tol, class Policy>
+std::pair<T, T> bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
+{
+ BOOST_MATH_STD_USING
+ static const char* function = "boost::math::tools::bracket_and_solve_root<%1%>";
+ //
+ // Set up inital brackets:
+ //
+ T a = guess;
+ T b = a;
+ T fa = f(a);
+ T fb = fa;
+ //
+ // Set up invocation count:
+ //
+ boost::uintmax_t count = max_iter - 1;
+
+ int step = 32;
+
+ if((fa < 0) == (guess < 0 ? !rising : rising))
+ {
+ //
+ // Zero is to the right of b, so walk upwards
+ // until we find it:
+ //
+ while((boost::math::sign)(fb) == (boost::math::sign)(fa))
+ {
+ if(count == 0)
+ return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol));
+ //
+ // Heuristic: normally it's best not to increase the step sizes as we'll just end up
+ // with a really wide range to search for the root. However, if the initial guess was *really*
+ // bad then we need to speed up the search otherwise we'll take forever if we're orders of
+ // magnitude out. This happens most often if the guess is a small value (say 1) and the result
+ // we're looking for is close to std::numeric_limits<T>::min().
+ //
+ if((max_iter - count) % step == 0)
+ {
+ factor *= 2;
+ if(step > 1) step /= 2;
+ }
+ //
+ // Now go ahead and move our guess by "factor":
+ //
+ a = b;
+ fa = fb;
+ b *= factor;
+ fb = f(b);
+ --count;
+ BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
+ }
+ }
+ else
+ {
+ //
+ // Zero is to the left of a, so walk downwards
+ // until we find it:
+ //
+ while((boost::math::sign)(fb) == (boost::math::sign)(fa))
+ {
+ if(fabs(a) < tools::min_value<T>())
+ {
+ // Escape route just in case the answer is zero!
+ max_iter -= count;
+ max_iter += 1;
+ return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0));
+ }
+ if(count == 0)
+ return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol));
+ //
+ // Heuristic: normally it's best not to increase the step sizes as we'll just end up
+ // with a really wide range to search for the root. However, if the initial guess was *really*
+ // bad then we need to speed up the search otherwise we'll take forever if we're orders of
+ // magnitude out. This happens most often if the guess is a small value (say 1) and the result
+ // we're looking for is close to std::numeric_limits<T>::min().
+ //
+ if((max_iter - count) % step == 0)
+ {
+ factor *= 2;
+ if(step > 1) step /= 2;
+ }
+ //
+ // Now go ahead and move are guess by "factor":
+ //
+ b = a;
+ fb = fa;
+ a /= factor;
+ fa = f(a);
+ --count;
+ BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
+ }
+ }
+ max_iter -= count;
+ max_iter += 1;
+ std::pair<T, T> r = toms748_solve(
+ f,
+ (a < 0 ? b : a),
+ (a < 0 ? a : b),
+ (a < 0 ? fb : fa),
+ (a < 0 ? fa : fb),
+ tol,
+ count,
+ pol);
+ max_iter += count;
+ BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
+ BOOST_MATH_LOG_COUNT(max_iter)
+ return r;
+}
+
+template <class F, class T, class Tol>
+inline std::pair<T, T> bracket_and_solve_root(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter)
+{
+ return bracket_and_solve_root(f, guess, factor, rising, tol, max_iter, policies::policy<>());
+}
+
+} // namespace tools
+} // namespace math
+} // namespace boost
+
+
+#endif // BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
+