summaryrefslogtreecommitdiff
path: root/src/third_party/boost/boost/container/flat_map.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/third_party/boost/boost/container/flat_map.hpp')
-rw-r--r--src/third_party/boost/boost/container/flat_map.hpp1457
1 files changed, 0 insertions, 1457 deletions
diff --git a/src/third_party/boost/boost/container/flat_map.hpp b/src/third_party/boost/boost/container/flat_map.hpp
deleted file mode 100644
index 2d4515b4a48..00000000000
--- a/src/third_party/boost/boost/container/flat_map.hpp
+++ /dev/null
@@ -1,1457 +0,0 @@
-//////////////////////////////////////////////////////////////////////////////
-//
-// (C) Copyright Ion Gaztanaga 2005-2011. Distributed under the Boost
-// Software License, Version 1.0. (See accompanying file
-// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-//
-// See http://www.boost.org/libs/container for documentation.
-//
-//////////////////////////////////////////////////////////////////////////////
-
-#ifndef BOOST_CONTAINER_FLAT_MAP_HPP
-#define BOOST_CONTAINER_FLAT_MAP_HPP
-
-#if (defined _MSC_VER) && (_MSC_VER >= 1200)
-# pragma once
-#endif
-
-#include <boost/container/detail/config_begin.hpp>
-#include <boost/container/detail/workaround.hpp>
-
-#include <boost/container/container_fwd.hpp>
-#include <utility>
-#include <functional>
-#include <memory>
-#include <stdexcept>
-#include <boost/container/detail/flat_tree.hpp>
-#include <boost/type_traits/has_trivial_destructor.hpp>
-#include <boost/container/detail/mpl.hpp>
-#include <boost/container/allocator/allocator_traits.hpp>
-#include <boost/move/move.hpp>
-
-#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
-namespace boost {
-namespace container {
-#else
-namespace boost {
-namespace container {
-#endif
-
-/// @cond
-// Forward declarations of operators == and <, needed for friend declarations.
-#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
-template <class Key, class T, class Pred = std::less< std::pair< Key, T> >, class A = std::allocator<T> >
-#else
-template <class Key, class T, class Pred, class A>
-#endif
-class flat_map;
-
-template <class Key, class T, class Pred, class A>
-inline bool operator==(const flat_map<Key,T,Pred,A>& x,
- const flat_map<Key,T,Pred,A>& y);
-
-template <class Key, class T, class Pred, class A>
-inline bool operator<(const flat_map<Key,T,Pred,A>& x,
- const flat_map<Key,T,Pred,A>& y);
-
-namespace container_detail{
-
-template<class D, class S>
-static D &force(const S &s)
-{ return *const_cast<D*>((reinterpret_cast<const D*>(&s))); }
-
-template<class D, class S>
-static D force_copy(S s)
-{
- D *vp = reinterpret_cast<D *>(&s);
- return D(*vp);
-}
-
-} //namespace container_detail{
-
-
-/// @endcond
-
-//! A flat_map is a kind of associative container that supports unique keys (contains at
-//! most one of each key value) and provides for fast retrieval of values of another
-//! type T based on the keys. The flat_map class supports random-access iterators.
-//!
-//! A flat_map satisfies all of the requirements of a container and of a reversible
-//! container and of an associative container. A flat_map also provides
-//! most operations described for unique keys. For a
-//! flat_map<Key,T> the key_type is Key and the value_type is std::pair<Key,T>
-//! (unlike std::map<Key, T> which value_type is std::pair<<b>const</b> Key, T>).
-//!
-//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>).
-//!
-//! A is the allocator to allocate the value_types
-//! (e.g. <i>allocator< std::pair<Key, T> ></i>).
-//!
-//! flat_map is similar to std::map but it's implemented like an ordered vector.
-//! This means that inserting a new element into a flat_map invalidates
-//! previous iterators and references
-//!
-//! Erasing an element of a flat_map invalidates iterators and references
-//! pointing to elements that come after (their keys are bigger) the erased element.
-#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
-template <class Key, class T, class Pred = std::less< std::pair< Key, T> >, class A = std::allocator<T> >
-#else
-template <class Key, class T, class Pred, class A>
-#endif
-class flat_map
-{
- /// @cond
- private:
- BOOST_COPYABLE_AND_MOVABLE(flat_map)
- //This is the tree that we should store if pair was movable
- typedef container_detail::flat_tree<Key,
- std::pair<Key, T>,
- container_detail::select1st< std::pair<Key, T> >,
- Pred,
- A> tree_t;
-
- //This is the real tree stored here. It's based on a movable pair
- typedef container_detail::flat_tree<Key,
- container_detail::pair<Key, T>,
- container_detail::select1st<container_detail::pair<Key, T> >,
- Pred,
- typename allocator_traits<A>::template portable_rebind_alloc
- <container_detail::pair<Key, T> >::type> impl_tree_t;
- impl_tree_t m_flat_tree; // flat tree representing flat_map
-
- typedef typename impl_tree_t::value_type impl_value_type;
- typedef typename impl_tree_t::pointer impl_pointer;
- typedef typename impl_tree_t::const_pointer impl_const_pointer;
- typedef typename impl_tree_t::reference impl_reference;
- typedef typename impl_tree_t::const_reference impl_const_reference;
- typedef typename impl_tree_t::value_compare impl_value_compare;
- typedef typename impl_tree_t::iterator impl_iterator;
- typedef typename impl_tree_t::const_iterator impl_const_iterator;
- typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator;
- typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator;
- typedef typename impl_tree_t::allocator_type impl_allocator_type;
- typedef allocator_traits<A> allocator_traits_type;
-
-
-
- /// @endcond
-
- public:
-
- // typedefs:
- typedef Key key_type;
- typedef T mapped_type;
- typedef typename std::pair<key_type, mapped_type> value_type;
- typedef typename allocator_traits_type::pointer pointer;
- typedef typename allocator_traits_type::const_pointer const_pointer;
- typedef typename allocator_traits_type::reference reference;
- typedef typename allocator_traits_type::const_reference const_reference;
- typedef typename impl_tree_t::size_type size_type;
- typedef typename impl_tree_t::difference_type difference_type;
-
- typedef container_detail::flat_tree_value_compare
- < Pred
- , container_detail::select1st< std::pair<Key, T> >
- , std::pair<Key, T> > value_compare;
- typedef Pred key_compare;
- typedef typename container_detail::
- get_flat_tree_iterators<pointer>::iterator iterator;
- typedef typename container_detail::
- get_flat_tree_iterators<pointer>::const_iterator const_iterator;
- typedef typename container_detail::
- get_flat_tree_iterators
- <pointer>::reverse_iterator reverse_iterator;
- typedef typename container_detail::
- get_flat_tree_iterators
- <pointer>::const_reverse_iterator const_reverse_iterator;
- typedef A allocator_type;
- typedef A stored_allocator_type;
-
- public:
- //! <b>Effects</b>: Default constructs an empty flat_map.
- //!
- //! <b>Complexity</b>: Constant.
- flat_map()
- : m_flat_tree() {}
-
- //! <b>Effects</b>: Constructs an empty flat_map using the specified
- //! comparison object and allocator.
- //!
- //! <b>Complexity</b>: Constant.
- explicit flat_map(const Pred& comp, const allocator_type& a = allocator_type())
- : m_flat_tree(comp, container_detail::force<impl_allocator_type>(a)) {}
-
- //! <b>Effects</b>: Constructs an empty flat_map using the specified comparison object and
- //! allocator, and inserts elements from the range [first ,last ).
- //!
- //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
- //! comp and otherwise N logN, where N is last - first.
- template <class InputIterator>
- flat_map(InputIterator first, InputIterator last, const Pred& comp = Pred(),
- const allocator_type& a = allocator_type())
- : m_flat_tree(comp, container_detail::force<impl_allocator_type>(a))
- { m_flat_tree.insert_unique(first, last); }
-
- //! <b>Effects</b>: Constructs an empty flat_map using the specified comparison object and
- //! allocator, and inserts elements from the ordered unique range [first ,last). This function
- //! is more efficient than the normal range creation for ordered ranges.
- //!
- //! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be
- //! unique values.
- //!
- //! <b>Complexity</b>: Linear in N.
- template <class InputIterator>
- flat_map( ordered_unique_range_t, InputIterator first, InputIterator last
- , const Pred& comp = Pred(), const allocator_type& a = allocator_type())
- : m_flat_tree(ordered_range, first, last, comp, a)
- {}
-
- //! <b>Effects</b>: Copy constructs a flat_map.
- //!
- //! <b>Complexity</b>: Linear in x.size().
- flat_map(const flat_map<Key,T,Pred,A>& x)
- : m_flat_tree(x.m_flat_tree) {}
-
- //! <b>Effects</b>: Move constructs a flat_map.
- //! Constructs *this using x's resources.
- //!
- //! <b>Complexity</b>: Construct.
- //!
- //! <b>Postcondition</b>: x is emptied.
- flat_map(BOOST_RV_REF(flat_map) x)
- : m_flat_tree(boost::move(x.m_flat_tree))
- {}
-
- //! <b>Effects</b>: Makes *this a copy of x.
- //!
- //! <b>Complexity</b>: Linear in x.size().
- flat_map<Key,T,Pred,A>& operator=(BOOST_COPY_ASSIGN_REF(flat_map) x)
- { m_flat_tree = x.m_flat_tree; return *this; }
-
- //! <b>Effects</b>: Move constructs a flat_map.
- //! Constructs *this using x's resources.
- //!
- //! <b>Complexity</b>: Construct.
- //!
- //! <b>Postcondition</b>: x is emptied.
- flat_map<Key,T,Pred,A>& operator=(BOOST_RV_REF(flat_map) mx)
- { m_flat_tree = boost::move(mx.m_flat_tree); return *this; }
-
- //! <b>Effects</b>: Returns the comparison object out
- //! of which a was constructed.
- //!
- //! <b>Complexity</b>: Constant.
- key_compare key_comp() const
- { return container_detail::force<key_compare>(m_flat_tree.key_comp()); }
-
- //! <b>Effects</b>: Returns an object of value_compare constructed out
- //! of the comparison object.
- //!
- //! <b>Complexity</b>: Constant.
- value_compare value_comp() const
- { return value_compare(container_detail::force<key_compare>(m_flat_tree.key_comp())); }
-
- //! <b>Effects</b>: Returns a copy of the Allocator that
- //! was passed to the object's constructor.
- //!
- //! <b>Complexity</b>: Constant.
- allocator_type get_allocator() const
- { return container_detail::force<allocator_type>(m_flat_tree.get_allocator()); }
-
- const stored_allocator_type &get_stored_allocator() const
- { return container_detail::force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
-
- stored_allocator_type &get_stored_allocator()
- { return container_detail::force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
-
- //! <b>Effects</b>: Returns an iterator to the first element contained in the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- iterator begin()
- { return container_detail::force_copy<iterator>(m_flat_tree.begin()); }
-
- //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- const_iterator begin() const
- { return container_detail::force<const_iterator>(m_flat_tree.begin()); }
-
- //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- const_iterator cbegin() const
- { return container_detail::force<const_iterator>(m_flat_tree.cbegin()); }
-
- //! <b>Effects</b>: Returns an iterator to the end of the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- iterator end()
- { return container_detail::force_copy<iterator>(m_flat_tree.end()); }
-
- //! <b>Effects</b>: Returns a const_iterator to the end of the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- const_iterator end() const
- { return container_detail::force<const_iterator>(m_flat_tree.end()); }
-
- //! <b>Effects</b>: Returns a const_iterator to the end of the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- const_iterator cend() const
- { return container_detail::force<const_iterator>(m_flat_tree.cend()); }
-
- //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- reverse_iterator rbegin()
- { return container_detail::force<reverse_iterator>(m_flat_tree.rbegin()); }
-
- //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- const_reverse_iterator rbegin() const
- { return container_detail::force<const_reverse_iterator>(m_flat_tree.rbegin()); }
-
- //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- const_reverse_iterator crbegin() const
- { return container_detail::force<const_reverse_iterator>(m_flat_tree.crbegin()); }
-
- //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
- //! of the reversed container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- reverse_iterator rend()
- { return container_detail::force<reverse_iterator>(m_flat_tree.rend()); }
-
- //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
- //! of the reversed container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- const_reverse_iterator rend() const
- { return container_detail::force<const_reverse_iterator>(m_flat_tree.rend()); }
-
- //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
- //! of the reversed container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- const_reverse_iterator crend() const
- { return container_detail::force<const_reverse_iterator>(m_flat_tree.crend()); }
-
- //! <b>Effects</b>: Returns true if the container contains no elements.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- bool empty() const
- { return m_flat_tree.empty(); }
-
- //! <b>Effects</b>: Returns the number of the elements contained in the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- size_type size() const
- { return m_flat_tree.size(); }
-
- //! <b>Effects</b>: Returns the largest possible size of the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- size_type max_size() const
- { return m_flat_tree.max_size(); }
-
- #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
- //! Effects: If there is no key equivalent to x in the flat_map, inserts
- //! value_type(x, T()) into the flat_map.
- //!
- //! Returns: A reference to the mapped_type corresponding to x in *this.
- //!
- //! Complexity: Logarithmic.
- mapped_type &operator[](const key_type& k);
-
- //! Effects: If there is no key equivalent to x in the flat_map, inserts
- //! value_type(move(x), T()) into the flat_map (the key is move-constructed)
- //!
- //! Returns: A reference to the mapped_type corresponding to x in *this.
- //!
- //! Complexity: Logarithmic.
- mapped_type &operator[](key_type &&k) ;
-
- #else
- BOOST_MOVE_CONVERSION_AWARE_CATCH( operator[] , key_type, mapped_type&, priv_subscript)
- #endif
-
- //! Returns: A reference to the element whose key is equivalent to x.
- //! Throws: An exception object of type out_of_range if no such element is present.
- //! Complexity: logarithmic.
- T& at(const key_type& k)
- {
- iterator i = this->find(k);
- if(i == this->end()){
- throw std::out_of_range("key not found");
- }
- return i->second;
- }
-
- //! Returns: A reference to the element whose key is equivalent to x.
- //! Throws: An exception object of type out_of_range if no such element is present.
- //! Complexity: logarithmic.
- const T& at(const key_type& k) const
- {
- const_iterator i = this->find(k);
- if(i == this->end()){
- throw std::out_of_range("key not found");
- }
- return i->second;
- }
-
- //! <b>Effects</b>: Swaps the contents of *this and x.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- void swap(flat_map& x)
- { m_flat_tree.swap(x.m_flat_tree); }
-
- //! <b>Effects</b>: Inserts x if and only if there is no element in the container
- //! with key equivalent to the key of x.
- //!
- //! <b>Returns</b>: The bool component of the returned pair is true if and only
- //! if the insertion takes place, and the iterator component of the pair
- //! points to the element with key equivalent to the key of x.
- //!
- //! <b>Complexity</b>: Logarithmic search time plus linear insertion
- //! to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- std::pair<iterator,bool> insert(const value_type& x)
- { return container_detail::force<std::pair<iterator,bool> >(
- m_flat_tree.insert_unique(container_detail::force<impl_value_type>(x))); }
-
- //! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
- //! only if there is no element in the container with key equivalent to the key of x.
- //!
- //! <b>Returns</b>: The bool component of the returned pair is true if and only
- //! if the insertion takes place, and the iterator component of the pair
- //! points to the element with key equivalent to the key of x.
- //!
- //! <b>Complexity</b>: Logarithmic search time plus linear insertion
- //! to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- std::pair<iterator,bool> insert(BOOST_RV_REF(value_type) x)
- { return container_detail::force<std::pair<iterator,bool> >(
- m_flat_tree.insert_unique(boost::move(container_detail::force<impl_value_type>(x)))); }
-
- //! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
- //! only if there is no element in the container with key equivalent to the key of x.
- //!
- //! <b>Returns</b>: The bool component of the returned pair is true if and only
- //! if the insertion takes place, and the iterator component of the pair
- //! points to the element with key equivalent to the key of x.
- //!
- //! <b>Complexity</b>: Logarithmic search time plus linear insertion
- //! to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- std::pair<iterator,bool> insert(BOOST_RV_REF(impl_value_type) x)
- {
- return container_detail::force<std::pair<iterator,bool> >
- (m_flat_tree.insert_unique(boost::move(x)));
- }
-
- //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
- //! no element in the container with key equivalent to the key of x.
- //! p is a hint pointing to where the insert should start to search.
- //!
- //! <b>Returns</b>: An iterator pointing to the element with key equivalent
- //! to the key of x.
- //!
- //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
- //! right before p) plus insertion linear to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const_iterator position, const value_type& x)
- { return container_detail::force_copy<iterator>(
- m_flat_tree.insert_unique(container_detail::force<impl_const_iterator>(position), container_detail::force<impl_value_type>(x))); }
-
- //! <b>Effects</b>: Inserts an element move constructed from x in the container.
- //! p is a hint pointing to where the insert should start to search.
- //!
- //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
- //!
- //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
- //! right before p) plus insertion linear to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const_iterator position, BOOST_RV_REF(value_type) x)
- { return container_detail::force_copy<iterator>
- (m_flat_tree.insert_unique(container_detail::force<impl_const_iterator>(position), boost::move(container_detail::force<impl_value_type>(x)))); }
-
- //! <b>Effects</b>: Inserts an element move constructed from x in the container.
- //! p is a hint pointing to where the insert should start to search.
- //!
- //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
- //!
- //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
- //! right before p) plus insertion linear to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const_iterator position, BOOST_RV_REF(impl_value_type) x)
- {
- return container_detail::force_copy<iterator>(
- m_flat_tree.insert_unique(container_detail::force<impl_const_iterator>(position), boost::move(x)));
- }
-
- //! <b>Requires</b>: first, last are not iterators into *this.
- //!
- //! <b>Effects</b>: inserts each element from the range [first,last) if and only
- //! if there is no element with key equivalent to the key of that element.
- //!
- //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
- //! search time plus N*size() insertion time.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- template <class InputIterator>
- void insert(InputIterator first, InputIterator last)
- { m_flat_tree.insert_unique(first, last); }
-
- #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
-
- //! <b>Effects</b>: Inserts an object x of type T constructed with
- //! std::forward<Args>(args)... if and only if there is no element in the container
- //! with key equivalent to the key of x.
- //!
- //! <b>Returns</b>: The bool component of the returned pair is true if and only
- //! if the insertion takes place, and the iterator component of the pair
- //! points to the element with key equivalent to the key of x.
- //!
- //! <b>Complexity</b>: Logarithmic search time plus linear insertion
- //! to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- template <class... Args>
- std::pair<iterator,bool> emplace(Args&&... args)
- { return container_detail::force_copy< std::pair<iterator, bool> >(m_flat_tree.emplace_unique(boost::forward<Args>(args)...)); }
-
- //! <b>Effects</b>: Inserts an object of type T constructed with
- //! std::forward<Args>(args)... in the container if and only if there is
- //! no element in the container with key equivalent to the key of x.
- //! p is a hint pointing to where the insert should start to search.
- //!
- //! <b>Returns</b>: An iterator pointing to the element with key equivalent
- //! to the key of x.
- //!
- //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
- //! right before p) plus insertion linear to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- template <class... Args>
- iterator emplace_hint(const_iterator hint, Args&&... args)
- { return container_detail::force_copy<iterator>
- (m_flat_tree.emplace_hint_unique(container_detail::force<impl_const_iterator>(hint), boost::forward<Args>(args)...)); }
-
- #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
-
- #define BOOST_PP_LOCAL_MACRO(n) \
- BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
- std::pair<iterator,bool> emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
- { return container_detail::force_copy< std::pair<iterator, bool> > \
- (m_flat_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); } \
- \
- BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
- iterator emplace_hint(const_iterator hint \
- BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
- { return container_detail::force_copy<iterator>(m_flat_tree.emplace_hint_unique \
- (container_detail::force<impl_const_iterator>(hint) \
- BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); } \
- //!
- #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
- #include BOOST_PP_LOCAL_ITERATE()
-
- #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
-
- //! <b>Effects</b>: Erases the element pointed to by position.
- //!
- //! <b>Returns</b>: Returns an iterator pointing to the element immediately
- //! following q prior to the element being erased. If no such element exists,
- //! returns end().
- //!
- //! <b>Complexity</b>: Linear to the elements with keys bigger than position
- //!
- //! <b>Note</b>: Invalidates elements with keys
- //! not less than the erased element.
- iterator erase(const_iterator position)
- { return container_detail::force_copy<iterator>(m_flat_tree.erase(container_detail::force<impl_const_iterator>(position))); }
-
- //! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
- //!
- //! <b>Returns</b>: Returns the number of erased elements.
- //!
- //! <b>Complexity</b>: Logarithmic search time plus erasure time
- //! linear to the elements with bigger keys.
- size_type erase(const key_type& x)
- { return m_flat_tree.erase(x); }
-
- //! <b>Effects</b>: Erases all the elements in the range [first, last).
- //!
- //! <b>Returns</b>: Returns last.
- //!
- //! <b>Complexity</b>: size()*N where N is the distance from first to last.
- //!
- //! <b>Complexity</b>: Logarithmic search time plus erasure time
- //! linear to the elements with bigger keys.
- iterator erase(const_iterator first, const_iterator last)
- { return container_detail::force_copy<iterator>
- (m_flat_tree.erase(container_detail::force<impl_const_iterator>(first), container_detail::force<impl_const_iterator>(last))); }
-
- //! <b>Effects</b>: erase(a.begin(),a.end()).
- //!
- //! <b>Postcondition</b>: size() == 0.
- //!
- //! <b>Complexity</b>: linear in size().
- void clear()
- { m_flat_tree.clear(); }
-
- //! <b>Effects</b>: Tries to deallocate the excess of memory created
- // with previous allocations. The size of the vector is unchanged
- //!
- //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
- //!
- //! <b>Complexity</b>: Linear to size().
- void shrink_to_fit()
- { m_flat_tree.shrink_to_fit(); }
-
- //! <b>Returns</b>: An iterator pointing to an element with the key
- //! equivalent to x, or end() if such an element is not found.
- //!
- //! <b>Complexity</b>: Logarithmic.
- iterator find(const key_type& x)
- { return container_detail::force_copy<iterator>(m_flat_tree.find(x)); }
-
- //! <b>Returns</b>: A const_iterator pointing to an element with the key
- //! equivalent to x, or end() if such an element is not found.
- //!
- //! <b>Complexity</b>: Logarithmic.s
- const_iterator find(const key_type& x) const
- { return container_detail::force<const_iterator>(m_flat_tree.find(x)); }
-
- //! <b>Returns</b>: The number of elements with key equivalent to x.
- //!
- //! <b>Complexity</b>: log(size())+count(k)
- size_type count(const key_type& x) const
- { return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; }
-
- //! <b>Returns</b>: An iterator pointing to the first element with key not less
- //! than k, or a.end() if such an element is not found.
- //!
- //! <b>Complexity</b>: Logarithmic
- iterator lower_bound(const key_type& x)
- { return container_detail::force_copy<iterator>(m_flat_tree.lower_bound(x)); }
-
- //! <b>Returns</b>: A const iterator pointing to the first element with key not
- //! less than k, or a.end() if such an element is not found.
- //!
- //! <b>Complexity</b>: Logarithmic
- const_iterator lower_bound(const key_type& x) const
- { return container_detail::force<const_iterator>(m_flat_tree.lower_bound(x)); }
-
- //! <b>Returns</b>: An iterator pointing to the first element with key not less
- //! than x, or end() if such an element is not found.
- //!
- //! <b>Complexity</b>: Logarithmic
- iterator upper_bound(const key_type& x)
- { return container_detail::force_copy<iterator>(m_flat_tree.upper_bound(x)); }
-
- //! <b>Returns</b>: A const iterator pointing to the first element with key not
- //! less than x, or end() if such an element is not found.
- //!
- //! <b>Complexity</b>: Logarithmic
- const_iterator upper_bound(const key_type& x) const
- { return container_detail::force<const_iterator>(m_flat_tree.upper_bound(x)); }
-
- //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
- //!
- //! <b>Complexity</b>: Logarithmic
- std::pair<iterator,iterator> equal_range(const key_type& x)
- { return container_detail::force<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); }
-
- //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
- //!
- //! <b>Complexity</b>: Logarithmic
- std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const
- { return container_detail::force<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); }
-
- //! <b>Effects</b>: Number of elements for which memory has been allocated.
- //! capacity() is always greater than or equal to size().
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- size_type capacity() const
- { return m_flat_tree.capacity(); }
-
- //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
- //! effect. Otherwise, it is a request for allocation of additional memory.
- //! If the request is successful, then capacity() is greater than or equal to
- //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
- //!
- //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
- //!
- //! <b>Note</b>: If capacity() is less than "count", iterators and references to
- //! to values might be invalidated.
- void reserve(size_type count)
- { m_flat_tree.reserve(count); }
-
- /// @cond
- template <class K1, class T1, class C1, class A1>
- friend bool operator== (const flat_map<K1, T1, C1, A1>&,
- const flat_map<K1, T1, C1, A1>&);
- template <class K1, class T1, class C1, class A1>
- friend bool operator< (const flat_map<K1, T1, C1, A1>&,
- const flat_map<K1, T1, C1, A1>&);
-
- private:
- mapped_type &priv_subscript(const key_type& k)
- {
- iterator i = lower_bound(k);
- // i->first is greater than or equivalent to k.
- if (i == end() || key_comp()(k, (*i).first)){
- container_detail::value_init<mapped_type> m;
- i = insert(i, impl_value_type(k, ::boost::move(m.m_t)));
- }
- return (*i).second;
- }
- mapped_type &priv_subscript(BOOST_RV_REF(key_type) mk)
- {
- key_type &k = mk;
- iterator i = lower_bound(k);
- // i->first is greater than or equivalent to k.
- if (i == end() || key_comp()(k, (*i).first)){
- container_detail::value_init<mapped_type> m;
- i = insert(i, impl_value_type(boost::move(k), ::boost::move(m.m_t)));
- }
- return (*i).second;
- }
- /// @endcond
-};
-
-template <class Key, class T, class Pred, class A>
-inline bool operator==(const flat_map<Key,T,Pred,A>& x,
- const flat_map<Key,T,Pred,A>& y)
- { return x.m_flat_tree == y.m_flat_tree; }
-
-template <class Key, class T, class Pred, class A>
-inline bool operator<(const flat_map<Key,T,Pred,A>& x,
- const flat_map<Key,T,Pred,A>& y)
- { return x.m_flat_tree < y.m_flat_tree; }
-
-template <class Key, class T, class Pred, class A>
-inline bool operator!=(const flat_map<Key,T,Pred,A>& x,
- const flat_map<Key,T,Pred,A>& y)
- { return !(x == y); }
-
-template <class Key, class T, class Pred, class A>
-inline bool operator>(const flat_map<Key,T,Pred,A>& x,
- const flat_map<Key,T,Pred,A>& y)
- { return y < x; }
-
-template <class Key, class T, class Pred, class A>
-inline bool operator<=(const flat_map<Key,T,Pred,A>& x,
- const flat_map<Key,T,Pred,A>& y)
- { return !(y < x); }
-
-template <class Key, class T, class Pred, class A>
-inline bool operator>=(const flat_map<Key,T,Pred,A>& x,
- const flat_map<Key,T,Pred,A>& y)
- { return !(x < y); }
-
-template <class Key, class T, class Pred, class A>
-inline void swap(flat_map<Key,T,Pred,A>& x,
- flat_map<Key,T,Pred,A>& y)
- { x.swap(y); }
-
-/// @cond
-
-} //namespace container {
-/*
-//!has_trivial_destructor_after_move<> == true_type
-//!specialization for optimizations
-template <class K, class T, class C, class A>
-struct has_trivial_destructor_after_move<boost::container::flat_map<K, T, C, A> >
-{
- static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value;
-};
-*/
-namespace container {
-
-// Forward declaration of operators < and ==, needed for friend declaration.
-#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
-template <class Key, class T, class Pred = std::less< std::pair< Key, T> >, class A = std::allocator<T> >
-#else
-template <class Key, class T, class Pred, class A>
-#endif
-class flat_multimap;
-
-template <class Key, class T, class Pred, class A>
-inline bool operator==(const flat_multimap<Key,T,Pred,A>& x,
- const flat_multimap<Key,T,Pred,A>& y);
-
-template <class Key, class T, class Pred, class A>
-inline bool operator<(const flat_multimap<Key,T,Pred,A>& x,
- const flat_multimap<Key,T,Pred,A>& y);
-/// @endcond
-
-//! A flat_multimap is a kind of associative container that supports equivalent keys
-//! (possibly containing multiple copies of the same key value) and provides for
-//! fast retrieval of values of another type T based on the keys. The flat_multimap
-//! class supports random-access iterators.
-//!
-//! A flat_multimap satisfies all of the requirements of a container and of a reversible
-//! container and of an associative container. For a
-//! flat_multimap<Key,T> the key_type is Key and the value_type is std::pair<Key,T>
-//! (unlike std::multimap<Key, T> which value_type is std::pair<<b>const</b> Key, T>).
-//!
-//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>).
-//!
-//! A is the allocator to allocate the value_types
-//! (e.g. <i>allocator< std::pair<Key, T> ></i>).
-#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
-template <class Key, class T, class Pred = std::less< std::pair< Key, T> >, class A = std::allocator<T> >
-#else
-template <class Key, class T, class Pred, class A>
-#endif
-class flat_multimap
-{
- /// @cond
- private:
- BOOST_COPYABLE_AND_MOVABLE(flat_multimap)
- typedef container_detail::flat_tree<Key,
- std::pair<Key, T>,
- container_detail::select1st< std::pair<Key, T> >,
- Pred,
- A> tree_t;
- //This is the real tree stored here. It's based on a movable pair
- typedef container_detail::flat_tree<Key,
- container_detail::pair<Key, T>,
- container_detail::select1st<container_detail::pair<Key, T> >,
- Pred,
- typename allocator_traits<A>::template portable_rebind_alloc
- <container_detail::pair<Key, T> >::type> impl_tree_t;
- impl_tree_t m_flat_tree; // flat tree representing flat_map
-
- typedef typename impl_tree_t::value_type impl_value_type;
- typedef typename impl_tree_t::pointer impl_pointer;
- typedef typename impl_tree_t::const_pointer impl_const_pointer;
- typedef typename impl_tree_t::reference impl_reference;
- typedef typename impl_tree_t::const_reference impl_const_reference;
- typedef typename impl_tree_t::value_compare impl_value_compare;
- typedef typename impl_tree_t::iterator impl_iterator;
- typedef typename impl_tree_t::const_iterator impl_const_iterator;
- typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator;
- typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator;
- typedef typename impl_tree_t::allocator_type impl_allocator_type;
- typedef allocator_traits<A> allocator_traits_type;
-
- /// @endcond
-
- public:
-
- // typedefs:
- typedef Key key_type;
- typedef T mapped_type;
- typedef Pred key_compare;
- typedef typename std::pair<key_type, mapped_type> value_type;
- typedef typename allocator_traits_type::pointer pointer;
- typedef typename allocator_traits_type::const_pointer const_pointer;
- typedef typename allocator_traits_type::reference reference;
- typedef typename allocator_traits_type::const_reference const_reference;
- typedef typename impl_tree_t::size_type size_type;
- typedef typename impl_tree_t::difference_type difference_type;
- typedef container_detail::flat_tree_value_compare
- < Pred
- , container_detail::select1st< std::pair<Key, T> >
- , std::pair<Key, T> > value_compare;
-
- typedef typename container_detail::
- get_flat_tree_iterators<pointer>::iterator iterator;
- typedef typename container_detail::
- get_flat_tree_iterators<pointer>::const_iterator const_iterator;
- typedef typename container_detail::
- get_flat_tree_iterators
- <pointer>::reverse_iterator reverse_iterator;
- typedef typename container_detail::
- get_flat_tree_iterators
- <pointer>::const_reverse_iterator const_reverse_iterator;
- typedef A allocator_type;
- //Non-standard extension
- typedef A stored_allocator_type;
-
- //! <b>Effects</b>: Default constructs an empty flat_map.
- //!
- //! <b>Complexity</b>: Constant.
- flat_multimap()
- : m_flat_tree() {}
-
- //! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison
- //! object and allocator.
- //!
- //! <b>Complexity</b>: Constant.
- explicit flat_multimap(const Pred& comp,
- const allocator_type& a = allocator_type())
- : m_flat_tree(comp, container_detail::force<impl_allocator_type>(a)) { }
-
- //! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison object
- //! and allocator, and inserts elements from the range [first ,last ).
- //!
- //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
- //! comp and otherwise N logN, where N is last - first.
- template <class InputIterator>
- flat_multimap(InputIterator first, InputIterator last,
- const Pred& comp = Pred(),
- const allocator_type& a = allocator_type())
- : m_flat_tree(comp, container_detail::force<impl_allocator_type>(a))
- { m_flat_tree.insert_equal(first, last); }
-
- //! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison object and
- //! allocator, and inserts elements from the ordered range [first ,last). This function
- //! is more efficient than the normal range creation for ordered ranges.
- //!
- //! <b>Requires</b>: [first ,last) must be ordered according to the predicate.
- //!
- //! <b>Complexity</b>: Linear in N.
- template <class InputIterator>
- flat_multimap(ordered_range_t, InputIterator first, InputIterator last,
- const Pred& comp = Pred(),
- const allocator_type& a = allocator_type())
- : m_flat_tree(ordered_range, first, last, comp, a)
- {}
-
- //! <b>Effects</b>: Copy constructs a flat_multimap.
- //!
- //! <b>Complexity</b>: Linear in x.size().
- flat_multimap(const flat_multimap<Key,T,Pred,A>& x)
- : m_flat_tree(x.m_flat_tree) { }
-
- //! <b>Effects</b>: Move constructs a flat_multimap. Constructs *this using x's resources.
- //!
- //! <b>Complexity</b>: Construct.
- //!
- //! <b>Postcondition</b>: x is emptied.
- flat_multimap(BOOST_RV_REF(flat_multimap) x)
- : m_flat_tree(boost::move(x.m_flat_tree))
- { }
-
- //! <b>Effects</b>: Makes *this a copy of x.
- //!
- //! <b>Complexity</b>: Linear in x.size().
- flat_multimap<Key,T,Pred,A>& operator=(BOOST_COPY_ASSIGN_REF(flat_multimap) x)
- { m_flat_tree = x.m_flat_tree; return *this; }
-
- //! <b>Effects</b>: this->swap(x.get()).
- //!
- //! <b>Complexity</b>: Constant.
- flat_multimap<Key,T,Pred,A>& operator=(BOOST_RV_REF(flat_multimap) mx)
- { m_flat_tree = boost::move(mx.m_flat_tree); return *this; }
-
- //! <b>Effects</b>: Returns the comparison object out
- //! of which a was constructed.
- //!
- //! <b>Complexity</b>: Constant.
- key_compare key_comp() const
- { return container_detail::force<key_compare>(m_flat_tree.key_comp()); }
-
- //! <b>Effects</b>: Returns an object of value_compare constructed out
- //! of the comparison object.
- //!
- //! <b>Complexity</b>: Constant.
- value_compare value_comp() const
- { return value_compare(container_detail::force<key_compare>(m_flat_tree.key_comp())); }
-
- //! <b>Effects</b>: Returns a copy of the Allocator that
- //! was passed to the object's constructor.
- //!
- //! <b>Complexity</b>: Constant.
- allocator_type get_allocator() const
- { return container_detail::force<allocator_type>(m_flat_tree.get_allocator()); }
-
- const stored_allocator_type &get_stored_allocator() const
- { return container_detail::force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
-
- stored_allocator_type &get_stored_allocator()
- { return container_detail::force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
-
- //! <b>Effects</b>: Returns an iterator to the first element contained in the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- iterator begin()
- { return container_detail::force_copy<iterator>(m_flat_tree.begin()); }
-
- //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- const_iterator begin() const
- { return container_detail::force<const_iterator>(m_flat_tree.begin()); }
-
- //! <b>Effects</b>: Returns an iterator to the end of the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- iterator end()
- { return container_detail::force_copy<iterator>(m_flat_tree.end()); }
-
- //! <b>Effects</b>: Returns a const_iterator to the end of the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- const_iterator end() const
- { return container_detail::force<const_iterator>(m_flat_tree.end()); }
-
- //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- reverse_iterator rbegin()
- { return container_detail::force<reverse_iterator>(m_flat_tree.rbegin()); }
-
- //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
- //! of the reversed container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- const_reverse_iterator rbegin() const
- { return container_detail::force<const_reverse_iterator>(m_flat_tree.rbegin()); }
-
- //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
- //! of the reversed container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- reverse_iterator rend()
- { return container_detail::force<reverse_iterator>(m_flat_tree.rend()); }
-
- //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
- //! of the reversed container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- const_reverse_iterator rend() const
- { return container_detail::force<const_reverse_iterator>(m_flat_tree.rend()); }
-
- //! <b>Effects</b>: Returns true if the container contains no elements.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- bool empty() const
- { return m_flat_tree.empty(); }
-
- //! <b>Effects</b>: Returns the number of the elements contained in the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- size_type size() const
- { return m_flat_tree.size(); }
-
- //! <b>Effects</b>: Returns the largest possible size of the container.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- size_type max_size() const
- { return m_flat_tree.max_size(); }
-
- //! <b>Effects</b>: Swaps the contents of *this and x.
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- void swap(flat_multimap& x)
- { m_flat_tree.swap(x.m_flat_tree); }
-
- //! <b>Effects</b>: Inserts x and returns the iterator pointing to the
- //! newly inserted element.
- //!
- //! <b>Complexity</b>: Logarithmic search time plus linear insertion
- //! to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const value_type& x)
- { return container_detail::force_copy<iterator>(m_flat_tree.insert_equal(container_detail::force<impl_value_type>(x))); }
-
- //! <b>Effects</b>: Inserts a new value move-constructed from x and returns
- //! the iterator pointing to the newly inserted element.
- //!
- //! <b>Complexity</b>: Logarithmic search time plus linear insertion
- //! to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(BOOST_RV_REF(value_type) x)
- { return container_detail::force_copy<iterator>(m_flat_tree.insert_equal(boost::move(x))); }
-
- //! <b>Effects</b>: Inserts a new value move-constructed from x and returns
- //! the iterator pointing to the newly inserted element.
- //!
- //! <b>Complexity</b>: Logarithmic search time plus linear insertion
- //! to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(BOOST_RV_REF(impl_value_type) x)
- { return container_detail::force_copy<iterator>(m_flat_tree.insert_equal(boost::move(x))); }
-
- //! <b>Effects</b>: Inserts a copy of x in the container.
- //! p is a hint pointing to where the insert should start to search.
- //!
- //! <b>Returns</b>: An iterator pointing to the element with key equivalent
- //! to the key of x.
- //!
- //! <b>Complexity</b>: Logarithmic search time (constant time if the value
- //! is to be inserted before p) plus linear insertion
- //! to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const_iterator position, const value_type& x)
- { return container_detail::force_copy<iterator>
- (m_flat_tree.insert_equal(container_detail::force<impl_const_iterator>(position), container_detail::force<impl_value_type>(x))); }
-
- //! <b>Effects</b>: Inserts a value move constructed from x in the container.
- //! p is a hint pointing to where the insert should start to search.
- //!
- //! <b>Returns</b>: An iterator pointing to the element with key equivalent
- //! to the key of x.
- //!
- //! <b>Complexity</b>: Logarithmic search time (constant time if the value
- //! is to be inserted before p) plus linear insertion
- //! to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const_iterator position, BOOST_RV_REF(value_type) x)
- {
- return container_detail::force_copy<iterator>
- (m_flat_tree.insert_equal(container_detail::force<impl_const_iterator>(position)
- , boost::move(x)));
- }
-
- //! <b>Effects</b>: Inserts a value move constructed from x in the container.
- //! p is a hint pointing to where the insert should start to search.
- //!
- //! <b>Returns</b>: An iterator pointing to the element with key equivalent
- //! to the key of x.
- //!
- //! <b>Complexity</b>: Logarithmic search time (constant time if the value
- //! is to be inserted before p) plus linear insertion
- //! to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- iterator insert(const_iterator position, BOOST_RV_REF(impl_value_type) x)
- {
- return container_detail::force_copy<iterator>(
- m_flat_tree.insert_equal(container_detail::force<impl_const_iterator>(position), boost::move(x)));
- }
-
- //! <b>Requires</b>: first, last are not iterators into *this.
- //!
- //! <b>Effects</b>: inserts each element from the range [first,last) .
- //!
- //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
- //! search time plus N*size() insertion time.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- template <class InputIterator>
- void insert(InputIterator first, InputIterator last)
- { m_flat_tree.insert_equal(first, last); }
-
- #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
-
- //! <b>Effects</b>: Inserts an object of type T constructed with
- //! std::forward<Args>(args)... and returns the iterator pointing to the
- //! newly inserted element.
- //!
- //! <b>Complexity</b>: Logarithmic search time plus linear insertion
- //! to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- template <class... Args>
- iterator emplace(Args&&... args)
- { return container_detail::force_copy<iterator>(m_flat_tree.emplace_equal(boost::forward<Args>(args)...)); }
-
- //! <b>Effects</b>: Inserts an object of type T constructed with
- //! std::forward<Args>(args)... in the container.
- //! p is a hint pointing to where the insert should start to search.
- //!
- //! <b>Returns</b>: An iterator pointing to the element with key equivalent
- //! to the key of x.
- //!
- //! <b>Complexity</b>: Logarithmic search time (constant time if the value
- //! is to be inserted before p) plus linear insertion
- //! to the elements with bigger keys than x.
- //!
- //! <b>Note</b>: If an element is inserted it might invalidate elements.
- template <class... Args>
- iterator emplace_hint(const_iterator hint, Args&&... args)
- {
- return container_detail::force_copy<iterator>(m_flat_tree.emplace_hint_equal
- (container_detail::force<impl_const_iterator>(hint), boost::forward<Args>(args)...));
- }
-
- #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
-
- #define BOOST_PP_LOCAL_MACRO(n) \
- BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
- iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
- { return container_detail::force_copy<iterator>(m_flat_tree.emplace_equal \
- (BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); } \
- \
- BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
- iterator emplace_hint(const_iterator hint \
- BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
- { return container_detail::force_copy<iterator>(m_flat_tree.emplace_hint_equal \
- (container_detail::force<impl_const_iterator>(hint) \
- BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); } \
- //!
- #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
- #include BOOST_PP_LOCAL_ITERATE()
-
- #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
-
- //! <b>Effects</b>: Erases the element pointed to by position.
- //!
- //! <b>Returns</b>: Returns an iterator pointing to the element immediately
- //! following q prior to the element being erased. If no such element exists,
- //! returns end().
- //!
- //! <b>Complexity</b>: Linear to the elements with keys bigger than position
- //!
- //! <b>Note</b>: Invalidates elements with keys
- //! not less than the erased element.
- iterator erase(const_iterator position)
- { return container_detail::force_copy<iterator>(m_flat_tree.erase(container_detail::force<impl_const_iterator>(position))); }
-
- //! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
- //!
- //! <b>Returns</b>: Returns the number of erased elements.
- //!
- //! <b>Complexity</b>: Logarithmic search time plus erasure time
- //! linear to the elements with bigger keys.
- size_type erase(const key_type& x)
- { return m_flat_tree.erase(x); }
-
- //! <b>Effects</b>: Erases all the elements in the range [first, last).
- //!
- //! <b>Returns</b>: Returns last.
- //!
- //! <b>Complexity</b>: size()*N where N is the distance from first to last.
- //!
- //! <b>Complexity</b>: Logarithmic search time plus erasure time
- //! linear to the elements with bigger keys.
- iterator erase(const_iterator first, const_iterator last)
- { return container_detail::force_copy<iterator>
- (m_flat_tree.erase(container_detail::force<impl_const_iterator>(first), container_detail::force<impl_const_iterator>(last))); }
-
- //! <b>Effects</b>: erase(a.begin(),a.end()).
- //!
- //! <b>Postcondition</b>: size() == 0.
- //!
- //! <b>Complexity</b>: linear in size().
- void clear()
- { m_flat_tree.clear(); }
-
- //! <b>Effects</b>: Tries to deallocate the excess of memory created
- // with previous allocations. The size of the vector is unchanged
- //!
- //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
- //!
- //! <b>Complexity</b>: Linear to size().
- void shrink_to_fit()
- { m_flat_tree.shrink_to_fit(); }
-
- //! <b>Returns</b>: An iterator pointing to an element with the key
- //! equivalent to x, or end() if such an element is not found.
- //!
- //! <b>Complexity</b>: Logarithmic.
- iterator find(const key_type& x)
- { return container_detail::force_copy<iterator>(m_flat_tree.find(x)); }
-
- //! <b>Returns</b>: An const_iterator pointing to an element with the key
- //! equivalent to x, or end() if such an element is not found.
- //!
- //! <b>Complexity</b>: Logarithmic.
- const_iterator find(const key_type& x) const
- { return container_detail::force<const_iterator>(m_flat_tree.find(x)); }
-
- //! <b>Returns</b>: The number of elements with key equivalent to x.
- //!
- //! <b>Complexity</b>: log(size())+count(k)
- size_type count(const key_type& x) const
- { return m_flat_tree.count(x); }
-
- //! <b>Returns</b>: An iterator pointing to the first element with key not less
- //! than k, or a.end() if such an element is not found.
- //!
- //! <b>Complexity</b>: Logarithmic
- iterator lower_bound(const key_type& x)
- {return container_detail::force_copy<iterator>(m_flat_tree.lower_bound(x)); }
-
- //! <b>Returns</b>: A const iterator pointing to the first element with key
- //! not less than k, or a.end() if such an element is not found.
- //!
- //! <b>Complexity</b>: Logarithmic
- const_iterator lower_bound(const key_type& x) const
- { return container_detail::force<const_iterator>(m_flat_tree.lower_bound(x)); }
-
- //! <b>Returns</b>: An iterator pointing to the first element with key not less
- //! than x, or end() if such an element is not found.
- //!
- //! <b>Complexity</b>: Logarithmic
- iterator upper_bound(const key_type& x)
- {return container_detail::force_copy<iterator>(m_flat_tree.upper_bound(x)); }
-
- //! <b>Returns</b>: A const iterator pointing to the first element with key
- //! not less than x, or end() if such an element is not found.
- //!
- //! <b>Complexity</b>: Logarithmic
- const_iterator upper_bound(const key_type& x) const
- { return container_detail::force<const_iterator>(m_flat_tree.upper_bound(x)); }
-
- //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
- //!
- //! <b>Complexity</b>: Logarithmic
- std::pair<iterator,iterator> equal_range(const key_type& x)
- { return container_detail::force_copy<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); }
-
- //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
- //!
- //! <b>Complexity</b>: Logarithmic
- std::pair<const_iterator,const_iterator>
- equal_range(const key_type& x) const
- { return container_detail::force_copy<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); }
-
- //! <b>Effects</b>: Number of elements for which memory has been allocated.
- //! capacity() is always greater than or equal to size().
- //!
- //! <b>Throws</b>: Nothing.
- //!
- //! <b>Complexity</b>: Constant.
- size_type capacity() const
- { return m_flat_tree.capacity(); }
-
- //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
- //! effect. Otherwise, it is a request for allocation of additional memory.
- //! If the request is successful, then capacity() is greater than or equal to
- //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
- //!
- //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
- //!
- //! <b>Note</b>: If capacity() is less than "count", iterators and references to
- //! to values might be invalidated.
- void reserve(size_type count)
- { m_flat_tree.reserve(count); }
-
- /// @cond
- template <class K1, class T1, class C1, class A1>
- friend bool operator== (const flat_multimap<K1, T1, C1, A1>& x,
- const flat_multimap<K1, T1, C1, A1>& y);
-
- template <class K1, class T1, class C1, class A1>
- friend bool operator< (const flat_multimap<K1, T1, C1, A1>& x,
- const flat_multimap<K1, T1, C1, A1>& y);
- /// @endcond
-};
-
-template <class Key, class T, class Pred, class A>
-inline bool operator==(const flat_multimap<Key,T,Pred,A>& x,
- const flat_multimap<Key,T,Pred,A>& y)
- { return x.m_flat_tree == y.m_flat_tree; }
-
-template <class Key, class T, class Pred, class A>
-inline bool operator<(const flat_multimap<Key,T,Pred,A>& x,
- const flat_multimap<Key,T,Pred,A>& y)
- { return x.m_flat_tree < y.m_flat_tree; }
-
-template <class Key, class T, class Pred, class A>
-inline bool operator!=(const flat_multimap<Key,T,Pred,A>& x,
- const flat_multimap<Key,T,Pred,A>& y)
- { return !(x == y); }
-
-template <class Key, class T, class Pred, class A>
-inline bool operator>(const flat_multimap<Key,T,Pred,A>& x,
- const flat_multimap<Key,T,Pred,A>& y)
- { return y < x; }
-
-template <class Key, class T, class Pred, class A>
-inline bool operator<=(const flat_multimap<Key,T,Pred,A>& x,
- const flat_multimap<Key,T,Pred,A>& y)
- { return !(y < x); }
-
-template <class Key, class T, class Pred, class A>
-inline bool operator>=(const flat_multimap<Key,T,Pred,A>& x,
- const flat_multimap<Key,T,Pred,A>& y)
- { return !(x < y); }
-
-template <class Key, class T, class Pred, class A>
-inline void swap(flat_multimap<Key,T,Pred,A>& x, flat_multimap<Key,T,Pred,A>& y)
- { x.swap(y); }
-
-}}
-
-/// @cond
-
-namespace boost {
-/*
-//!has_trivial_destructor_after_move<> == true_type
-//!specialization for optimizations
-template <class K, class T, class C, class A>
-struct has_trivial_destructor_after_move< boost::container::flat_multimap<K, T, C, A> >
-{
- static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value;
-};
-*/
-} //namespace boost {
-
-/// @endcond
-
-#include <boost/container/detail/config_end.hpp>
-
-#endif /* BOOST_CONTAINER_FLAT_MAP_HPP */