summaryrefslogtreecommitdiff
path: root/src/third_party/boost-1.69.0/boost/thread/win32/condition_variable.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/third_party/boost-1.69.0/boost/thread/win32/condition_variable.hpp')
-rw-r--r--src/third_party/boost-1.69.0/boost/thread/win32/condition_variable.hpp725
1 files changed, 725 insertions, 0 deletions
diff --git a/src/third_party/boost-1.69.0/boost/thread/win32/condition_variable.hpp b/src/third_party/boost-1.69.0/boost/thread/win32/condition_variable.hpp
new file mode 100644
index 00000000000..5cf975a5348
--- /dev/null
+++ b/src/third_party/boost-1.69.0/boost/thread/win32/condition_variable.hpp
@@ -0,0 +1,725 @@
+#ifndef BOOST_THREAD_CONDITION_VARIABLE_WIN32_HPP
+#define BOOST_THREAD_CONDITION_VARIABLE_WIN32_HPP
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+// (C) Copyright 2007-8 Anthony Williams
+// (C) Copyright 2011-2012 Vicente J. Botet Escriba
+
+#include <boost/thread/win32/thread_primitives.hpp>
+#include <boost/thread/win32/thread_data.hpp>
+#include <boost/thread/win32/thread_data.hpp>
+#include <boost/thread/win32/interlocked_read.hpp>
+#include <boost/thread/cv_status.hpp>
+#if defined BOOST_THREAD_USES_DATETIME
+#include <boost/thread/xtime.hpp>
+#endif
+#include <boost/thread/mutex.hpp>
+#include <boost/thread/thread_time.hpp>
+#include <boost/thread/lock_guard.hpp>
+#include <boost/thread/lock_types.hpp>
+#include <boost/thread/detail/platform_time.hpp>
+
+#include <boost/assert.hpp>
+#include <boost/intrusive_ptr.hpp>
+
+#ifdef BOOST_THREAD_USES_CHRONO
+#include <boost/chrono/system_clocks.hpp>
+#include <boost/chrono/ceil.hpp>
+#endif
+
+#include <limits.h>
+#include <algorithm>
+#include <vector>
+
+#include <boost/config/abi_prefix.hpp>
+
+namespace boost
+{
+ namespace detail
+ {
+ class basic_cv_list_entry;
+ void intrusive_ptr_add_ref(basic_cv_list_entry * p);
+ void intrusive_ptr_release(basic_cv_list_entry * p);
+
+ class basic_cv_list_entry
+ {
+ private:
+ detail::win32::handle_manager semaphore;
+ detail::win32::handle_manager wake_sem;
+ long waiters;
+ bool notified;
+ long references;
+
+ public:
+ BOOST_THREAD_NO_COPYABLE(basic_cv_list_entry)
+ explicit basic_cv_list_entry(detail::win32::handle_manager const& wake_sem_):
+ semaphore(detail::win32::create_anonymous_semaphore(0,LONG_MAX)),
+ wake_sem(wake_sem_.duplicate()),
+ waiters(1),notified(false),references(0)
+ {}
+
+ static bool no_waiters(boost::intrusive_ptr<basic_cv_list_entry> const& entry)
+ {
+ return !detail::interlocked_read_acquire(&entry->waiters);
+ }
+
+ void add_waiter()
+ {
+ BOOST_INTERLOCKED_INCREMENT(&waiters);
+ }
+
+ void remove_waiter()
+ {
+ BOOST_INTERLOCKED_DECREMENT(&waiters);
+ }
+
+ void release(unsigned count_to_release)
+ {
+ notified=true;
+ winapi::ReleaseSemaphore(semaphore,count_to_release,0);
+ }
+
+ void release_waiters()
+ {
+ release(detail::interlocked_read_acquire(&waiters));
+ }
+
+ bool is_notified() const
+ {
+ return notified;
+ }
+
+ bool interruptible_wait(detail::internal_platform_timepoint const &timeout)
+ {
+ return this_thread::interruptible_wait(semaphore, timeout);
+ }
+
+ bool woken()
+ {
+ unsigned long const woken_result=winapi::WaitForSingleObjectEx(wake_sem,0,0);
+ BOOST_ASSERT((woken_result==detail::win32::timeout) || (woken_result==0));
+ return woken_result==0;
+ }
+
+ friend void intrusive_ptr_add_ref(basic_cv_list_entry * p);
+ friend void intrusive_ptr_release(basic_cv_list_entry * p);
+ };
+
+ inline void intrusive_ptr_add_ref(basic_cv_list_entry * p)
+ {
+ BOOST_INTERLOCKED_INCREMENT(&p->references);
+ }
+
+ inline void intrusive_ptr_release(basic_cv_list_entry * p)
+ {
+ if(!BOOST_INTERLOCKED_DECREMENT(&p->references))
+ {
+ delete p;
+ }
+ }
+
+ class basic_condition_variable
+ {
+ boost::mutex internal_mutex;
+ long total_count;
+ unsigned active_generation_count;
+
+ typedef basic_cv_list_entry list_entry;
+
+ typedef boost::intrusive_ptr<list_entry> entry_ptr;
+ typedef std::vector<entry_ptr> generation_list;
+
+ generation_list generations;
+ detail::win32::handle_manager wake_sem;
+
+ void wake_waiters(long count_to_wake)
+ {
+ detail::interlocked_write_release(&total_count,total_count-count_to_wake);
+ winapi::ReleaseSemaphore(wake_sem,count_to_wake,0);
+ }
+
+ template<typename lock_type>
+ struct relocker
+ {
+ BOOST_THREAD_NO_COPYABLE(relocker)
+ lock_type& _lock;
+ bool _unlocked;
+
+ relocker(lock_type& lock_):
+ _lock(lock_), _unlocked(false)
+ {}
+ void unlock()
+ {
+ if ( ! _unlocked )
+ {
+ _lock.unlock();
+ _unlocked=true;
+ }
+ }
+ void lock()
+ {
+ if ( _unlocked )
+ {
+ _lock.lock();
+ _unlocked=false;
+ }
+ }
+ ~relocker() BOOST_NOEXCEPT_IF(false)
+ {
+ lock();
+ }
+ };
+
+
+ entry_ptr get_wait_entry()
+ {
+ boost::lock_guard<boost::mutex> lk(internal_mutex);
+ if(!wake_sem)
+ {
+ wake_sem=detail::win32::create_anonymous_semaphore(0,LONG_MAX);
+ BOOST_ASSERT(wake_sem);
+ }
+
+ detail::interlocked_write_release(&total_count,total_count+1);
+ if(generations.empty() || generations.back()->is_notified())
+ {
+ entry_ptr new_entry(new list_entry(wake_sem));
+ generations.push_back(new_entry);
+ return new_entry;
+ }
+ else
+ {
+ generations.back()->add_waiter();
+ return generations.back();
+ }
+ }
+
+ struct entry_manager
+ {
+ entry_ptr entry;
+ boost::mutex& internal_mutex;
+
+
+ BOOST_THREAD_NO_COPYABLE(entry_manager)
+#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
+ entry_manager(entry_ptr&& entry_, boost::mutex& mutex_):
+ entry(static_cast< entry_ptr&& >(entry_)), internal_mutex(mutex_)
+ {}
+#else
+ entry_manager(entry_ptr const& entry_, boost::mutex& mutex_):
+ entry(entry_), internal_mutex(mutex_)
+ {}
+#endif
+
+ void remove_waiter_and_reset()
+ {
+ if (entry) {
+ boost::lock_guard<boost::mutex> internal_lock(internal_mutex);
+ entry->remove_waiter();
+ entry.reset();
+ }
+ }
+ ~entry_manager() BOOST_NOEXCEPT_IF(false)
+ {
+ remove_waiter_and_reset();
+ }
+
+ list_entry* operator->()
+ {
+ return entry.get();
+ }
+ };
+
+ protected:
+ basic_condition_variable(const basic_condition_variable& other);
+ basic_condition_variable& operator=(const basic_condition_variable& other);
+
+ public:
+ basic_condition_variable():
+ total_count(0),active_generation_count(0),wake_sem(0)
+ {}
+
+ ~basic_condition_variable()
+ {}
+
+ // When this function returns true:
+ // * A notification (or sometimes a spurious OS signal) has been received
+ // * Do not assume that the timeout has not been reached
+ // * Do not assume that the predicate has been changed
+ //
+ // When this function returns false:
+ // * The timeout has been reached
+ // * Do not assume that a notification has not been received
+ // * Do not assume that the predicate has not been changed
+ template<typename lock_type>
+ bool do_wait_until(lock_type& lock, detail::internal_platform_timepoint const &timeout)
+ {
+ relocker<lock_type> locker(lock);
+ entry_manager entry(get_wait_entry(), internal_mutex);
+ locker.unlock();
+
+ bool woken=false;
+ while(!woken)
+ {
+ if(!entry->interruptible_wait(timeout))
+ {
+ return false;
+ }
+
+ woken=entry->woken();
+ }
+ // do it here to avoid throwing on the destructor
+ entry.remove_waiter_and_reset();
+ locker.lock();
+ return true;
+ }
+
+ void notify_one() BOOST_NOEXCEPT
+ {
+ if(detail::interlocked_read_acquire(&total_count))
+ {
+ boost::lock_guard<boost::mutex> internal_lock(internal_mutex);
+ if(!total_count)
+ {
+ return;
+ }
+ wake_waiters(1);
+
+ for(generation_list::iterator it=generations.begin(),
+ end=generations.end();
+ it!=end;++it)
+ {
+ (*it)->release(1);
+ }
+ generations.erase(std::remove_if(generations.begin(),generations.end(),&basic_cv_list_entry::no_waiters),generations.end());
+ }
+ }
+
+ void notify_all() BOOST_NOEXCEPT
+ {
+ if(detail::interlocked_read_acquire(&total_count))
+ {
+ boost::lock_guard<boost::mutex> internal_lock(internal_mutex);
+ if(!total_count)
+ {
+ return;
+ }
+ wake_waiters(total_count);
+ for(generation_list::iterator it=generations.begin(),
+ end=generations.end();
+ it!=end;++it)
+ {
+ (*it)->release_waiters();
+ }
+ generations.clear();
+ wake_sem=detail::win32::handle(0);
+ }
+ }
+
+ };
+ }
+
+ class condition_variable:
+ private detail::basic_condition_variable
+ {
+ public:
+ BOOST_THREAD_NO_COPYABLE(condition_variable)
+ condition_variable()
+ {}
+
+ using detail::basic_condition_variable::do_wait_until;
+ using detail::basic_condition_variable::notify_one;
+ using detail::basic_condition_variable::notify_all;
+
+ void wait(unique_lock<mutex>& m)
+ {
+ do_wait_until(m, detail::internal_platform_timepoint::getMax());
+ }
+
+ template<typename predicate_type>
+ void wait(unique_lock<mutex>& m,predicate_type pred)
+ {
+ while (!pred())
+ {
+ wait(m);
+ }
+ }
+
+#if defined BOOST_THREAD_USES_DATETIME
+ bool timed_wait(unique_lock<mutex>& m,boost::system_time const& abs_time)
+ {
+ // The system time may jump while this function is waiting. To compensate for this and time
+ // out near the correct time, we could call do_wait_until() in a loop with a short timeout
+ // and recheck the time remaining each time through the loop. However, because we can't
+ // check the predicate each time do_wait_until() completes, this introduces the possibility
+ // of not exiting the function when a notification occurs, since do_wait_until() may report
+ // that it timed out even though a notification was received. The best this function can do
+ // is report correctly whether or not it reached the timeout time.
+ const detail::real_platform_timepoint ts(abs_time);
+ const detail::platform_duration d(ts - detail::real_platform_clock::now());
+ do_wait_until(m, detail::internal_platform_clock::now() + d);
+ return ts > detail::real_platform_clock::now();
+ }
+ bool timed_wait(unique_lock<mutex>& m,boost::xtime const& abs_time)
+ {
+ return timed_wait(m, system_time(abs_time));
+ }
+ template<typename duration_type>
+ bool timed_wait(unique_lock<mutex>& m,duration_type const& wait_duration)
+ {
+ if (wait_duration.is_pos_infinity())
+ {
+ wait(m);
+ return true;
+ }
+ if (wait_duration.is_special())
+ {
+ return true;
+ }
+ const detail::platform_duration d(wait_duration);
+ return do_wait_until(m, detail::internal_platform_clock::now() + d);
+ }
+
+ template<typename predicate_type>
+ bool timed_wait(unique_lock<mutex>& m,boost::system_time const& abs_time,predicate_type pred)
+ {
+ // The system time may jump while this function is waiting. To compensate for this
+ // and time out near the correct time, we call do_wait_until() in a loop with a
+ // short timeout and recheck the time remaining each time through the loop.
+ const detail::real_platform_timepoint ts(abs_time);
+ while (!pred())
+ {
+ detail::platform_duration d(ts - detail::real_platform_clock::now());
+ if (d <= detail::platform_duration::zero()) break; // timeout occurred
+ d = (std::min)(d, detail::platform_milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS));
+ do_wait_until(m, detail::internal_platform_clock::now() + d);
+ }
+ return pred();
+ }
+ template<typename predicate_type>
+ bool timed_wait(unique_lock<mutex>& m,boost::xtime const& abs_time,predicate_type pred)
+ {
+ return timed_wait(m, system_time(abs_time), pred);
+ }
+ template<typename duration_type,typename predicate_type>
+ bool timed_wait(unique_lock<mutex>& m,duration_type const& wait_duration,predicate_type pred)
+ {
+ if (wait_duration.is_pos_infinity())
+ {
+ while (!pred())
+ {
+ wait(m);
+ }
+ return true;
+ }
+ if (wait_duration.is_special())
+ {
+ return pred();
+ }
+ const detail::platform_duration d(wait_duration);
+ const detail::internal_platform_timepoint ts(detail::internal_platform_clock::now() + d);
+ while (!pred())
+ {
+ if (!do_wait_until(m, ts)) break; // timeout occurred
+ }
+ return pred();
+ }
+#endif
+#ifdef BOOST_THREAD_USES_CHRONO
+ template <class Duration>
+ cv_status
+ wait_until(
+ unique_lock<mutex>& lock,
+ const chrono::time_point<detail::internal_chrono_clock, Duration>& t)
+ {
+ const detail::internal_platform_timepoint ts(t);
+ if (do_wait_until(lock, ts)) return cv_status::no_timeout;
+ else return cv_status::timeout;
+ }
+
+ template <class Clock, class Duration>
+ cv_status
+ wait_until(
+ unique_lock<mutex>& lock,
+ const chrono::time_point<Clock, Duration>& t)
+ {
+ // The system time may jump while this function is waiting. To compensate for this and time
+ // out near the correct time, we could call do_wait_until() in a loop with a short timeout
+ // and recheck the time remaining each time through the loop. However, because we can't
+ // check the predicate each time do_wait_until() completes, this introduces the possibility
+ // of not exiting the function when a notification occurs, since do_wait_until() may report
+ // that it timed out even though a notification was received. The best this function can do
+ // is report correctly whether or not it reached the timeout time.
+ typedef typename common_type<Duration, typename Clock::duration>::type common_duration;
+ common_duration d(t - Clock::now());
+ do_wait_until(lock, detail::internal_chrono_clock::now() + d);
+ if (t > Clock::now()) return cv_status::no_timeout;
+ else return cv_status::timeout;
+ }
+
+ template <class Rep, class Period>
+ cv_status
+ wait_for(
+ unique_lock<mutex>& lock,
+ const chrono::duration<Rep, Period>& d)
+ {
+ return wait_until(lock, chrono::steady_clock::now() + d);
+ }
+
+ template <class Duration, class Predicate>
+ bool
+ wait_until(
+ unique_lock<mutex>& lock,
+ const chrono::time_point<detail::internal_chrono_clock, Duration>& t,
+ Predicate pred)
+ {
+ const detail::internal_platform_timepoint ts(t);
+ while (!pred())
+ {
+ if (!do_wait_until(lock, ts)) break; // timeout occurred
+ }
+ return pred();
+ }
+
+ template <class Clock, class Duration, class Predicate>
+ bool
+ wait_until(
+ unique_lock<mutex>& lock,
+ const chrono::time_point<Clock, Duration>& t,
+ Predicate pred)
+ {
+ // The system time may jump while this function is waiting. To compensate for this
+ // and time out near the correct time, we call do_wait_until() in a loop with a
+ // short timeout and recheck the time remaining each time through the loop.
+ typedef typename common_type<Duration, typename Clock::duration>::type common_duration;
+ while (!pred())
+ {
+ common_duration d(t - Clock::now());
+ if (d <= common_duration::zero()) break; // timeout occurred
+ d = (std::min)(d, common_duration(chrono::milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS)));
+ do_wait_until(lock, detail::internal_platform_clock::now() + detail::platform_duration(d));
+ }
+ return pred();
+ }
+
+ template <class Rep, class Period, class Predicate>
+ bool
+ wait_for(
+ unique_lock<mutex>& lock,
+ const chrono::duration<Rep, Period>& d,
+ Predicate pred)
+ {
+ return wait_until(lock, chrono::steady_clock::now() + d, boost::move(pred));
+ }
+#endif
+ };
+
+ class condition_variable_any:
+ private detail::basic_condition_variable
+ {
+ public:
+ BOOST_THREAD_NO_COPYABLE(condition_variable_any)
+ condition_variable_any()
+ {}
+
+ using detail::basic_condition_variable::do_wait_until;
+ using detail::basic_condition_variable::notify_one;
+ using detail::basic_condition_variable::notify_all;
+
+ template<typename lock_type>
+ void wait(lock_type& m)
+ {
+ do_wait_until(m, detail::internal_platform_timepoint::getMax());
+ }
+
+ template<typename lock_type,typename predicate_type>
+ void wait(lock_type& m,predicate_type pred)
+ {
+ while (!pred())
+ {
+ wait(m);
+ }
+ }
+
+#if defined BOOST_THREAD_USES_DATETIME
+ template<typename lock_type>
+ bool timed_wait(lock_type& m,boost::system_time const& abs_time)
+ {
+ // The system time may jump while this function is waiting. To compensate for this and time
+ // out near the correct time, we could call do_wait_until() in a loop with a short timeout
+ // and recheck the time remaining each time through the loop. However, because we can't
+ // check the predicate each time do_wait_until() completes, this introduces the possibility
+ // of not exiting the function when a notification occurs, since do_wait_until() may report
+ // that it timed out even though a notification was received. The best this function can do
+ // is report correctly whether or not it reached the timeout time.
+ const detail::real_platform_timepoint ts(abs_time);
+ const detail::platform_duration d(ts - detail::real_platform_clock::now());
+ do_wait_until(m, detail::internal_platform_clock::now() + d);
+ return ts > detail::real_platform_clock::now();
+ }
+
+ template<typename lock_type>
+ bool timed_wait(lock_type& m,boost::xtime const& abs_time)
+ {
+ return timed_wait(m, system_time(abs_time));
+ }
+
+ template<typename lock_type,typename duration_type>
+ bool timed_wait(lock_type& m,duration_type const& wait_duration)
+ {
+ if (wait_duration.is_pos_infinity())
+ {
+ wait(m);
+ return true;
+ }
+ if (wait_duration.is_special())
+ {
+ return true;
+ }
+ const detail::platform_duration d(wait_duration);
+ return do_wait_until(m, detail::internal_platform_clock::now() + d);
+ }
+
+ template<typename lock_type,typename predicate_type>
+ bool timed_wait(lock_type& m,boost::system_time const& abs_time,predicate_type pred)
+ {
+ // The system time may jump while this function is waiting. To compensate for this
+ // and time out near the correct time, we call do_wait_until() in a loop with a
+ // short timeout and recheck the time remaining each time through the loop.
+ const detail::real_platform_timepoint ts(abs_time);
+ while (!pred())
+ {
+ detail::platform_duration d(ts - detail::real_platform_clock::now());
+ if (d <= detail::platform_duration::zero()) break; // timeout occurred
+ d = (std::min)(d, detail::platform_milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS));
+ do_wait_until(m, detail::internal_platform_clock::now() + d);
+ }
+ return pred();
+ }
+
+ template<typename lock_type,typename predicate_type>
+ bool timed_wait(lock_type& m,boost::xtime const& abs_time,predicate_type pred)
+ {
+ return timed_wait(m, system_time(abs_time), pred);
+ }
+
+ template<typename lock_type,typename duration_type,typename predicate_type>
+ bool timed_wait(lock_type& m,duration_type const& wait_duration,predicate_type pred)
+ {
+ if (wait_duration.is_pos_infinity())
+ {
+ while (!pred())
+ {
+ wait(m);
+ }
+ return true;
+ }
+ if (wait_duration.is_special())
+ {
+ return pred();
+ }
+ const detail::platform_duration d(wait_duration);
+ const detail::internal_platform_timepoint ts(detail::internal_platform_clock::now() + d);
+ while (!pred())
+ {
+ if (!do_wait_until(m, ts)) break; // timeout occurred
+ }
+ return pred();
+ }
+#endif
+#ifdef BOOST_THREAD_USES_CHRONO
+ template <class lock_type,class Duration>
+ cv_status
+ wait_until(
+ lock_type& lock,
+ const chrono::time_point<detail::internal_chrono_clock, Duration>& t)
+ {
+ const detail::internal_platform_timepoint ts(t);
+ if (do_wait_until(lock, ts)) return cv_status::no_timeout;
+ else return cv_status::timeout;
+ }
+
+ template <class lock_type, class Clock, class Duration>
+ cv_status
+ wait_until(
+ lock_type& lock,
+ const chrono::time_point<Clock, Duration>& t)
+ {
+ // The system time may jump while this function is waiting. To compensate for this and time
+ // out near the correct time, we could call do_wait_until() in a loop with a short timeout
+ // and recheck the time remaining each time through the loop. However, because we can't
+ // check the predicate each time do_wait_until() completes, this introduces the possibility
+ // of not exiting the function when a notification occurs, since do_wait_until() may report
+ // that it timed out even though a notification was received. The best this function can do
+ // is report correctly whether or not it reached the timeout time.
+ typedef typename common_type<Duration, typename Clock::duration>::type common_duration;
+ common_duration d(t - Clock::now());
+ do_wait_until(lock, detail::internal_chrono_clock::now() + d);
+ if (t > Clock::now()) return cv_status::no_timeout;
+ else return cv_status::timeout;
+ }
+
+ template <class lock_type, class Rep, class Period>
+ cv_status
+ wait_for(
+ lock_type& lock,
+ const chrono::duration<Rep, Period>& d)
+ {
+ return wait_until(lock, chrono::steady_clock::now() + d);
+ }
+
+ template <class lock_type, class Clock, class Duration, class Predicate>
+ bool
+ wait_until(
+ lock_type& lock,
+ const chrono::time_point<detail::internal_chrono_clock, Duration>& t,
+ Predicate pred)
+ {
+ const detail::internal_platform_timepoint ts(t);
+ while (!pred())
+ {
+ if (!do_wait_until(lock, ts)) break; // timeout occurred
+ }
+ return pred();
+ }
+
+ template <class lock_type, class Clock, class Duration, class Predicate>
+ bool
+ wait_until(
+ lock_type& lock,
+ const chrono::time_point<Clock, Duration>& t,
+ Predicate pred)
+ {
+ // The system time may jump while this function is waiting. To compensate for this
+ // and time out near the correct time, we call do_wait_until() in a loop with a
+ // short timeout and recheck the time remaining each time through the loop.
+ typedef typename common_type<Duration, typename Clock::duration>::type common_duration;
+ while (!pred())
+ {
+ common_duration d(t - Clock::now());
+ if (d <= common_duration::zero()) break; // timeout occurred
+ d = (std::min)(d, common_duration(chrono::milliseconds(BOOST_THREAD_POLL_INTERVAL_MILLISECONDS)));
+ do_wait_until(lock, detail::internal_platform_clock::now() + detail::platform_duration(d));
+ }
+ return pred();
+ }
+
+ template <class lock_type, class Rep, class Period, class Predicate>
+ bool
+ wait_for(
+ lock_type& lock,
+ const chrono::duration<Rep, Period>& d,
+ Predicate pred)
+ {
+ return wait_until(lock, chrono::steady_clock::now() + d, boost::move(pred));
+ }
+#endif
+ };
+
+ BOOST_THREAD_DECL void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk);
+}
+
+#include <boost/config/abi_suffix.hpp>
+
+#endif