summaryrefslogtreecommitdiff
path: root/src/third_party/boost-1.69.0/boost/math/distributions/detail/inv_discrete_quantile.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/third_party/boost-1.69.0/boost/math/distributions/detail/inv_discrete_quantile.hpp')
-rw-r--r--src/third_party/boost-1.69.0/boost/math/distributions/detail/inv_discrete_quantile.hpp571
1 files changed, 0 insertions, 571 deletions
diff --git a/src/third_party/boost-1.69.0/boost/math/distributions/detail/inv_discrete_quantile.hpp b/src/third_party/boost-1.69.0/boost/math/distributions/detail/inv_discrete_quantile.hpp
deleted file mode 100644
index 23e00b8e036..00000000000
--- a/src/third_party/boost-1.69.0/boost/math/distributions/detail/inv_discrete_quantile.hpp
+++ /dev/null
@@ -1,571 +0,0 @@
-// Copyright John Maddock 2007.
-// Use, modification and distribution are subject to the
-// Boost Software License, Version 1.0. (See accompanying file
-// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-
-#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
-#define BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
-
-#include <algorithm>
-
-namespace boost{ namespace math{ namespace detail{
-
-//
-// Functor for root finding algorithm:
-//
-template <class Dist>
-struct distribution_quantile_finder
-{
- typedef typename Dist::value_type value_type;
- typedef typename Dist::policy_type policy_type;
-
- distribution_quantile_finder(const Dist d, value_type p, bool c)
- : dist(d), target(p), comp(c) {}
-
- value_type operator()(value_type const& x)
- {
- return comp ? value_type(target - cdf(complement(dist, x))) : value_type(cdf(dist, x) - target);
- }
-
-private:
- Dist dist;
- value_type target;
- bool comp;
-};
-//
-// The purpose of adjust_bounds, is to toggle the last bit of the
-// range so that both ends round to the same integer, if possible.
-// If they do both round the same then we terminate the search
-// for the root *very* quickly when finding an integer result.
-// At the point that this function is called we know that "a" is
-// below the root and "b" above it, so this change can not result
-// in the root no longer being bracketed.
-//
-template <class Real, class Tol>
-void adjust_bounds(Real& /* a */, Real& /* b */, Tol const& /* tol */){}
-
-template <class Real>
-void adjust_bounds(Real& /* a */, Real& b, tools::equal_floor const& /* tol */)
-{
- BOOST_MATH_STD_USING
- b -= tools::epsilon<Real>() * b;
-}
-
-template <class Real>
-void adjust_bounds(Real& a, Real& /* b */, tools::equal_ceil const& /* tol */)
-{
- BOOST_MATH_STD_USING
- a += tools::epsilon<Real>() * a;
-}
-
-template <class Real>
-void adjust_bounds(Real& a, Real& b, tools::equal_nearest_integer const& /* tol */)
-{
- BOOST_MATH_STD_USING
- a += tools::epsilon<Real>() * a;
- b -= tools::epsilon<Real>() * b;
-}
-//
-// This is where all the work is done:
-//
-template <class Dist, class Tolerance>
-typename Dist::value_type
- do_inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- bool comp,
- typename Dist::value_type guess,
- const typename Dist::value_type& multiplier,
- typename Dist::value_type adder,
- const Tolerance& tol,
- boost::uintmax_t& max_iter)
-{
- typedef typename Dist::value_type value_type;
- typedef typename Dist::policy_type policy_type;
-
- static const char* function = "boost::math::do_inverse_discrete_quantile<%1%>";
-
- BOOST_MATH_STD_USING
-
- distribution_quantile_finder<Dist> f(dist, p, comp);
- //
- // Max bounds of the distribution:
- //
- value_type min_bound, max_bound;
- boost::math::tie(min_bound, max_bound) = support(dist);
-
- if(guess > max_bound)
- guess = max_bound;
- if(guess < min_bound)
- guess = min_bound;
-
- value_type fa = f(guess);
- boost::uintmax_t count = max_iter - 1;
- value_type fb(fa), a(guess), b =0; // Compiler warning C4701: potentially uninitialized local variable 'b' used
-
- if(fa == 0)
- return guess;
-
- //
- // For small expected results, just use a linear search:
- //
- if(guess < 10)
- {
- b = a;
- while((a < 10) && (fa * fb >= 0))
- {
- if(fb <= 0)
- {
- a = b;
- b = a + 1;
- if(b > max_bound)
- b = max_bound;
- fb = f(b);
- --count;
- if(fb == 0)
- return b;
- if(a == b)
- return b; // can't go any higher!
- }
- else
- {
- b = a;
- a = (std::max)(value_type(b - 1), value_type(0));
- if(a < min_bound)
- a = min_bound;
- fa = f(a);
- --count;
- if(fa == 0)
- return a;
- if(a == b)
- return a; // We can't go any lower than this!
- }
- }
- }
- //
- // Try and bracket using a couple of additions first,
- // we're assuming that "guess" is likely to be accurate
- // to the nearest int or so:
- //
- else if(adder != 0)
- {
- //
- // If we're looking for a large result, then bump "adder" up
- // by a bit to increase our chances of bracketing the root:
- //
- //adder = (std::max)(adder, 0.001f * guess);
- if(fa < 0)
- {
- b = a + adder;
- if(b > max_bound)
- b = max_bound;
- }
- else
- {
- b = (std::max)(value_type(a - adder), value_type(0));
- if(b < min_bound)
- b = min_bound;
- }
- fb = f(b);
- --count;
- if(fb == 0)
- return b;
- if(count && (fa * fb >= 0))
- {
- //
- // We didn't bracket the root, try
- // once more:
- //
- a = b;
- fa = fb;
- if(fa < 0)
- {
- b = a + adder;
- if(b > max_bound)
- b = max_bound;
- }
- else
- {
- b = (std::max)(value_type(a - adder), value_type(0));
- if(b < min_bound)
- b = min_bound;
- }
- fb = f(b);
- --count;
- }
- if(a > b)
- {
- using std::swap;
- swap(a, b);
- swap(fa, fb);
- }
- }
- //
- // If the root hasn't been bracketed yet, try again
- // using the multiplier this time:
- //
- if((boost::math::sign)(fb) == (boost::math::sign)(fa))
- {
- if(fa < 0)
- {
- //
- // Zero is to the right of x2, so walk upwards
- // until we find it:
- //
- while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
- {
- if(count == 0)
- return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, policy_type());
- a = b;
- fa = fb;
- b *= multiplier;
- if(b > max_bound)
- b = max_bound;
- fb = f(b);
- --count;
- BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
- }
- }
- else
- {
- //
- // Zero is to the left of a, so walk downwards
- // until we find it:
- //
- while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
- {
- if(fabs(a) < tools::min_value<value_type>())
- {
- // Escape route just in case the answer is zero!
- max_iter -= count;
- max_iter += 1;
- return 0;
- }
- if(count == 0)
- return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, policy_type());
- b = a;
- fb = fa;
- a /= multiplier;
- if(a < min_bound)
- a = min_bound;
- fa = f(a);
- --count;
- BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
- }
- }
- }
- max_iter -= count;
- if(fa == 0)
- return a;
- if(fb == 0)
- return b;
- if(a == b)
- return b; // Ran out of bounds trying to bracket - there is no answer!
- //
- // Adjust bounds so that if we're looking for an integer
- // result, then both ends round the same way:
- //
- adjust_bounds(a, b, tol);
- //
- // We don't want zero or denorm lower bounds:
- //
- if(a < tools::min_value<value_type>())
- a = tools::min_value<value_type>();
- //
- // Go ahead and find the root:
- //
- std::pair<value_type, value_type> r = toms748_solve(f, a, b, fa, fb, tol, count, policy_type());
- max_iter += count;
- BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
- return (r.first + r.second) / 2;
-}
-//
-// Some special routine for rounding up and down:
-// We want to check and see if we are very close to an integer, and if so test to see if
-// that integer is an exact root of the cdf. We do this because our root finder only
-// guarantees to find *a root*, and there can sometimes be many consecutive floating
-// point values which are all roots. This is especially true if the target probability
-// is very close 1.
-//
-template <class Dist>
-inline typename Dist::value_type round_to_floor(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c)
-{
- BOOST_MATH_STD_USING
- typename Dist::value_type cc = ceil(result);
- typename Dist::value_type pp = cc <= support(d).second ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 1;
- if(pp == p)
- result = cc;
- else
- result = floor(result);
- //
- // Now find the smallest integer <= result for which we get an exact root:
- //
- while(result != 0)
- {
- cc = result - 1;
- if(cc < support(d).first)
- break;
- pp = c ? cdf(complement(d, cc)) : cdf(d, cc);
- if(pp == p)
- result = cc;
- else if(c ? pp > p : pp < p)
- break;
- result -= 1;
- }
-
- return result;
-}
-
-#ifdef BOOST_MSVC
-#pragma warning(push)
-#pragma warning(disable:4127)
-#endif
-
-template <class Dist>
-inline typename Dist::value_type round_to_ceil(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c)
-{
- BOOST_MATH_STD_USING
- typename Dist::value_type cc = floor(result);
- typename Dist::value_type pp = cc >= support(d).first ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 0;
- if(pp == p)
- result = cc;
- else
- result = ceil(result);
- //
- // Now find the largest integer >= result for which we get an exact root:
- //
- while(true)
- {
- cc = result + 1;
- if(cc > support(d).second)
- break;
- pp = c ? cdf(complement(d, cc)) : cdf(d, cc);
- if(pp == p)
- result = cc;
- else if(c ? pp < p : pp > p)
- break;
- result += 1;
- }
-
- return result;
-}
-
-#ifdef BOOST_MSVC
-#pragma warning(pop)
-#endif
-//
-// Now finally are the public API functions.
-// There is one overload for each policy,
-// each one is responsible for selecting the correct
-// termination condition, and rounding the result
-// to an int where required.
-//
-template <class Dist>
-inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- typename Dist::value_type p,
- bool c,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::real>&,
- boost::uintmax_t& max_iter)
-{
- if(p > 0.5)
- {
- p = 1 - p;
- c = !c;
- }
- typename Dist::value_type pp = c ? 1 - p : p;
- if(pp <= pdf(dist, 0))
- return 0;
- return do_inverse_discrete_quantile(
- dist,
- p,
- c,
- guess,
- multiplier,
- adder,
- tools::eps_tolerance<typename Dist::value_type>(policies::digits<typename Dist::value_type, typename Dist::policy_type>()),
- max_iter);
-}
-
-template <class Dist>
-inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- bool c,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_outwards>&,
- boost::uintmax_t& max_iter)
-{
- typedef typename Dist::value_type value_type;
- BOOST_MATH_STD_USING
- typename Dist::value_type pp = c ? 1 - p : p;
- if(pp <= pdf(dist, 0))
- return 0;
- //
- // What happens next depends on whether we're looking for an
- // upper or lower quantile:
- //
- if(pp < 0.5f)
- return round_to_floor(dist, do_inverse_discrete_quantile(
- dist,
- p,
- c,
- (guess < 1 ? value_type(1) : (value_type)floor(guess)),
- multiplier,
- adder,
- tools::equal_floor(),
- max_iter), p, c);
- // else:
- return round_to_ceil(dist, do_inverse_discrete_quantile(
- dist,
- p,
- c,
- (value_type)ceil(guess),
- multiplier,
- adder,
- tools::equal_ceil(),
- max_iter), p, c);
-}
-
-template <class Dist>
-inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- bool c,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_inwards>&,
- boost::uintmax_t& max_iter)
-{
- typedef typename Dist::value_type value_type;
- BOOST_MATH_STD_USING
- typename Dist::value_type pp = c ? 1 - p : p;
- if(pp <= pdf(dist, 0))
- return 0;
- //
- // What happens next depends on whether we're looking for an
- // upper or lower quantile:
- //
- if(pp < 0.5f)
- return round_to_ceil(dist, do_inverse_discrete_quantile(
- dist,
- p,
- c,
- ceil(guess),
- multiplier,
- adder,
- tools::equal_ceil(),
- max_iter), p, c);
- // else:
- return round_to_floor(dist, do_inverse_discrete_quantile(
- dist,
- p,
- c,
- (guess < 1 ? value_type(1) : floor(guess)),
- multiplier,
- adder,
- tools::equal_floor(),
- max_iter), p, c);
-}
-
-template <class Dist>
-inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- bool c,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_down>&,
- boost::uintmax_t& max_iter)
-{
- typedef typename Dist::value_type value_type;
- BOOST_MATH_STD_USING
- typename Dist::value_type pp = c ? 1 - p : p;
- if(pp <= pdf(dist, 0))
- return 0;
- return round_to_floor(dist, do_inverse_discrete_quantile(
- dist,
- p,
- c,
- (guess < 1 ? value_type(1) : floor(guess)),
- multiplier,
- adder,
- tools::equal_floor(),
- max_iter), p, c);
-}
-
-template <class Dist>
-inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- bool c,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_up>&,
- boost::uintmax_t& max_iter)
-{
- BOOST_MATH_STD_USING
- typename Dist::value_type pp = c ? 1 - p : p;
- if(pp <= pdf(dist, 0))
- return 0;
- return round_to_ceil(dist, do_inverse_discrete_quantile(
- dist,
- p,
- c,
- ceil(guess),
- multiplier,
- adder,
- tools::equal_ceil(),
- max_iter), p, c);
-}
-
-template <class Dist>
-inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- bool c,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_nearest>&,
- boost::uintmax_t& max_iter)
-{
- typedef typename Dist::value_type value_type;
- BOOST_MATH_STD_USING
- typename Dist::value_type pp = c ? 1 - p : p;
- if(pp <= pdf(dist, 0))
- return 0;
- //
- // Note that we adjust the guess to the nearest half-integer:
- // this increase the chances that we will bracket the root
- // with two results that both round to the same integer quickly.
- //
- return round_to_floor(dist, do_inverse_discrete_quantile(
- dist,
- p,
- c,
- (guess < 0.5f ? value_type(1.5f) : floor(guess + 0.5f) + 0.5f),
- multiplier,
- adder,
- tools::equal_nearest_integer(),
- max_iter) + 0.5f, p, c);
-}
-
-}}} // namespaces
-
-#endif // BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
-