summaryrefslogtreecommitdiff
path: root/src/third_party/boost-1.69.0/boost/math/distributions/non_central_chi_squared.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/third_party/boost-1.69.0/boost/math/distributions/non_central_chi_squared.hpp')
-rw-r--r--src/third_party/boost-1.69.0/boost/math/distributions/non_central_chi_squared.hpp999
1 files changed, 999 insertions, 0 deletions
diff --git a/src/third_party/boost-1.69.0/boost/math/distributions/non_central_chi_squared.hpp b/src/third_party/boost-1.69.0/boost/math/distributions/non_central_chi_squared.hpp
new file mode 100644
index 00000000000..038d951b029
--- /dev/null
+++ b/src/third_party/boost-1.69.0/boost/math/distributions/non_central_chi_squared.hpp
@@ -0,0 +1,999 @@
+// boost\math\distributions\non_central_chi_squared.hpp
+
+// Copyright John Maddock 2008.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP
+#define BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/gamma.hpp> // for incomplete gamma. gamma_q
+#include <boost/math/special_functions/bessel.hpp> // for cyl_bessel_i
+#include <boost/math/special_functions/round.hpp> // for iround
+#include <boost/math/distributions/complement.hpp> // complements
+#include <boost/math/distributions/chi_squared.hpp> // central distribution
+#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
+#include <boost/math/special_functions/fpclassify.hpp> // isnan.
+#include <boost/math/tools/roots.hpp> // for root finding.
+#include <boost/math/distributions/detail/generic_mode.hpp>
+#include <boost/math/distributions/detail/generic_quantile.hpp>
+
+namespace boost
+{
+ namespace math
+ {
+
+ template <class RealType, class Policy>
+ class non_central_chi_squared_distribution;
+
+ namespace detail{
+
+ template <class T, class Policy>
+ T non_central_chi_square_q(T x, T f, T theta, const Policy& pol, T init_sum = 0)
+ {
+ //
+ // Computes the complement of the Non-Central Chi-Square
+ // Distribution CDF by summing a weighted sum of complements
+ // of the central-distributions. The weighting factor is
+ // a Poisson Distribution.
+ //
+ // This is an application of the technique described in:
+ //
+ // Computing discrete mixtures of continuous
+ // distributions: noncentral chisquare, noncentral t
+ // and the distribution of the square of the sample
+ // multiple correlation coeficient.
+ // D. Benton, K. Krishnamoorthy.
+ // Computational Statistics & Data Analysis 43 (2003) 249 - 267
+ //
+ BOOST_MATH_STD_USING
+
+ // Special case:
+ if(x == 0)
+ return 1;
+
+ //
+ // Initialize the variables we'll be using:
+ //
+ T lambda = theta / 2;
+ T del = f / 2;
+ T y = x / 2;
+ boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+ T errtol = boost::math::policies::get_epsilon<T, Policy>();
+ T sum = init_sum;
+ //
+ // k is the starting location for iteration, we'll
+ // move both forwards and backwards from this point.
+ // k is chosen as the peek of the Poisson weights, which
+ // will occur *before* the largest term.
+ //
+ int k = iround(lambda, pol);
+ // Forwards and backwards Poisson weights:
+ T poisf = boost::math::gamma_p_derivative(static_cast<T>(1 + k), lambda, pol);
+ T poisb = poisf * k / lambda;
+ // Initial forwards central chi squared term:
+ T gamf = boost::math::gamma_q(del + k, y, pol);
+ // Forwards and backwards recursion terms on the central chi squared:
+ T xtermf = boost::math::gamma_p_derivative(del + 1 + k, y, pol);
+ T xtermb = xtermf * (del + k) / y;
+ // Initial backwards central chi squared term:
+ T gamb = gamf - xtermb;
+
+ //
+ // Forwards iteration first, this is the
+ // stable direction for the gamma function
+ // recurrences:
+ //
+ int i;
+ for(i = k; static_cast<boost::uintmax_t>(i-k) < max_iter; ++i)
+ {
+ T term = poisf * gamf;
+ sum += term;
+ poisf *= lambda / (i + 1);
+ gamf += xtermf;
+ xtermf *= y / (del + i + 1);
+ if(((sum == 0) || (fabs(term / sum) < errtol)) && (term >= poisf * gamf))
+ break;
+ }
+ //Error check:
+ if(static_cast<boost::uintmax_t>(i-k) >= max_iter)
+ return policies::raise_evaluation_error(
+ "cdf(non_central_chi_squared_distribution<%1%>, %1%)",
+ "Series did not converge, closest value was %1%", sum, pol);
+ //
+ // Now backwards iteration: the gamma
+ // function recurrences are unstable in this
+ // direction, we rely on the terms deminishing in size
+ // faster than we introduce cancellation errors.
+ // For this reason it's very important that we start
+ // *before* the largest term so that backwards iteration
+ // is strictly converging.
+ //
+ for(i = k - 1; i >= 0; --i)
+ {
+ T term = poisb * gamb;
+ sum += term;
+ poisb *= i / lambda;
+ xtermb *= (del + i) / y;
+ gamb -= xtermb;
+ if((sum == 0) || (fabs(term / sum) < errtol))
+ break;
+ }
+
+ return sum;
+ }
+
+ template <class T, class Policy>
+ T non_central_chi_square_p_ding(T x, T f, T theta, const Policy& pol, T init_sum = 0)
+ {
+ //
+ // This is an implementation of:
+ //
+ // Algorithm AS 275:
+ // Computing the Non-Central #2 Distribution Function
+ // Cherng G. Ding
+ // Applied Statistics, Vol. 41, No. 2. (1992), pp. 478-482.
+ //
+ // This uses a stable forward iteration to sum the
+ // CDF, unfortunately this can not be used for large
+ // values of the non-centrality parameter because:
+ // * The first term may underfow to zero.
+ // * We may need an extra-ordinary number of terms
+ // before we reach the first *significant* term.
+ //
+ BOOST_MATH_STD_USING
+ // Special case:
+ if(x == 0)
+ return 0;
+ T tk = boost::math::gamma_p_derivative(f/2 + 1, x/2, pol);
+ T lambda = theta / 2;
+ T vk = exp(-lambda);
+ T uk = vk;
+ T sum = init_sum + tk * vk;
+ if(sum == 0)
+ return sum;
+
+ boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+ T errtol = boost::math::policies::get_epsilon<T, Policy>();
+
+ int i;
+ T lterm(0), term(0);
+ for(i = 1; static_cast<boost::uintmax_t>(i) < max_iter; ++i)
+ {
+ tk = tk * x / (f + 2 * i);
+ uk = uk * lambda / i;
+ vk = vk + uk;
+ lterm = term;
+ term = vk * tk;
+ sum += term;
+ if((fabs(term / sum) < errtol) && (term <= lterm))
+ break;
+ }
+ //Error check:
+ if(static_cast<boost::uintmax_t>(i) >= max_iter)
+ return policies::raise_evaluation_error(
+ "cdf(non_central_chi_squared_distribution<%1%>, %1%)",
+ "Series did not converge, closest value was %1%", sum, pol);
+ return sum;
+ }
+
+
+ template <class T, class Policy>
+ T non_central_chi_square_p(T y, T n, T lambda, const Policy& pol, T init_sum)
+ {
+ //
+ // This is taken more or less directly from:
+ //
+ // Computing discrete mixtures of continuous
+ // distributions: noncentral chisquare, noncentral t
+ // and the distribution of the square of the sample
+ // multiple correlation coeficient.
+ // D. Benton, K. Krishnamoorthy.
+ // Computational Statistics & Data Analysis 43 (2003) 249 - 267
+ //
+ // We're summing a Poisson weighting term multiplied by
+ // a central chi squared distribution.
+ //
+ BOOST_MATH_STD_USING
+ // Special case:
+ if(y == 0)
+ return 0;
+ boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+ T errtol = boost::math::policies::get_epsilon<T, Policy>();
+ T errorf(0), errorb(0);
+
+ T x = y / 2;
+ T del = lambda / 2;
+ //
+ // Starting location for the iteration, we'll iterate
+ // both forwards and backwards from this point. The
+ // location chosen is the maximum of the Poisson weight
+ // function, which ocurrs *after* the largest term in the
+ // sum.
+ //
+ int k = iround(del, pol);
+ T a = n / 2 + k;
+ // Central chi squared term for forward iteration:
+ T gamkf = boost::math::gamma_p(a, x, pol);
+
+ if(lambda == 0)
+ return gamkf;
+ // Central chi squared term for backward iteration:
+ T gamkb = gamkf;
+ // Forwards Poisson weight:
+ T poiskf = gamma_p_derivative(static_cast<T>(k+1), del, pol);
+ // Backwards Poisson weight:
+ T poiskb = poiskf;
+ // Forwards gamma function recursion term:
+ T xtermf = boost::math::gamma_p_derivative(a, x, pol);
+ // Backwards gamma function recursion term:
+ T xtermb = xtermf * x / a;
+ T sum = init_sum + poiskf * gamkf;
+ if(sum == 0)
+ return sum;
+ int i = 1;
+ //
+ // Backwards recursion first, this is the stable
+ // direction for gamma function recurrences:
+ //
+ while(i <= k)
+ {
+ xtermb *= (a - i + 1) / x;
+ gamkb += xtermb;
+ poiskb = poiskb * (k - i + 1) / del;
+ errorf = errorb;
+ errorb = gamkb * poiskb;
+ sum += errorb;
+ if((fabs(errorb / sum) < errtol) && (errorb <= errorf))
+ break;
+ ++i;
+ }
+ i = 1;
+ //
+ // Now forwards recursion, the gamma function
+ // recurrence relation is unstable in this direction,
+ // so we rely on the magnitude of successive terms
+ // decreasing faster than we introduce cancellation error.
+ // For this reason it's vital that k is chosen to be *after*
+ // the largest term, so that successive forward iterations
+ // are strictly (and rapidly) converging.
+ //
+ do
+ {
+ xtermf = xtermf * x / (a + i - 1);
+ gamkf = gamkf - xtermf;
+ poiskf = poiskf * del / (k + i);
+ errorf = poiskf * gamkf;
+ sum += errorf;
+ ++i;
+ }while((fabs(errorf / sum) > errtol) && (static_cast<boost::uintmax_t>(i) < max_iter));
+
+ //Error check:
+ if(static_cast<boost::uintmax_t>(i) >= max_iter)
+ return policies::raise_evaluation_error(
+ "cdf(non_central_chi_squared_distribution<%1%>, %1%)",
+ "Series did not converge, closest value was %1%", sum, pol);
+
+ return sum;
+ }
+
+ template <class T, class Policy>
+ T non_central_chi_square_pdf(T x, T n, T lambda, const Policy& pol)
+ {
+ //
+ // As above but for the PDF:
+ //
+ BOOST_MATH_STD_USING
+ boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+ T errtol = boost::math::policies::get_epsilon<T, Policy>();
+ T x2 = x / 2;
+ T n2 = n / 2;
+ T l2 = lambda / 2;
+ T sum = 0;
+ int k = itrunc(l2);
+ T pois = gamma_p_derivative(static_cast<T>(k + 1), l2, pol) * gamma_p_derivative(static_cast<T>(n2 + k), x2);
+ if(pois == 0)
+ return 0;
+ T poisb = pois;
+ for(int i = k; ; ++i)
+ {
+ sum += pois;
+ if(pois / sum < errtol)
+ break;
+ if(static_cast<boost::uintmax_t>(i - k) >= max_iter)
+ return policies::raise_evaluation_error(
+ "pdf(non_central_chi_squared_distribution<%1%>, %1%)",
+ "Series did not converge, closest value was %1%", sum, pol);
+ pois *= l2 * x2 / ((i + 1) * (n2 + i));
+ }
+ for(int i = k - 1; i >= 0; --i)
+ {
+ poisb *= (i + 1) * (n2 + i) / (l2 * x2);
+ sum += poisb;
+ if(poisb / sum < errtol)
+ break;
+ }
+ return sum / 2;
+ }
+
+ template <class RealType, class Policy>
+ inline RealType non_central_chi_squared_cdf(RealType x, RealType k, RealType l, bool invert, const Policy&)
+ {
+ typedef typename policies::evaluation<RealType, Policy>::type value_type;
+ typedef typename policies::normalise<
+ Policy,
+ policies::promote_float<false>,
+ policies::promote_double<false>,
+ policies::discrete_quantile<>,
+ policies::assert_undefined<> >::type forwarding_policy;
+
+ BOOST_MATH_STD_USING
+ value_type result;
+ if(l == 0)
+ return invert == false ? cdf(boost::math::chi_squared_distribution<RealType, Policy>(k), x) : cdf(complement(boost::math::chi_squared_distribution<RealType, Policy>(k), x));
+ else if(x > k + l)
+ {
+ // Complement is the smaller of the two:
+ result = detail::non_central_chi_square_q(
+ static_cast<value_type>(x),
+ static_cast<value_type>(k),
+ static_cast<value_type>(l),
+ forwarding_policy(),
+ static_cast<value_type>(invert ? 0 : -1));
+ invert = !invert;
+ }
+ else if(l < 200)
+ {
+ // For small values of the non-centrality parameter
+ // we can use Ding's method:
+ result = detail::non_central_chi_square_p_ding(
+ static_cast<value_type>(x),
+ static_cast<value_type>(k),
+ static_cast<value_type>(l),
+ forwarding_policy(),
+ static_cast<value_type>(invert ? -1 : 0));
+ }
+ else
+ {
+ // For largers values of the non-centrality
+ // parameter Ding's method will consume an
+ // extra-ordinary number of terms, and worse
+ // may return zero when the result is in fact
+ // finite, use Krishnamoorthy's method instead:
+ result = detail::non_central_chi_square_p(
+ static_cast<value_type>(x),
+ static_cast<value_type>(k),
+ static_cast<value_type>(l),
+ forwarding_policy(),
+ static_cast<value_type>(invert ? -1 : 0));
+ }
+ if(invert)
+ result = -result;
+ return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+ result,
+ "boost::math::non_central_chi_squared_cdf<%1%>(%1%, %1%, %1%)");
+ }
+
+ template <class T, class Policy>
+ struct nccs_quantile_functor
+ {
+ nccs_quantile_functor(const non_central_chi_squared_distribution<T,Policy>& d, T t, bool c)
+ : dist(d), target(t), comp(c) {}
+
+ T operator()(const T& x)
+ {
+ return comp ?
+ target - cdf(complement(dist, x))
+ : cdf(dist, x) - target;
+ }
+
+ private:
+ non_central_chi_squared_distribution<T,Policy> dist;
+ T target;
+ bool comp;
+ };
+
+ template <class RealType, class Policy>
+ RealType nccs_quantile(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& p, bool comp)
+ {
+ BOOST_MATH_STD_USING
+ static const char* function = "quantile(non_central_chi_squared_distribution<%1%>, %1%)";
+ typedef typename policies::evaluation<RealType, Policy>::type value_type;
+ typedef typename policies::normalise<
+ Policy,
+ policies::promote_float<false>,
+ policies::promote_double<false>,
+ policies::discrete_quantile<>,
+ policies::assert_undefined<> >::type forwarding_policy;
+
+ value_type k = dist.degrees_of_freedom();
+ value_type l = dist.non_centrality();
+ value_type r;
+ if(!detail::check_df(
+ function,
+ k, &r, Policy())
+ ||
+ !detail::check_non_centrality(
+ function,
+ l,
+ &r,
+ Policy())
+ ||
+ !detail::check_probability(
+ function,
+ static_cast<value_type>(p),
+ &r,
+ Policy()))
+ return (RealType)r;
+ //
+ // Special cases get short-circuited first:
+ //
+ if(p == 0)
+ return comp ? policies::raise_overflow_error<RealType>(function, 0, Policy()) : 0;
+ if(p == 1)
+ return comp ? 0 : policies::raise_overflow_error<RealType>(function, 0, Policy());
+ //
+ // This is Pearson's approximation to the quantile, see
+ // Pearson, E. S. (1959) "Note on an approximation to the distribution of
+ // noncentral chi squared", Biometrika 46: 364.
+ // See also:
+ // "A comparison of approximations to percentiles of the noncentral chi2-distribution",
+ // Hardeo Sahai and Mario Miguel Ojeda, Revista de Matematica: Teoria y Aplicaciones 2003 10(1-2) : 57-76.
+ // Note that the latter reference refers to an approximation of the CDF, when they really mean the quantile.
+ //
+ value_type b = -(l * l) / (k + 3 * l);
+ value_type c = (k + 3 * l) / (k + 2 * l);
+ value_type ff = (k + 2 * l) / (c * c);
+ value_type guess;
+ if(comp)
+ {
+ guess = b + c * quantile(complement(chi_squared_distribution<value_type, forwarding_policy>(ff), p));
+ }
+ else
+ {
+ guess = b + c * quantile(chi_squared_distribution<value_type, forwarding_policy>(ff), p);
+ }
+ //
+ // Sometimes guess goes very small or negative, in that case we have
+ // to do something else for the initial guess, this approximation
+ // was provided in a private communication from Thomas Luu, PhD candidate,
+ // University College London. It's an asymptotic expansion for the
+ // quantile which usually gets us within an order of magnitude of the
+ // correct answer.
+ // Fast and accurate parallel computation of quantile functions for random number generation,
+ // Thomas LuuDoctorial Thesis 2016
+ // http://discovery.ucl.ac.uk/1482128/
+ //
+ if(guess < 0.005)
+ {
+ value_type pp = comp ? 1 - p : p;
+ //guess = pow(pow(value_type(2), (k / 2 - 1)) * exp(l / 2) * pp * k, 2 / k);
+ guess = pow(pow(value_type(2), (k / 2 - 1)) * exp(l / 2) * pp * k * boost::math::tgamma(k / 2, forwarding_policy()), (2 / k));
+ if(guess == 0)
+ guess = tools::min_value<value_type>();
+ }
+ value_type result = detail::generic_quantile(
+ non_central_chi_squared_distribution<value_type, forwarding_policy>(k, l),
+ p,
+ guess,
+ comp,
+ function);
+
+ return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+ result,
+ function);
+ }
+
+ template <class RealType, class Policy>
+ RealType nccs_pdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
+ {
+ BOOST_MATH_STD_USING
+ static const char* function = "pdf(non_central_chi_squared_distribution<%1%>, %1%)";
+ typedef typename policies::evaluation<RealType, Policy>::type value_type;
+ typedef typename policies::normalise<
+ Policy,
+ policies::promote_float<false>,
+ policies::promote_double<false>,
+ policies::discrete_quantile<>,
+ policies::assert_undefined<> >::type forwarding_policy;
+
+ value_type k = dist.degrees_of_freedom();
+ value_type l = dist.non_centrality();
+ value_type r;
+ if(!detail::check_df(
+ function,
+ k, &r, Policy())
+ ||
+ !detail::check_non_centrality(
+ function,
+ l,
+ &r,
+ Policy())
+ ||
+ !detail::check_positive_x(
+ function,
+ (value_type)x,
+ &r,
+ Policy()))
+ return (RealType)r;
+
+ if(l == 0)
+ return pdf(boost::math::chi_squared_distribution<RealType, forwarding_policy>(dist.degrees_of_freedom()), x);
+
+ // Special case:
+ if(x == 0)
+ return 0;
+ if(l > 50)
+ {
+ r = non_central_chi_square_pdf(static_cast<value_type>(x), k, l, forwarding_policy());
+ }
+ else
+ {
+ r = log(x / l) * (k / 4 - 0.5f) - (x + l) / 2;
+ if(fabs(r) >= tools::log_max_value<RealType>() / 4)
+ {
+ r = non_central_chi_square_pdf(static_cast<value_type>(x), k, l, forwarding_policy());
+ }
+ else
+ {
+ r = exp(r);
+ r = 0.5f * r
+ * boost::math::cyl_bessel_i(k/2 - 1, sqrt(l * x), forwarding_policy());
+ }
+ }
+ return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+ r,
+ function);
+ }
+
+ template <class RealType, class Policy>
+ struct degrees_of_freedom_finder
+ {
+ degrees_of_freedom_finder(
+ RealType lam_, RealType x_, RealType p_, bool c)
+ : lam(lam_), x(x_), p(p_), comp(c) {}
+
+ RealType operator()(const RealType& v)
+ {
+ non_central_chi_squared_distribution<RealType, Policy> d(v, lam);
+ return comp ?
+ RealType(p - cdf(complement(d, x)))
+ : RealType(cdf(d, x) - p);
+ }
+ private:
+ RealType lam;
+ RealType x;
+ RealType p;
+ bool comp;
+ };
+
+ template <class RealType, class Policy>
+ inline RealType find_degrees_of_freedom(
+ RealType lam, RealType x, RealType p, RealType q, const Policy& pol)
+ {
+ const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
+ if((p == 0) || (q == 0))
+ {
+ //
+ // Can't a thing if one of p and q is zero:
+ //
+ return policies::raise_evaluation_error<RealType>(function,
+ "Can't find degrees of freedom when the probability is 0 or 1, only possible answer is %1%",
+ RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
+ }
+ degrees_of_freedom_finder<RealType, Policy> f(lam, x, p < q ? p : q, p < q ? false : true);
+ tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
+ boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+ //
+ // Pick an initial guess that we know will give us a probability
+ // right around 0.5.
+ //
+ RealType guess = x - lam;
+ if(guess < 1)
+ guess = 1;
+ std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
+ f, guess, RealType(2), false, tol, max_iter, pol);
+ RealType result = ir.first + (ir.second - ir.first) / 2;
+ if(max_iter >= policies::get_max_root_iterations<Policy>())
+ {
+ return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
+ " or there is no answer to problem. Current best guess is %1%", result, Policy());
+ }
+ return result;
+ }
+
+ template <class RealType, class Policy>
+ struct non_centrality_finder
+ {
+ non_centrality_finder(
+ RealType v_, RealType x_, RealType p_, bool c)
+ : v(v_), x(x_), p(p_), comp(c) {}
+
+ RealType operator()(const RealType& lam)
+ {
+ non_central_chi_squared_distribution<RealType, Policy> d(v, lam);
+ return comp ?
+ RealType(p - cdf(complement(d, x)))
+ : RealType(cdf(d, x) - p);
+ }
+ private:
+ RealType v;
+ RealType x;
+ RealType p;
+ bool comp;
+ };
+
+ template <class RealType, class Policy>
+ inline RealType find_non_centrality(
+ RealType v, RealType x, RealType p, RealType q, const Policy& pol)
+ {
+ const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
+ if((p == 0) || (q == 0))
+ {
+ //
+ // Can't do a thing if one of p and q is zero:
+ //
+ return policies::raise_evaluation_error<RealType>(function,
+ "Can't find non centrality parameter when the probability is 0 or 1, only possible answer is %1%",
+ RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
+ }
+ non_centrality_finder<RealType, Policy> f(v, x, p < q ? p : q, p < q ? false : true);
+ tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
+ boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+ //
+ // Pick an initial guess that we know will give us a probability
+ // right around 0.5.
+ //
+ RealType guess = x - v;
+ if(guess < 1)
+ guess = 1;
+ std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
+ f, guess, RealType(2), false, tol, max_iter, pol);
+ RealType result = ir.first + (ir.second - ir.first) / 2;
+ if(max_iter >= policies::get_max_root_iterations<Policy>())
+ {
+ return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
+ " or there is no answer to problem. Current best guess is %1%", result, Policy());
+ }
+ return result;
+ }
+
+ }
+
+ template <class RealType = double, class Policy = policies::policy<> >
+ class non_central_chi_squared_distribution
+ {
+ public:
+ typedef RealType value_type;
+ typedef Policy policy_type;
+
+ non_central_chi_squared_distribution(RealType df_, RealType lambda) : df(df_), ncp(lambda)
+ {
+ const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::non_central_chi_squared_distribution(%1%,%1%)";
+ RealType r;
+ detail::check_df(
+ function,
+ df, &r, Policy());
+ detail::check_non_centrality(
+ function,
+ ncp,
+ &r,
+ Policy());
+ } // non_central_chi_squared_distribution constructor.
+
+ RealType degrees_of_freedom() const
+ { // Private data getter function.
+ return df;
+ }
+ RealType non_centrality() const
+ { // Private data getter function.
+ return ncp;
+ }
+ static RealType find_degrees_of_freedom(RealType lam, RealType x, RealType p)
+ {
+ const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
+ typedef typename policies::evaluation<RealType, Policy>::type eval_type;
+ typedef typename policies::normalise<
+ Policy,
+ policies::promote_float<false>,
+ policies::promote_double<false>,
+ policies::discrete_quantile<>,
+ policies::assert_undefined<> >::type forwarding_policy;
+ eval_type result = detail::find_degrees_of_freedom(
+ static_cast<eval_type>(lam),
+ static_cast<eval_type>(x),
+ static_cast<eval_type>(p),
+ static_cast<eval_type>(1-p),
+ forwarding_policy());
+ return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+ result,
+ function);
+ }
+ template <class A, class B, class C>
+ static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c)
+ {
+ const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
+ typedef typename policies::evaluation<RealType, Policy>::type eval_type;
+ typedef typename policies::normalise<
+ Policy,
+ policies::promote_float<false>,
+ policies::promote_double<false>,
+ policies::discrete_quantile<>,
+ policies::assert_undefined<> >::type forwarding_policy;
+ eval_type result = detail::find_degrees_of_freedom(
+ static_cast<eval_type>(c.dist),
+ static_cast<eval_type>(c.param1),
+ static_cast<eval_type>(1-c.param2),
+ static_cast<eval_type>(c.param2),
+ forwarding_policy());
+ return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+ result,
+ function);
+ }
+ static RealType find_non_centrality(RealType v, RealType x, RealType p)
+ {
+ const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
+ typedef typename policies::evaluation<RealType, Policy>::type eval_type;
+ typedef typename policies::normalise<
+ Policy,
+ policies::promote_float<false>,
+ policies::promote_double<false>,
+ policies::discrete_quantile<>,
+ policies::assert_undefined<> >::type forwarding_policy;
+ eval_type result = detail::find_non_centrality(
+ static_cast<eval_type>(v),
+ static_cast<eval_type>(x),
+ static_cast<eval_type>(p),
+ static_cast<eval_type>(1-p),
+ forwarding_policy());
+ return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+ result,
+ function);
+ }
+ template <class A, class B, class C>
+ static RealType find_non_centrality(const complemented3_type<A,B,C>& c)
+ {
+ const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
+ typedef typename policies::evaluation<RealType, Policy>::type eval_type;
+ typedef typename policies::normalise<
+ Policy,
+ policies::promote_float<false>,
+ policies::promote_double<false>,
+ policies::discrete_quantile<>,
+ policies::assert_undefined<> >::type forwarding_policy;
+ eval_type result = detail::find_non_centrality(
+ static_cast<eval_type>(c.dist),
+ static_cast<eval_type>(c.param1),
+ static_cast<eval_type>(1-c.param2),
+ static_cast<eval_type>(c.param2),
+ forwarding_policy());
+ return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+ result,
+ function);
+ }
+ private:
+ // Data member, initialized by constructor.
+ RealType df; // degrees of freedom.
+ RealType ncp; // non-centrality parameter
+ }; // template <class RealType, class Policy> class non_central_chi_squared_distribution
+
+ typedef non_central_chi_squared_distribution<double> non_central_chi_squared; // Reserved name of type double.
+
+ // Non-member functions to give properties of the distribution.
+
+ template <class RealType, class Policy>
+ inline const std::pair<RealType, RealType> range(const non_central_chi_squared_distribution<RealType, Policy>& /* dist */)
+ { // Range of permissible values for random variable k.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // Max integer?
+ }
+
+ template <class RealType, class Policy>
+ inline const std::pair<RealType, RealType> support(const non_central_chi_squared_distribution<RealType, Policy>& /* dist */)
+ { // Range of supported values for random variable k.
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
+ }
+
+ template <class RealType, class Policy>
+ inline RealType mean(const non_central_chi_squared_distribution<RealType, Policy>& dist)
+ { // Mean of poisson distribution = lambda.
+ const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::mean()";
+ RealType k = dist.degrees_of_freedom();
+ RealType l = dist.non_centrality();
+ RealType r;
+ if(!detail::check_df(
+ function,
+ k, &r, Policy())
+ ||
+ !detail::check_non_centrality(
+ function,
+ l,
+ &r,
+ Policy()))
+ return r;
+ return k + l;
+ } // mean
+
+ template <class RealType, class Policy>
+ inline RealType mode(const non_central_chi_squared_distribution<RealType, Policy>& dist)
+ { // mode.
+ static const char* function = "mode(non_central_chi_squared_distribution<%1%> const&)";
+
+ RealType k = dist.degrees_of_freedom();
+ RealType l = dist.non_centrality();
+ RealType r;
+ if(!detail::check_df(
+ function,
+ k, &r, Policy())
+ ||
+ !detail::check_non_centrality(
+ function,
+ l,
+ &r,
+ Policy()))
+ return (RealType)r;
+ return detail::generic_find_mode(dist, 1 + k, function);
+ }
+
+ template <class RealType, class Policy>
+ inline RealType variance(const non_central_chi_squared_distribution<RealType, Policy>& dist)
+ { // variance.
+ const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::variance()";
+ RealType k = dist.degrees_of_freedom();
+ RealType l = dist.non_centrality();
+ RealType r;
+ if(!detail::check_df(
+ function,
+ k, &r, Policy())
+ ||
+ !detail::check_non_centrality(
+ function,
+ l,
+ &r,
+ Policy()))
+ return r;
+ return 2 * (2 * l + k);
+ }
+
+ // RealType standard_deviation(const non_central_chi_squared_distribution<RealType, Policy>& dist)
+ // standard_deviation provided by derived accessors.
+
+ template <class RealType, class Policy>
+ inline RealType skewness(const non_central_chi_squared_distribution<RealType, Policy>& dist)
+ { // skewness = sqrt(l).
+ const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::skewness()";
+ RealType k = dist.degrees_of_freedom();
+ RealType l = dist.non_centrality();
+ RealType r;
+ if(!detail::check_df(
+ function,
+ k, &r, Policy())
+ ||
+ !detail::check_non_centrality(
+ function,
+ l,
+ &r,
+ Policy()))
+ return r;
+ BOOST_MATH_STD_USING
+ return pow(2 / (k + 2 * l), RealType(3)/2) * (k + 3 * l);
+ }
+
+ template <class RealType, class Policy>
+ inline RealType kurtosis_excess(const non_central_chi_squared_distribution<RealType, Policy>& dist)
+ {
+ const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::kurtosis_excess()";
+ RealType k = dist.degrees_of_freedom();
+ RealType l = dist.non_centrality();
+ RealType r;
+ if(!detail::check_df(
+ function,
+ k, &r, Policy())
+ ||
+ !detail::check_non_centrality(
+ function,
+ l,
+ &r,
+ Policy()))
+ return r;
+ return 12 * (k + 4 * l) / ((k + 2 * l) * (k + 2 * l));
+ } // kurtosis_excess
+
+ template <class RealType, class Policy>
+ inline RealType kurtosis(const non_central_chi_squared_distribution<RealType, Policy>& dist)
+ {
+ return kurtosis_excess(dist) + 3;
+ }
+
+ template <class RealType, class Policy>
+ inline RealType pdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
+ { // Probability Density/Mass Function.
+ return detail::nccs_pdf(dist, x);
+ } // pdf
+
+ template <class RealType, class Policy>
+ RealType cdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
+ {
+ const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::cdf(%1%)";
+ RealType k = dist.degrees_of_freedom();
+ RealType l = dist.non_centrality();
+ RealType r;
+ if(!detail::check_df(
+ function,
+ k, &r, Policy())
+ ||
+ !detail::check_non_centrality(
+ function,
+ l,
+ &r,
+ Policy())
+ ||
+ !detail::check_positive_x(
+ function,
+ x,
+ &r,
+ Policy()))
+ return r;
+
+ return detail::non_central_chi_squared_cdf(x, k, l, false, Policy());
+ } // cdf
+
+ template <class RealType, class Policy>
+ RealType cdf(const complemented2_type<non_central_chi_squared_distribution<RealType, Policy>, RealType>& c)
+ { // Complemented Cumulative Distribution Function
+ const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::cdf(%1%)";
+ non_central_chi_squared_distribution<RealType, Policy> const& dist = c.dist;
+ RealType x = c.param;
+ RealType k = dist.degrees_of_freedom();
+ RealType l = dist.non_centrality();
+ RealType r;
+ if(!detail::check_df(
+ function,
+ k, &r, Policy())
+ ||
+ !detail::check_non_centrality(
+ function,
+ l,
+ &r,
+ Policy())
+ ||
+ !detail::check_positive_x(
+ function,
+ x,
+ &r,
+ Policy()))
+ return r;
+
+ return detail::non_central_chi_squared_cdf(x, k, l, true, Policy());
+ } // ccdf
+
+ template <class RealType, class Policy>
+ inline RealType quantile(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& p)
+ { // Quantile (or Percent Point) function.
+ return detail::nccs_quantile(dist, p, false);
+ } // quantile
+
+ template <class RealType, class Policy>
+ inline RealType quantile(const complemented2_type<non_central_chi_squared_distribution<RealType, Policy>, RealType>& c)
+ { // Quantile (or Percent Point) function.
+ return detail::nccs_quantile(c.dist, c.param, true);
+ } // quantile complement.
+
+ } // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP
+
+
+