summaryrefslogtreecommitdiff
path: root/src/third_party/gperftools-2.7/src/tcmalloc.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/third_party/gperftools-2.7/src/tcmalloc.cc')
-rw-r--r--src/third_party/gperftools-2.7/src/tcmalloc.cc2198
1 files changed, 2198 insertions, 0 deletions
diff --git a/src/third_party/gperftools-2.7/src/tcmalloc.cc b/src/third_party/gperftools-2.7/src/tcmalloc.cc
new file mode 100644
index 00000000000..7b18ddbcb71
--- /dev/null
+++ b/src/third_party/gperftools-2.7/src/tcmalloc.cc
@@ -0,0 +1,2198 @@
+// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+// Author: Sanjay Ghemawat <opensource@google.com>
+//
+// A malloc that uses a per-thread cache to satisfy small malloc requests.
+// (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
+//
+// See docs/tcmalloc.html for a high-level
+// description of how this malloc works.
+//
+// SYNCHRONIZATION
+// 1. The thread-specific lists are accessed without acquiring any locks.
+// This is safe because each such list is only accessed by one thread.
+// 2. We have a lock per central free-list, and hold it while manipulating
+// the central free list for a particular size.
+// 3. The central page allocator is protected by "pageheap_lock".
+// 4. The pagemap (which maps from page-number to descriptor),
+// can be read without holding any locks, and written while holding
+// the "pageheap_lock".
+// 5. To improve performance, a subset of the information one can get
+// from the pagemap is cached in a data structure, pagemap_cache_,
+// that atomically reads and writes its entries. This cache can be
+// read and written without locking.
+//
+// This multi-threaded access to the pagemap is safe for fairly
+// subtle reasons. We basically assume that when an object X is
+// allocated by thread A and deallocated by thread B, there must
+// have been appropriate synchronization in the handoff of object
+// X from thread A to thread B. The same logic applies to pagemap_cache_.
+//
+// THE PAGEID-TO-SIZECLASS CACHE
+// Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache
+// returns 0 for a particular PageID then that means "no information," not that
+// the sizeclass is 0. The cache may have stale information for pages that do
+// not hold the beginning of any free()'able object. Staleness is eliminated
+// in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
+// do_memalign() for all other relevant pages.
+//
+// PAGEMAP
+// -------
+// Page map contains a mapping from page id to Span.
+//
+// If Span s occupies pages [p..q],
+// pagemap[p] == s
+// pagemap[q] == s
+// pagemap[p+1..q-1] are undefined
+// pagemap[p-1] and pagemap[q+1] are defined:
+// NULL if the corresponding page is not yet in the address space.
+// Otherwise it points to a Span. This span may be free
+// or allocated. If free, it is in one of pageheap's freelist.
+//
+// TODO: Bias reclamation to larger addresses
+// TODO: implement mallinfo/mallopt
+// TODO: Better testing
+//
+// 9/28/2003 (new page-level allocator replaces ptmalloc2):
+// * malloc/free of small objects goes from ~300 ns to ~50 ns.
+// * allocation of a reasonably complicated struct
+// goes from about 1100 ns to about 300 ns.
+
+#include "config.h"
+// At least for gcc on Linux/i386 and Linux/amd64 not adding throw()
+// to tc_xxx functions actually ends up generating better code.
+#define PERFTOOLS_NOTHROW
+#include <gperftools/tcmalloc.h>
+
+#include <errno.h> // for ENOMEM, EINVAL, errno
+#if defined HAVE_STDINT_H
+#include <stdint.h>
+#elif defined HAVE_INTTYPES_H
+#include <inttypes.h>
+#else
+#include <sys/types.h>
+#endif
+#include <stddef.h> // for size_t, NULL
+#include <stdlib.h> // for getenv
+#include <string.h> // for strcmp, memset, strlen, etc
+#ifdef HAVE_UNISTD_H
+#include <unistd.h> // for getpagesize, write, etc
+#endif
+#include <algorithm> // for max, min
+#include <limits> // for numeric_limits
+#include <new> // for nothrow_t (ptr only), etc
+#include <vector> // for vector
+
+#include <gperftools/malloc_extension.h>
+#include <gperftools/malloc_hook.h> // for MallocHook
+#include <gperftools/nallocx.h>
+#include "base/basictypes.h" // for int64
+#include "base/commandlineflags.h" // for RegisterFlagValidator, etc
+#include "base/dynamic_annotations.h" // for RunningOnValgrind
+#include "base/spinlock.h" // for SpinLockHolder
+#include "central_freelist.h" // for CentralFreeListPadded
+#include "common.h" // for StackTrace, kPageShift, etc
+#include "internal_logging.h" // for ASSERT, TCMalloc_Printer, etc
+#include "linked_list.h" // for SLL_SetNext
+#include "malloc_hook-inl.h" // for MallocHook::InvokeNewHook, etc
+#include "page_heap.h" // for PageHeap, PageHeap::Stats
+#include "page_heap_allocator.h" // for PageHeapAllocator
+#include "span.h" // for Span, DLL_Prepend, etc
+#include "stack_trace_table.h" // for StackTraceTable
+#include "static_vars.h" // for Static
+#include "system-alloc.h" // for DumpSystemAllocatorStats, etc
+#include "tcmalloc_guard.h" // for TCMallocGuard
+#include "thread_cache.h" // for ThreadCache
+
+#include "maybe_emergency_malloc.h"
+
+#if (defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)) && !defined(WIN32_OVERRIDE_ALLOCATORS)
+# define WIN32_DO_PATCHING 1
+#endif
+
+// Some windows file somewhere (at least on cygwin) #define's small (!)
+#undef small
+
+using STL_NAMESPACE::max;
+using STL_NAMESPACE::min;
+using STL_NAMESPACE::numeric_limits;
+using STL_NAMESPACE::vector;
+
+#include "libc_override.h"
+
+using tcmalloc::AlignmentForSize;
+using tcmalloc::kLog;
+using tcmalloc::kCrash;
+using tcmalloc::kCrashWithStats;
+using tcmalloc::Log;
+using tcmalloc::PageHeap;
+using tcmalloc::PageHeapAllocator;
+using tcmalloc::SizeMap;
+using tcmalloc::Span;
+using tcmalloc::StackTrace;
+using tcmalloc::Static;
+using tcmalloc::ThreadCache;
+
+DECLARE_double(tcmalloc_release_rate);
+
+// Those common architectures are known to be safe w.r.t. aliasing function
+// with "extra" unused args to function with fewer arguments (e.g.
+// tc_delete_nothrow being aliased to tc_delete).
+//
+// Benefit of aliasing is relatively moderate. It reduces instruction
+// cache pressure a bit (not relevant for largely unused
+// tc_delete_nothrow, but is potentially relevant for
+// tc_delete_aligned (or sized)). It also used to be the case that gcc
+// 5+ optimization for merging identical functions kicked in and
+// "screwed" one of the otherwise identical functions with extra
+// jump. I am not able to reproduce that anymore.
+#if !defined(__i386__) && !defined(__x86_64__) && \
+ !defined(__ppc__) && !defined(__PPC__) && \
+ !defined(__aarch64__) && !defined(__mips__) && !defined(__arm__)
+#undef TCMALLOC_NO_ALIASES
+#define TCMALLOC_NO_ALIASES
+#endif
+
+#if defined(__GNUC__) && defined(__ELF__) && !defined(TCMALLOC_NO_ALIASES)
+#define TC_ALIAS(name) __attribute__((alias(#name)))
+#endif
+
+// For windows, the printf we use to report large allocs is
+// potentially dangerous: it could cause a malloc that would cause an
+// infinite loop. So by default we set the threshold to a huge number
+// on windows, so this bad situation will never trigger. You can
+// always set TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD manually if you
+// want this functionality.
+#ifdef _WIN32
+const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 62;
+#else
+const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 30;
+#endif
+DEFINE_int64(tcmalloc_large_alloc_report_threshold,
+ EnvToInt64("TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD",
+ kDefaultLargeAllocReportThreshold),
+ "Allocations larger than this value cause a stack "
+ "trace to be dumped to stderr. The threshold for "
+ "dumping stack traces is increased by a factor of 1.125 "
+ "every time we print a message so that the threshold "
+ "automatically goes up by a factor of ~1000 every 60 "
+ "messages. This bounds the amount of extra logging "
+ "generated by this flag. Default value of this flag "
+ "is very large and therefore you should see no extra "
+ "logging unless the flag is overridden. Set to 0 to "
+ "disable reporting entirely.");
+
+
+// We already declared these functions in tcmalloc.h, but we have to
+// declare them again to give them an ATTRIBUTE_SECTION: we want to
+// put all callers of MallocHook::Invoke* in this module into
+// ATTRIBUTE_SECTION(google_malloc) section, so that
+// MallocHook::GetCallerStackTrace can function accurately.
+#ifndef _WIN32 // windows doesn't have attribute_section, so don't bother
+extern "C" {
+ void* tc_malloc(size_t size) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_free(void* ptr) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_free_sized(void* ptr, size_t size) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void* tc_realloc(void* ptr, size_t size) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void* tc_calloc(size_t nmemb, size_t size) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_cfree(void* ptr) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+
+ void* tc_memalign(size_t __alignment, size_t __size) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ int tc_posix_memalign(void** ptr, size_t align, size_t size) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void* tc_valloc(size_t __size) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void* tc_pvalloc(size_t __size) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+
+ void tc_malloc_stats(void) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ int tc_mallopt(int cmd, int value) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+#ifdef HAVE_STRUCT_MALLINFO
+ struct mallinfo tc_mallinfo(void) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+#endif
+
+ void* tc_new(size_t size)
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_delete(void* p) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_delete_sized(void* p, size_t size) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void* tc_newarray(size_t size)
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_deletearray(void* p) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_deletearray_sized(void* p, size_t size) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+
+ // And the nothrow variants of these:
+ void* tc_new_nothrow(size_t size, const std::nothrow_t&) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ // Surprisingly, standard C++ library implementations use a
+ // nothrow-delete internally. See, eg:
+ // http://www.dinkumware.com/manuals/?manual=compleat&page=new.html
+ void tc_delete_nothrow(void* ptr, const std::nothrow_t&) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_deletearray_nothrow(void* ptr, const std::nothrow_t&) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+
+#if defined(ENABLE_ALIGNED_NEW_DELETE)
+
+ void* tc_new_aligned(size_t size, std::align_val_t al)
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_delete_aligned(void* p, std::align_val_t al) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_delete_sized_aligned(void* p, size_t size, std::align_val_t al) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void* tc_newarray_aligned(size_t size, std::align_val_t al)
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_deletearray_aligned(void* p, std::align_val_t al) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_deletearray_sized_aligned(void* p, size_t size, std::align_val_t al) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+
+ // And the nothrow variants of these:
+ void* tc_new_aligned_nothrow(size_t size, std::align_val_t al, const std::nothrow_t&) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void* tc_newarray_aligned_nothrow(size_t size, std::align_val_t al, const std::nothrow_t&) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_delete_aligned_nothrow(void* ptr, std::align_val_t al, const std::nothrow_t&) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_deletearray_aligned_nothrow(void* ptr, std::align_val_t al, const std::nothrow_t&) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+
+#endif // defined(ENABLE_ALIGNED_NEW_DELETE)
+
+ // Some non-standard extensions that we support.
+
+ // This is equivalent to
+ // OS X: malloc_size()
+ // glibc: malloc_usable_size()
+ // Windows: _msize()
+ size_t tc_malloc_size(void* p) PERFTOOLS_NOTHROW
+ ATTRIBUTE_SECTION(google_malloc);
+} // extern "C"
+#endif // #ifndef _WIN32
+
+// ----------------------- IMPLEMENTATION -------------------------------
+
+static int tc_new_mode = 0; // See tc_set_new_mode().
+
+// Routines such as free() and realloc() catch some erroneous pointers
+// passed to them, and invoke the below when they do. (An erroneous pointer
+// won't be caught if it's within a valid span or a stale span for which
+// the pagemap cache has a non-zero sizeclass.) This is a cheap (source-editing
+// required) kind of exception handling for these routines.
+namespace {
+ATTRIBUTE_NOINLINE void InvalidFree(void* ptr) {
+ if (tcmalloc::IsEmergencyPtr(ptr)) {
+ tcmalloc::EmergencyFree(ptr);
+ return;
+ }
+ Log(kCrash, __FILE__, __LINE__, "Attempt to free invalid pointer", ptr);
+}
+
+size_t InvalidGetSizeForRealloc(const void* old_ptr) {
+ Log(kCrash, __FILE__, __LINE__,
+ "Attempt to realloc invalid pointer", old_ptr);
+ return 0;
+}
+
+size_t InvalidGetAllocatedSize(const void* ptr) {
+ Log(kCrash, __FILE__, __LINE__,
+ "Attempt to get the size of an invalid pointer", ptr);
+ return 0;
+}
+} // unnamed namespace
+
+// Extract interesting stats
+struct TCMallocStats {
+ uint64_t thread_bytes; // Bytes in thread caches
+ uint64_t central_bytes; // Bytes in central cache
+ uint64_t transfer_bytes; // Bytes in central transfer cache
+ uint64_t metadata_bytes; // Bytes alloced for metadata
+ PageHeap::Stats pageheap; // Stats from page heap
+};
+
+// Get stats into "r". Also, if class_count != NULL, class_count[k]
+// will be set to the total number of objects of size class k in the
+// central cache, transfer cache, and per-thread caches. If small_spans
+// is non-NULL, it is filled. Same for large_spans.
+static void ExtractStats(TCMallocStats* r, uint64_t* class_count,
+ PageHeap::SmallSpanStats* small_spans,
+ PageHeap::LargeSpanStats* large_spans) {
+ r->central_bytes = 0;
+ r->transfer_bytes = 0;
+ for (int cl = 0; cl < Static::num_size_classes(); ++cl) {
+ const int length = Static::central_cache()[cl].length();
+ const int tc_length = Static::central_cache()[cl].tc_length();
+ const size_t cache_overhead = Static::central_cache()[cl].OverheadBytes();
+ const size_t size = static_cast<uint64_t>(
+ Static::sizemap()->ByteSizeForClass(cl));
+ r->central_bytes += (size * length) + cache_overhead;
+ r->transfer_bytes += (size * tc_length);
+ if (class_count) {
+ // Sum the lengths of all per-class freelists, except the per-thread
+ // freelists, which get counted when we call GetThreadStats(), below.
+ class_count[cl] = length + tc_length;
+ }
+
+ }
+
+ // Add stats from per-thread heaps
+ r->thread_bytes = 0;
+ { // scope
+ SpinLockHolder h(Static::pageheap_lock());
+ ThreadCache::GetThreadStats(&r->thread_bytes, class_count);
+ r->metadata_bytes = tcmalloc::metadata_system_bytes();
+ r->pageheap = Static::pageheap()->stats();
+ if (small_spans != NULL) {
+ Static::pageheap()->GetSmallSpanStats(small_spans);
+ }
+ if (large_spans != NULL) {
+ Static::pageheap()->GetLargeSpanStats(large_spans);
+ }
+ }
+}
+
+static double PagesToMiB(uint64_t pages) {
+ return (pages << kPageShift) / 1048576.0;
+}
+
+// WRITE stats to "out"
+static void DumpStats(TCMalloc_Printer* out, int level) {
+ TCMallocStats stats;
+ uint64_t class_count[kClassSizesMax];
+ PageHeap::SmallSpanStats small;
+ PageHeap::LargeSpanStats large;
+ if (level >= 2) {
+ ExtractStats(&stats, class_count, &small, &large);
+ } else {
+ ExtractStats(&stats, NULL, NULL, NULL);
+ }
+
+ static const double MiB = 1048576.0;
+
+ const uint64_t virtual_memory_used = (stats.pageheap.system_bytes
+ + stats.metadata_bytes);
+ const uint64_t physical_memory_used = (virtual_memory_used
+ - stats.pageheap.unmapped_bytes);
+ const uint64_t bytes_in_use_by_app = (physical_memory_used
+ - stats.metadata_bytes
+ - stats.pageheap.free_bytes
+ - stats.central_bytes
+ - stats.transfer_bytes
+ - stats.thread_bytes);
+
+#ifdef TCMALLOC_SMALL_BUT_SLOW
+ out->printf(
+ "NOTE: SMALL MEMORY MODEL IS IN USE, PERFORMANCE MAY SUFFER.\n");
+#endif
+ out->printf(
+ "------------------------------------------------\n"
+ "MALLOC: %12" PRIu64 " (%7.1f MiB) Bytes in use by application\n"
+ "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in page heap freelist\n"
+ "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in central cache freelist\n"
+ "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in transfer cache freelist\n"
+ "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in thread cache freelists\n"
+ "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in malloc metadata\n"
+ "MALLOC: ------------\n"
+ "MALLOC: = %12" PRIu64 " (%7.1f MiB) Actual memory used (physical + swap)\n"
+ "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes released to OS (aka unmapped)\n"
+ "MALLOC: ------------\n"
+ "MALLOC: = %12" PRIu64 " (%7.1f MiB) Virtual address space used\n"
+ "MALLOC:\n"
+ "MALLOC: %12" PRIu64 " Spans in use\n"
+ "MALLOC: %12" PRIu64 " Thread heaps in use\n"
+ "MALLOC: %12" PRIu64 " Tcmalloc page size\n"
+ "------------------------------------------------\n"
+ "Call ReleaseFreeMemory() to release freelist memory to the OS"
+ " (via madvise()).\n"
+ "Bytes released to the OS take up virtual address space"
+ " but no physical memory.\n",
+ bytes_in_use_by_app, bytes_in_use_by_app / MiB,
+ stats.pageheap.free_bytes, stats.pageheap.free_bytes / MiB,
+ stats.central_bytes, stats.central_bytes / MiB,
+ stats.transfer_bytes, stats.transfer_bytes / MiB,
+ stats.thread_bytes, stats.thread_bytes / MiB,
+ stats.metadata_bytes, stats.metadata_bytes / MiB,
+ physical_memory_used, physical_memory_used / MiB,
+ stats.pageheap.unmapped_bytes, stats.pageheap.unmapped_bytes / MiB,
+ virtual_memory_used, virtual_memory_used / MiB,
+ uint64_t(Static::span_allocator()->inuse()),
+ uint64_t(ThreadCache::HeapsInUse()),
+ uint64_t(kPageSize));
+
+ if (level >= 2) {
+ out->printf("------------------------------------------------\n");
+ out->printf("Total size of freelists for per-thread caches,\n");
+ out->printf("transfer cache, and central cache, by size class\n");
+ out->printf("------------------------------------------------\n");
+ uint64_t cumulative = 0;
+ for (uint32 cl = 0; cl < Static::num_size_classes(); ++cl) {
+ if (class_count[cl] > 0) {
+ size_t cl_size = Static::sizemap()->ByteSizeForClass(cl);
+ uint64_t class_bytes = class_count[cl] * cl_size;
+ cumulative += class_bytes;
+ out->printf("class %3d [ %8" PRIuS " bytes ] : "
+ "%8" PRIu64 " objs; %5.1f MiB; %5.1f cum MiB\n",
+ cl, cl_size,
+ class_count[cl],
+ class_bytes / MiB,
+ cumulative / MiB);
+ }
+ }
+
+ // append page heap info
+ int nonempty_sizes = 0;
+ for (int s = 0; s < kMaxPages; s++) {
+ if (small.normal_length[s] + small.returned_length[s] > 0) {
+ nonempty_sizes++;
+ }
+ }
+ out->printf("------------------------------------------------\n");
+ out->printf("PageHeap: %d sizes; %6.1f MiB free; %6.1f MiB unmapped\n",
+ nonempty_sizes, stats.pageheap.free_bytes / MiB,
+ stats.pageheap.unmapped_bytes / MiB);
+ out->printf("------------------------------------------------\n");
+ uint64_t total_normal = 0;
+ uint64_t total_returned = 0;
+ for (int s = 1; s <= kMaxPages; s++) {
+ const int n_length = small.normal_length[s - 1];
+ const int r_length = small.returned_length[s - 1];
+ if (n_length + r_length > 0) {
+ uint64_t n_pages = s * n_length;
+ uint64_t r_pages = s * r_length;
+ total_normal += n_pages;
+ total_returned += r_pages;
+ out->printf("%6u pages * %6u spans ~ %6.1f MiB; %6.1f MiB cum"
+ "; unmapped: %6.1f MiB; %6.1f MiB cum\n",
+ s,
+ (n_length + r_length),
+ PagesToMiB(n_pages + r_pages),
+ PagesToMiB(total_normal + total_returned),
+ PagesToMiB(r_pages),
+ PagesToMiB(total_returned));
+ }
+ }
+
+ total_normal += large.normal_pages;
+ total_returned += large.returned_pages;
+ out->printf(">%-5u large * %6u spans ~ %6.1f MiB; %6.1f MiB cum"
+ "; unmapped: %6.1f MiB; %6.1f MiB cum\n",
+ static_cast<unsigned int>(kMaxPages),
+ static_cast<unsigned int>(large.spans),
+ PagesToMiB(large.normal_pages + large.returned_pages),
+ PagesToMiB(total_normal + total_returned),
+ PagesToMiB(large.returned_pages),
+ PagesToMiB(total_returned));
+ }
+}
+
+static void PrintStats(int level) {
+ const int kBufferSize = 16 << 10;
+ char* buffer = new char[kBufferSize];
+ TCMalloc_Printer printer(buffer, kBufferSize);
+ DumpStats(&printer, level);
+ write(STDERR_FILENO, buffer, strlen(buffer));
+ delete[] buffer;
+}
+
+static void** DumpHeapGrowthStackTraces() {
+ // Count how much space we need
+ int needed_slots = 0;
+ {
+ SpinLockHolder h(Static::pageheap_lock());
+ for (StackTrace* t = Static::growth_stacks();
+ t != NULL;
+ t = reinterpret_cast<StackTrace*>(
+ t->stack[tcmalloc::kMaxStackDepth-1])) {
+ needed_slots += 3 + t->depth;
+ }
+ needed_slots += 100; // Slop in case list grows
+ needed_slots += needed_slots/8; // An extra 12.5% slop
+ }
+
+ void** result = new void*[needed_slots];
+ if (result == NULL) {
+ Log(kLog, __FILE__, __LINE__,
+ "tcmalloc: allocation failed for stack trace slots",
+ needed_slots * sizeof(*result));
+ return NULL;
+ }
+
+ SpinLockHolder h(Static::pageheap_lock());
+ int used_slots = 0;
+ for (StackTrace* t = Static::growth_stacks();
+ t != NULL;
+ t = reinterpret_cast<StackTrace*>(
+ t->stack[tcmalloc::kMaxStackDepth-1])) {
+ ASSERT(used_slots < needed_slots); // Need to leave room for terminator
+ if (used_slots + 3 + t->depth >= needed_slots) {
+ // No more room
+ break;
+ }
+
+ result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
+ result[used_slots+1] = reinterpret_cast<void*>(t->size);
+ result[used_slots+2] = reinterpret_cast<void*>(t->depth);
+ for (int d = 0; d < t->depth; d++) {
+ result[used_slots+3+d] = t->stack[d];
+ }
+ used_slots += 3 + t->depth;
+ }
+ result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
+ return result;
+}
+
+static void IterateOverRanges(void* arg, MallocExtension::RangeFunction func) {
+ PageID page = 1; // Some code may assume that page==0 is never used
+ bool done = false;
+ while (!done) {
+ // Accumulate a small number of ranges in a local buffer
+ static const int kNumRanges = 16;
+ static base::MallocRange ranges[kNumRanges];
+ int n = 0;
+ {
+ SpinLockHolder h(Static::pageheap_lock());
+ while (n < kNumRanges) {
+ if (!Static::pageheap()->GetNextRange(page, &ranges[n])) {
+ done = true;
+ break;
+ } else {
+ uintptr_t limit = ranges[n].address + ranges[n].length;
+ page = (limit + kPageSize - 1) >> kPageShift;
+ n++;
+ }
+ }
+ }
+
+ for (int i = 0; i < n; i++) {
+ (*func)(arg, &ranges[i]);
+ }
+ }
+}
+
+// TCMalloc's support for extra malloc interfaces
+class TCMallocImplementation : public MallocExtension {
+ private:
+ // ReleaseToSystem() might release more than the requested bytes because
+ // the page heap releases at the span granularity, and spans are of wildly
+ // different sizes. This member keeps track of the extra bytes bytes
+ // released so that the app can periodically call ReleaseToSystem() to
+ // release memory at a constant rate.
+ // NOTE: Protected by Static::pageheap_lock().
+ size_t extra_bytes_released_;
+
+ public:
+ TCMallocImplementation()
+ : extra_bytes_released_(0) {
+ }
+
+ virtual void GetStats(char* buffer, int buffer_length) {
+ ASSERT(buffer_length > 0);
+ TCMalloc_Printer printer(buffer, buffer_length);
+
+ // Print level one stats unless lots of space is available
+ if (buffer_length < 10000) {
+ DumpStats(&printer, 1);
+ } else {
+ DumpStats(&printer, 2);
+ }
+ }
+
+ // We may print an extra, tcmalloc-specific warning message here.
+ virtual void GetHeapSample(MallocExtensionWriter* writer) {
+ if (FLAGS_tcmalloc_sample_parameter == 0) {
+ const char* const kWarningMsg =
+ "%warn\n"
+ "%warn This heap profile does not have any data in it, because\n"
+ "%warn the application was run with heap sampling turned off.\n"
+ "%warn To get useful data from GetHeapSample(), you must\n"
+ "%warn set the environment variable TCMALLOC_SAMPLE_PARAMETER to\n"
+ "%warn a positive sampling period, such as 524288.\n"
+ "%warn\n";
+ writer->append(kWarningMsg, strlen(kWarningMsg));
+ }
+ MallocExtension::GetHeapSample(writer);
+ }
+
+ virtual void** ReadStackTraces(int* sample_period) {
+ tcmalloc::StackTraceTable table;
+ {
+ SpinLockHolder h(Static::pageheap_lock());
+ Span* sampled = Static::sampled_objects();
+ for (Span* s = sampled->next; s != sampled; s = s->next) {
+ table.AddTrace(*reinterpret_cast<StackTrace*>(s->objects));
+ }
+ }
+ *sample_period = ThreadCache::GetCache()->GetSamplePeriod();
+ return table.ReadStackTracesAndClear(); // grabs and releases pageheap_lock
+ }
+
+ virtual void** ReadHeapGrowthStackTraces() {
+ return DumpHeapGrowthStackTraces();
+ }
+
+ virtual size_t GetThreadCacheSize() {
+ ThreadCache* tc = ThreadCache::GetCacheIfPresent();
+ if (!tc)
+ return 0;
+ return tc->Size();
+ }
+
+ virtual void MarkThreadTemporarilyIdle() {
+ ThreadCache::BecomeTemporarilyIdle();
+ }
+
+ virtual void Ranges(void* arg, RangeFunction func) {
+ IterateOverRanges(arg, func);
+ }
+
+ virtual bool GetNumericProperty(const char* name, size_t* value) {
+ ASSERT(name != NULL);
+
+ if (strcmp(name, "generic.current_allocated_bytes") == 0) {
+ TCMallocStats stats;
+ ExtractStats(&stats, NULL, NULL, NULL);
+ *value = stats.pageheap.system_bytes
+ - stats.thread_bytes
+ - stats.central_bytes
+ - stats.transfer_bytes
+ - stats.pageheap.free_bytes
+ - stats.pageheap.unmapped_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "generic.heap_size") == 0) {
+ TCMallocStats stats;
+ ExtractStats(&stats, NULL, NULL, NULL);
+ *value = stats.pageheap.system_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
+ // Kept for backwards compatibility. Now defined externally as:
+ // pageheap_free_bytes + pageheap_unmapped_bytes.
+ SpinLockHolder l(Static::pageheap_lock());
+ PageHeap::Stats stats = Static::pageheap()->stats();
+ *value = stats.free_bytes + stats.unmapped_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.central_cache_free_bytes") == 0) {
+ TCMallocStats stats;
+ ExtractStats(&stats, NULL, NULL, NULL);
+ *value = stats.central_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.transfer_cache_free_bytes") == 0) {
+ TCMallocStats stats;
+ ExtractStats(&stats, NULL, NULL, NULL);
+ *value = stats.transfer_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.thread_cache_free_bytes") == 0) {
+ TCMallocStats stats;
+ ExtractStats(&stats, NULL, NULL, NULL);
+ *value = stats.thread_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.pageheap_free_bytes") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ *value = Static::pageheap()->stats().free_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.pageheap_unmapped_bytes") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ *value = Static::pageheap()->stats().unmapped_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.pageheap_committed_bytes") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ *value = Static::pageheap()->stats().committed_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.pageheap_scavenge_count") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ *value = Static::pageheap()->stats().scavenge_count;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.pageheap_commit_count") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ *value = Static::pageheap()->stats().commit_count;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.pageheap_total_commit_bytes") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ *value = Static::pageheap()->stats().total_commit_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.pageheap_decommit_count") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ *value = Static::pageheap()->stats().decommit_count;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.pageheap_total_decommit_bytes") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ *value = Static::pageheap()->stats().total_decommit_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.pageheap_reserve_count") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ *value = Static::pageheap()->stats().reserve_count;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.pageheap_total_reserve_bytes") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ *value = Static::pageheap()->stats().total_reserve_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ *value = ThreadCache::overall_thread_cache_size();
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
+ TCMallocStats stats;
+ ExtractStats(&stats, NULL, NULL, NULL);
+ *value = stats.thread_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.aggressive_memory_decommit") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ *value = size_t(Static::pageheap()->GetAggressiveDecommit());
+ return true;
+ }
+
+ return false;
+ }
+
+ virtual bool SetNumericProperty(const char* name, size_t value) {
+ ASSERT(name != NULL);
+
+ if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ ThreadCache::set_overall_thread_cache_size(value);
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.aggressive_memory_decommit") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ Static::pageheap()->SetAggressiveDecommit(value != 0);
+ return true;
+ }
+
+ return false;
+ }
+
+ virtual void MarkThreadIdle() {
+ ThreadCache::BecomeIdle();
+ }
+
+ virtual void MarkThreadBusy(); // Implemented below
+
+ virtual SysAllocator* GetSystemAllocator() {
+ SpinLockHolder h(Static::pageheap_lock());
+ return tcmalloc_sys_alloc;
+ }
+
+ virtual void SetSystemAllocator(SysAllocator* alloc) {
+ SpinLockHolder h(Static::pageheap_lock());
+ tcmalloc_sys_alloc = alloc;
+ }
+
+ virtual void ReleaseToSystem(size_t num_bytes) {
+ SpinLockHolder h(Static::pageheap_lock());
+ if (num_bytes <= extra_bytes_released_) {
+ // We released too much on a prior call, so don't release any
+ // more this time.
+ extra_bytes_released_ = extra_bytes_released_ - num_bytes;
+ return;
+ }
+ num_bytes = num_bytes - extra_bytes_released_;
+ // num_bytes might be less than one page. If we pass zero to
+ // ReleaseAtLeastNPages, it won't do anything, so we release a whole
+ // page now and let extra_bytes_released_ smooth it out over time.
+ Length num_pages = max<Length>(num_bytes >> kPageShift, 1);
+ size_t bytes_released = Static::pageheap()->ReleaseAtLeastNPages(
+ num_pages) << kPageShift;
+ if (bytes_released > num_bytes) {
+ extra_bytes_released_ = bytes_released - num_bytes;
+ } else {
+ // The PageHeap wasn't able to release num_bytes. Don't try to
+ // compensate with a big release next time. Specifically,
+ // ReleaseFreeMemory() calls ReleaseToSystem(LONG_MAX).
+ extra_bytes_released_ = 0;
+ }
+ }
+
+ virtual void SetMemoryReleaseRate(double rate) {
+ FLAGS_tcmalloc_release_rate = rate;
+ }
+
+ virtual double GetMemoryReleaseRate() {
+ return FLAGS_tcmalloc_release_rate;
+ }
+ virtual size_t GetEstimatedAllocatedSize(size_t size);
+
+ // This just calls GetSizeWithCallback, but because that's in an
+ // unnamed namespace, we need to move the definition below it in the
+ // file.
+ virtual size_t GetAllocatedSize(const void* ptr);
+
+ // This duplicates some of the logic in GetSizeWithCallback, but is
+ // faster. This is important on OS X, where this function is called
+ // on every allocation operation.
+ virtual Ownership GetOwnership(const void* ptr) {
+ const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
+ // The rest of tcmalloc assumes that all allocated pointers use at
+ // most kAddressBits bits. If ptr doesn't, then it definitely
+ // wasn't alloacted by tcmalloc.
+ if ((p >> (kAddressBits - kPageShift)) > 0) {
+ return kNotOwned;
+ }
+ uint32 cl;
+ if (Static::pageheap()->TryGetSizeClass(p, &cl)) {
+ return kOwned;
+ }
+ const Span *span = Static::pageheap()->GetDescriptor(p);
+ return span ? kOwned : kNotOwned;
+ }
+
+ virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) {
+ static const char* kCentralCacheType = "tcmalloc.central";
+ static const char* kTransferCacheType = "tcmalloc.transfer";
+ static const char* kThreadCacheType = "tcmalloc.thread";
+ static const char* kPageHeapType = "tcmalloc.page";
+ static const char* kPageHeapUnmappedType = "tcmalloc.page_unmapped";
+ static const char* kLargeSpanType = "tcmalloc.large";
+ static const char* kLargeUnmappedSpanType = "tcmalloc.large_unmapped";
+
+ v->clear();
+
+ // central class information
+ int64 prev_class_size = 0;
+ for (int cl = 1; cl < Static::num_size_classes(); ++cl) {
+ size_t class_size = Static::sizemap()->ByteSizeForClass(cl);
+ MallocExtension::FreeListInfo i;
+ i.min_object_size = prev_class_size + 1;
+ i.max_object_size = class_size;
+ i.total_bytes_free =
+ Static::central_cache()[cl].length() * class_size;
+ i.type = kCentralCacheType;
+ v->push_back(i);
+
+ // transfer cache
+ i.total_bytes_free =
+ Static::central_cache()[cl].tc_length() * class_size;
+ i.type = kTransferCacheType;
+ v->push_back(i);
+
+ prev_class_size = Static::sizemap()->ByteSizeForClass(cl);
+ }
+
+ // Add stats from per-thread heaps
+ uint64_t class_count[kClassSizesMax];
+ memset(class_count, 0, sizeof(class_count));
+ {
+ SpinLockHolder h(Static::pageheap_lock());
+ uint64_t thread_bytes = 0;
+ ThreadCache::GetThreadStats(&thread_bytes, class_count);
+ }
+
+ prev_class_size = 0;
+ for (int cl = 1; cl < Static::num_size_classes(); ++cl) {
+ MallocExtension::FreeListInfo i;
+ i.min_object_size = prev_class_size + 1;
+ i.max_object_size = Static::sizemap()->ByteSizeForClass(cl);
+ i.total_bytes_free =
+ class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
+ i.type = kThreadCacheType;
+ v->push_back(i);
+
+ prev_class_size = Static::sizemap()->ByteSizeForClass(cl);
+ }
+
+ // append page heap info
+ PageHeap::SmallSpanStats small;
+ PageHeap::LargeSpanStats large;
+ {
+ SpinLockHolder h(Static::pageheap_lock());
+ Static::pageheap()->GetSmallSpanStats(&small);
+ Static::pageheap()->GetLargeSpanStats(&large);
+ }
+
+ // large spans: mapped
+ MallocExtension::FreeListInfo span_info;
+ span_info.type = kLargeSpanType;
+ span_info.max_object_size = (numeric_limits<size_t>::max)();
+ span_info.min_object_size = kMaxPages << kPageShift;
+ span_info.total_bytes_free = large.normal_pages << kPageShift;
+ v->push_back(span_info);
+
+ // large spans: unmapped
+ span_info.type = kLargeUnmappedSpanType;
+ span_info.total_bytes_free = large.returned_pages << kPageShift;
+ v->push_back(span_info);
+
+ // small spans
+ for (int s = 1; s <= kMaxPages; s++) {
+ MallocExtension::FreeListInfo i;
+ i.max_object_size = (s << kPageShift);
+ i.min_object_size = ((s - 1) << kPageShift);
+
+ i.type = kPageHeapType;
+ i.total_bytes_free = (s << kPageShift) * small.normal_length[s - 1];
+ v->push_back(i);
+
+ i.type = kPageHeapUnmappedType;
+ i.total_bytes_free = (s << kPageShift) * small.returned_length[s - 1];
+ v->push_back(i);
+ }
+ }
+};
+
+static inline ATTRIBUTE_ALWAYS_INLINE
+size_t align_size_up(size_t size, size_t align) {
+ ASSERT(align <= kPageSize);
+ size_t new_size = (size + align - 1) & ~(align - 1);
+ if (PREDICT_FALSE(new_size == 0)) {
+ // Note, new_size == 0 catches both integer overflow and size
+ // being 0.
+ if (size == 0) {
+ new_size = align;
+ } else {
+ new_size = size;
+ }
+ }
+ return new_size;
+}
+
+// Puts in *cl size class that is suitable for allocation of size bytes with
+// align alignment. Returns true if such size class exists and false otherwise.
+static bool size_class_with_alignment(size_t size, size_t align, uint32_t* cl) {
+ if (PREDICT_FALSE(align > kPageSize)) {
+ return false;
+ }
+ size = align_size_up(size, align);
+ if (PREDICT_FALSE(!Static::sizemap()->GetSizeClass(size, cl))) {
+ return false;
+ }
+ ASSERT((Static::sizemap()->class_to_size(*cl) & (align - 1)) == 0);
+ return true;
+}
+
+// nallocx slow path. Moved to a separate function because
+// ThreadCache::InitModule is not inlined which would cause nallocx to
+// become non-leaf function with stack frame and stack spills.
+static ATTRIBUTE_NOINLINE size_t nallocx_slow(size_t size, int flags) {
+ if (PREDICT_FALSE(!Static::IsInited())) ThreadCache::InitModule();
+
+ size_t align = static_cast<size_t>(1ull << (flags & 0x3f));
+ uint32 cl;
+ bool ok = size_class_with_alignment(size, align, &cl);
+ if (ok) {
+ return Static::sizemap()->ByteSizeForClass(cl);
+ } else {
+ return tcmalloc::pages(size) << kPageShift;
+ }
+}
+
+// The nallocx function allocates no memory, but it performs the same size
+// computation as the malloc function, and returns the real size of the
+// allocation that would result from the equivalent malloc function call.
+// nallocx is a malloc extension originally implemented by jemalloc:
+// http://www.unix.com/man-page/freebsd/3/nallocx/
+extern "C" PERFTOOLS_DLL_DECL
+size_t tc_nallocx(size_t size, int flags) {
+ if (PREDICT_FALSE(flags != 0)) {
+ return nallocx_slow(size, flags);
+ }
+ uint32 cl;
+ // size class 0 is only possible if malloc is not yet initialized
+ if (Static::sizemap()->GetSizeClass(size, &cl) && cl != 0) {
+ return Static::sizemap()->ByteSizeForClass(cl);
+ } else {
+ return nallocx_slow(size, 0);
+ }
+}
+
+extern "C" PERFTOOLS_DLL_DECL
+size_t nallocx(size_t size, int flags)
+#ifdef TC_ALIAS
+ TC_ALIAS(tc_nallocx);
+#else
+{
+ return nallocx_slow(size, flags);
+}
+#endif
+
+
+size_t TCMallocImplementation::GetEstimatedAllocatedSize(size_t size) {
+ return tc_nallocx(size, 0);
+}
+
+// The constructor allocates an object to ensure that initialization
+// runs before main(), and therefore we do not have a chance to become
+// multi-threaded before initialization. We also create the TSD key
+// here. Presumably by the time this constructor runs, glibc is in
+// good enough shape to handle pthread_key_create().
+//
+// The constructor also takes the opportunity to tell STL to use
+// tcmalloc. We want to do this early, before construct time, so
+// all user STL allocations go through tcmalloc (which works really
+// well for STL).
+//
+// The destructor prints stats when the program exits.
+static int tcmallocguard_refcount = 0; // no lock needed: runs before main()
+TCMallocGuard::TCMallocGuard() {
+ if (tcmallocguard_refcount++ == 0) {
+ ReplaceSystemAlloc(); // defined in libc_override_*.h
+ tc_free(tc_malloc(1));
+ ThreadCache::InitTSD();
+ tc_free(tc_malloc(1));
+ // Either we, or debugallocation.cc, or valgrind will control memory
+ // management. We register our extension if we're the winner.
+#ifdef TCMALLOC_USING_DEBUGALLOCATION
+ // Let debugallocation register its extension.
+#else
+ if (RunningOnValgrind()) {
+ // Let Valgrind uses its own malloc (so don't register our extension).
+ } else {
+ MallocExtension::Register(new TCMallocImplementation);
+ }
+#endif
+ }
+}
+
+TCMallocGuard::~TCMallocGuard() {
+ if (--tcmallocguard_refcount == 0) {
+ const char* env = NULL;
+ if (!RunningOnValgrind()) {
+ // Valgrind uses it's own malloc so we cannot do MALLOCSTATS
+ env = getenv("MALLOCSTATS");
+ }
+ if (env != NULL) {
+ int level = atoi(env);
+ if (level < 1) level = 1;
+ PrintStats(level);
+ }
+ }
+}
+#ifndef WIN32_OVERRIDE_ALLOCATORS
+static TCMallocGuard module_enter_exit_hook;
+#endif
+
+//-------------------------------------------------------------------
+// Helpers for the exported routines below
+//-------------------------------------------------------------------
+
+static inline bool CheckCachedSizeClass(void *ptr) {
+ PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
+ uint32 cached_value;
+ if (!Static::pageheap()->TryGetSizeClass(p, &cached_value)) {
+ return true;
+ }
+ return cached_value == Static::pageheap()->GetDescriptor(p)->sizeclass;
+}
+
+static inline ATTRIBUTE_ALWAYS_INLINE void* CheckedMallocResult(void *result) {
+ ASSERT(result == NULL || CheckCachedSizeClass(result));
+ return result;
+}
+
+static inline ATTRIBUTE_ALWAYS_INLINE void* SpanToMallocResult(Span *span) {
+ Static::pageheap()->InvalidateCachedSizeClass(span->start);
+ return
+ CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
+}
+
+static void* DoSampledAllocation(size_t size) {
+#ifndef NO_TCMALLOC_SAMPLES
+ // Grab the stack trace outside the heap lock
+ StackTrace tmp;
+ tmp.depth = GetStackTrace(tmp.stack, tcmalloc::kMaxStackDepth, 1);
+ tmp.size = size;
+
+ SpinLockHolder h(Static::pageheap_lock());
+ // Allocate span
+ Span *span = Static::pageheap()->New(tcmalloc::pages(size == 0 ? 1 : size));
+ if (PREDICT_FALSE(span == NULL)) {
+ return NULL;
+ }
+
+ // Allocate stack trace
+ StackTrace *stack = Static::stacktrace_allocator()->New();
+ if (PREDICT_FALSE(stack == NULL)) {
+ // Sampling failed because of lack of memory
+ return span;
+ }
+ *stack = tmp;
+ span->sample = 1;
+ span->objects = stack;
+ tcmalloc::DLL_Prepend(Static::sampled_objects(), span);
+
+ return SpanToMallocResult(span);
+#else
+ abort();
+#endif
+}
+
+namespace {
+
+typedef void* (*malloc_fn)(void *arg);
+
+SpinLock set_new_handler_lock(SpinLock::LINKER_INITIALIZED);
+
+void* handle_oom(malloc_fn retry_fn,
+ void* retry_arg,
+ bool from_operator,
+ bool nothrow) {
+ // we hit out of memory condition, usually if it happens we've
+ // called sbrk or mmap and failed, and thus errno is set. But there
+ // is support for setting up custom system allocator or setting up
+ // page heap size limit, in which cases errno may remain
+ // untouched.
+ //
+ // So we set errno here. C++ operator new doesn't require ENOMEM to
+ // be set, but doesn't forbid it too (and often C++ oom does happen
+ // with ENOMEM set).
+ errno = ENOMEM;
+ if (!from_operator && !tc_new_mode) {
+ // we're out of memory in C library function (malloc etc) and no
+ // "new mode" forced on us. Just return NULL
+ return NULL;
+ }
+ // we're OOM in operator new or "new mode" is set. We might have to
+ // call new_handle and maybe retry allocation.
+
+ for (;;) {
+ // Get the current new handler. NB: this function is not
+ // thread-safe. We make a feeble stab at making it so here, but
+ // this lock only protects against tcmalloc interfering with
+ // itself, not with other libraries calling set_new_handler.
+ std::new_handler nh;
+ {
+ SpinLockHolder h(&set_new_handler_lock);
+ nh = std::set_new_handler(0);
+ (void) std::set_new_handler(nh);
+ }
+#if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
+ if (!nh) {
+ return NULL;
+ }
+ // Since exceptions are disabled, we don't really know if new_handler
+ // failed. Assume it will abort if it fails.
+ (*nh)();
+#else
+ // If no new_handler is established, the allocation failed.
+ if (!nh) {
+ if (nothrow) {
+ return NULL;
+ }
+ throw std::bad_alloc();
+ }
+ // Otherwise, try the new_handler. If it returns, retry the
+ // allocation. If it throws std::bad_alloc, fail the allocation.
+ // if it throws something else, don't interfere.
+ try {
+ (*nh)();
+ } catch (const std::bad_alloc&) {
+ if (!nothrow) throw;
+ return NULL;
+ }
+#endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
+
+ // we get here if new_handler returns successfully. So we retry
+ // allocation.
+ void* rv = retry_fn(retry_arg);
+ if (rv != NULL) {
+ return rv;
+ }
+
+ // if allocation failed again we go to next loop iteration
+ }
+}
+
+// Copy of FLAGS_tcmalloc_large_alloc_report_threshold with
+// automatic increases factored in.
+static int64_t large_alloc_threshold =
+ (kPageSize > FLAGS_tcmalloc_large_alloc_report_threshold
+ ? kPageSize : FLAGS_tcmalloc_large_alloc_report_threshold);
+
+static void ReportLargeAlloc(Length num_pages, void* result) {
+ StackTrace stack;
+ stack.depth = GetStackTrace(stack.stack, tcmalloc::kMaxStackDepth, 1);
+
+ static const int N = 1000;
+ char buffer[N];
+ TCMalloc_Printer printer(buffer, N);
+ printer.printf("tcmalloc: large alloc %" PRIu64 " bytes == %p @ ",
+ static_cast<uint64>(num_pages) << kPageShift,
+ result);
+ for (int i = 0; i < stack.depth; i++) {
+ printer.printf(" %p", stack.stack[i]);
+ }
+ printer.printf("\n");
+ write(STDERR_FILENO, buffer, strlen(buffer));
+}
+
+// Must be called with the page lock held.
+inline bool should_report_large(Length num_pages) {
+ const int64 threshold = large_alloc_threshold;
+ if (threshold > 0 && num_pages >= (threshold >> kPageShift)) {
+ // Increase the threshold by 1/8 every time we generate a report.
+ // We cap the threshold at 8GiB to avoid overflow problems.
+ large_alloc_threshold = (threshold + threshold/8 < 8ll<<30
+ ? threshold + threshold/8 : 8ll<<30);
+ return true;
+ }
+ return false;
+}
+
+// Helper for do_malloc().
+static void* do_malloc_pages(ThreadCache* heap, size_t size) {
+ void* result;
+ bool report_large;
+
+ Length num_pages = tcmalloc::pages(size);
+
+ // NOTE: we're passing original size here as opposed to rounded-up
+ // size as we do in do_malloc_small. The difference is small here
+ // (at most 4k out of at least 256k). And not rounding up saves us
+ // from possibility of overflow, which rounding up could produce.
+ //
+ // See https://github.com/gperftools/gperftools/issues/723
+ if (heap->SampleAllocation(size)) {
+ result = DoSampledAllocation(size);
+
+ SpinLockHolder h(Static::pageheap_lock());
+ report_large = should_report_large(num_pages);
+ } else {
+ SpinLockHolder h(Static::pageheap_lock());
+ Span* span = Static::pageheap()->New(num_pages);
+ result = (PREDICT_FALSE(span == NULL) ? NULL : SpanToMallocResult(span));
+ report_large = should_report_large(num_pages);
+ }
+
+ if (report_large) {
+ ReportLargeAlloc(num_pages, result);
+ }
+ return result;
+}
+
+static void *nop_oom_handler(size_t size) {
+ return NULL;
+}
+
+ATTRIBUTE_ALWAYS_INLINE inline void* do_malloc(size_t size) {
+ if (PREDICT_FALSE(ThreadCache::IsUseEmergencyMalloc())) {
+ return tcmalloc::EmergencyMalloc(size);
+ }
+
+ // note: it will force initialization of malloc if necessary
+ ThreadCache* cache = ThreadCache::GetCache();
+ uint32 cl;
+
+ ASSERT(Static::IsInited());
+ ASSERT(cache != NULL);
+
+ if (PREDICT_FALSE(!Static::sizemap()->GetSizeClass(size, &cl))) {
+ return do_malloc_pages(cache, size);
+ }
+
+ size_t allocated_size = Static::sizemap()->class_to_size(cl);
+ if (PREDICT_FALSE(cache->SampleAllocation(allocated_size))) {
+ return DoSampledAllocation(size);
+ }
+
+ // The common case, and also the simplest. This just pops the
+ // size-appropriate freelist, after replenishing it if it's empty.
+ return CheckedMallocResult(cache->Allocate(allocated_size, cl, nop_oom_handler));
+}
+
+static void *retry_malloc(void* size) {
+ return do_malloc(reinterpret_cast<size_t>(size));
+}
+
+ATTRIBUTE_ALWAYS_INLINE inline void* do_malloc_or_cpp_alloc(size_t size) {
+ void *rv = do_malloc(size);
+ if (PREDICT_TRUE(rv != NULL)) {
+ return rv;
+ }
+ return handle_oom(retry_malloc, reinterpret_cast<void *>(size),
+ false, true);
+}
+
+ATTRIBUTE_ALWAYS_INLINE inline void* do_calloc(size_t n, size_t elem_size) {
+ // Overflow check
+ const size_t size = n * elem_size;
+ if (elem_size != 0 && size / elem_size != n) return NULL;
+
+ void* result = do_malloc_or_cpp_alloc(size);
+ if (result != NULL) {
+ memset(result, 0, size);
+ }
+ return result;
+}
+
+// If ptr is NULL, do nothing. Otherwise invoke the given function.
+inline void free_null_or_invalid(void* ptr, void (*invalid_free_fn)(void*)) {
+ if (ptr != NULL) {
+ (*invalid_free_fn)(ptr);
+ }
+}
+
+static ATTRIBUTE_NOINLINE void do_free_pages(Span* span, void* ptr) {
+ SpinLockHolder h(Static::pageheap_lock());
+ if (span->sample) {
+ StackTrace* st = reinterpret_cast<StackTrace*>(span->objects);
+ tcmalloc::DLL_Remove(span);
+ Static::stacktrace_allocator()->Delete(st);
+ span->objects = NULL;
+ }
+ Static::pageheap()->Delete(span);
+}
+
+// Helper for the object deletion (free, delete, etc.). Inputs:
+// ptr is object to be freed
+// invalid_free_fn is a function that gets invoked on certain "bad frees"
+//
+// We can usually detect the case where ptr is not pointing to a page that
+// tcmalloc is using, and in those cases we invoke invalid_free_fn.
+ATTRIBUTE_ALWAYS_INLINE inline
+void do_free_with_callback(void* ptr,
+ void (*invalid_free_fn)(void*),
+ bool use_hint, size_t size_hint) {
+ ThreadCache* heap = ThreadCache::GetCacheIfPresent();
+
+ const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
+ uint32 cl;
+
+#ifndef NO_TCMALLOC_SAMPLES
+ // we only pass size hint when ptr is not page aligned. Which
+ // implies that it must be very small object.
+ ASSERT(!use_hint || size_hint < kPageSize);
+#endif
+
+ if (!use_hint || PREDICT_FALSE(!Static::sizemap()->GetSizeClass(size_hint, &cl))) {
+ // if we're in sized delete, but size is too large, no need to
+ // probe size cache
+ bool cache_hit = !use_hint && Static::pageheap()->TryGetSizeClass(p, &cl);
+ if (PREDICT_FALSE(!cache_hit)) {
+ Span* span = Static::pageheap()->GetDescriptor(p);
+ if (PREDICT_FALSE(!span)) {
+ // span can be NULL because the pointer passed in is NULL or invalid
+ // (not something returned by malloc or friends), or because the
+ // pointer was allocated with some other allocator besides
+ // tcmalloc. The latter can happen if tcmalloc is linked in via
+ // a dynamic library, but is not listed last on the link line.
+ // In that case, libraries after it on the link line will
+ // allocate with libc malloc, but free with tcmalloc's free.
+ free_null_or_invalid(ptr, invalid_free_fn);
+ return;
+ }
+ cl = span->sizeclass;
+ if (PREDICT_FALSE(cl == 0)) {
+ ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
+ ASSERT(span != NULL && span->start == p);
+ do_free_pages(span, ptr);
+ return;
+ }
+ if (!use_hint) {
+ Static::pageheap()->SetCachedSizeClass(p, cl);
+ }
+ }
+ }
+
+ if (PREDICT_TRUE(heap != NULL)) {
+ ASSERT(Static::IsInited());
+ // If we've hit initialized thread cache, so we're done.
+ heap->Deallocate(ptr, cl);
+ return;
+ }
+
+ if (PREDICT_FALSE(!Static::IsInited())) {
+ // if free was called very early we've could have missed the case
+ // of invalid or nullptr free. I.e. because probing size classes
+ // cache could return bogus result (cl = 0 as of this
+ // writing). But since there is no way we could be dealing with
+ // ptr we've allocated, since successfull malloc implies IsInited,
+ // we can just call "invalid free" handling code.
+ free_null_or_invalid(ptr, invalid_free_fn);
+ return;
+ }
+
+ // Otherwise, delete directly into central cache
+ tcmalloc::SLL_SetNext(ptr, NULL);
+ Static::central_cache()[cl].InsertRange(ptr, ptr, 1);
+}
+
+// The default "do_free" that uses the default callback.
+ATTRIBUTE_ALWAYS_INLINE inline void do_free(void* ptr) {
+ return do_free_with_callback(ptr, &InvalidFree, false, 0);
+}
+
+// NOTE: some logic here is duplicated in GetOwnership (above), for
+// speed. If you change this function, look at that one too.
+inline size_t GetSizeWithCallback(const void* ptr,
+ size_t (*invalid_getsize_fn)(const void*)) {
+ if (ptr == NULL)
+ return 0;
+ const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
+ uint32 cl;
+ if (Static::pageheap()->TryGetSizeClass(p, &cl)) {
+ return Static::sizemap()->ByteSizeForClass(cl);
+ }
+
+ const Span *span = Static::pageheap()->GetDescriptor(p);
+ if (PREDICT_FALSE(span == NULL)) { // means we do not own this memory
+ return (*invalid_getsize_fn)(ptr);
+ }
+
+ if (span->sizeclass != 0) {
+ return Static::sizemap()->ByteSizeForClass(span->sizeclass);
+ }
+
+ if (span->sample) {
+ size_t orig_size = reinterpret_cast<StackTrace*>(span->objects)->size;
+ return tc_nallocx(orig_size, 0);
+ }
+
+ return span->length << kPageShift;
+}
+
+// This lets you call back to a given function pointer if ptr is invalid.
+// It is used primarily by windows code which wants a specialized callback.
+ATTRIBUTE_ALWAYS_INLINE inline void* do_realloc_with_callback(
+ void* old_ptr, size_t new_size,
+ void (*invalid_free_fn)(void*),
+ size_t (*invalid_get_size_fn)(const void*)) {
+ // Get the size of the old entry
+ const size_t old_size = GetSizeWithCallback(old_ptr, invalid_get_size_fn);
+
+ // Reallocate if the new size is larger than the old size,
+ // or if the new size is significantly smaller than the old size.
+ // We do hysteresis to avoid resizing ping-pongs:
+ // . If we need to grow, grow to max(new_size, old_size * 1.X)
+ // . Don't shrink unless new_size < old_size * 0.Y
+ // X and Y trade-off time for wasted space. For now we do 1.25 and 0.5.
+ const size_t min_growth = min(old_size / 4,
+ (std::numeric_limits<size_t>::max)() - old_size); // Avoid overflow.
+ const size_t lower_bound_to_grow = old_size + min_growth;
+ const size_t upper_bound_to_shrink = old_size / 2ul;
+ if ((new_size > old_size) || (new_size < upper_bound_to_shrink)) {
+ // Need to reallocate.
+ void* new_ptr = NULL;
+
+ if (new_size > old_size && new_size < lower_bound_to_grow) {
+ new_ptr = do_malloc_or_cpp_alloc(lower_bound_to_grow);
+ }
+ if (new_ptr == NULL) {
+ // Either new_size is not a tiny increment, or last do_malloc failed.
+ new_ptr = do_malloc_or_cpp_alloc(new_size);
+ }
+ if (PREDICT_FALSE(new_ptr == NULL)) {
+ return NULL;
+ }
+ MallocHook::InvokeNewHook(new_ptr, new_size);
+ memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
+ MallocHook::InvokeDeleteHook(old_ptr);
+ // We could use a variant of do_free() that leverages the fact
+ // that we already know the sizeclass of old_ptr. The benefit
+ // would be small, so don't bother.
+ do_free_with_callback(old_ptr, invalid_free_fn, false, 0);
+ return new_ptr;
+ } else {
+ // We still need to call hooks to report the updated size:
+ MallocHook::InvokeDeleteHook(old_ptr);
+ MallocHook::InvokeNewHook(old_ptr, new_size);
+ return old_ptr;
+ }
+}
+
+ATTRIBUTE_ALWAYS_INLINE inline void* do_realloc(void* old_ptr, size_t new_size) {
+ return do_realloc_with_callback(old_ptr, new_size,
+ &InvalidFree, &InvalidGetSizeForRealloc);
+}
+
+static ATTRIBUTE_ALWAYS_INLINE inline
+void* do_memalign_pages(size_t align, size_t size) {
+ ASSERT((align & (align - 1)) == 0);
+ ASSERT(align > kPageSize);
+ if (size + align < size) return NULL; // Overflow
+
+ if (PREDICT_FALSE(Static::pageheap() == NULL)) ThreadCache::InitModule();
+
+ // Allocate at least one byte to avoid boundary conditions below
+ if (size == 0) size = 1;
+
+ // We will allocate directly from the page heap
+ SpinLockHolder h(Static::pageheap_lock());
+
+ // Allocate extra pages and carve off an aligned portion
+ const Length alloc = tcmalloc::pages(size + align);
+ Span* span = Static::pageheap()->New(alloc);
+ if (PREDICT_FALSE(span == NULL)) return NULL;
+
+ // Skip starting portion so that we end up aligned
+ Length skip = 0;
+ while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
+ skip++;
+ }
+ ASSERT(skip < alloc);
+ if (skip > 0) {
+ Span* rest = Static::pageheap()->Split(span, skip);
+ Static::pageheap()->Delete(span);
+ span = rest;
+ }
+
+ // Skip trailing portion that we do not need to return
+ const Length needed = tcmalloc::pages(size);
+ ASSERT(span->length >= needed);
+ if (span->length > needed) {
+ Span* trailer = Static::pageheap()->Split(span, needed);
+ Static::pageheap()->Delete(trailer);
+ }
+ return SpanToMallocResult(span);
+}
+
+// Helpers for use by exported routines below:
+
+inline void do_malloc_stats() {
+ PrintStats(1);
+}
+
+inline int do_mallopt(int cmd, int value) {
+ return 1; // Indicates error
+}
+
+#ifdef HAVE_STRUCT_MALLINFO
+inline struct mallinfo do_mallinfo() {
+ TCMallocStats stats;
+ ExtractStats(&stats, NULL, NULL, NULL);
+
+ // Just some of the fields are filled in.
+ struct mallinfo info;
+ memset(&info, 0, sizeof(info));
+
+ // Unfortunately, the struct contains "int" field, so some of the
+ // size values will be truncated.
+ info.arena = static_cast<int>(stats.pageheap.system_bytes);
+ info.fsmblks = static_cast<int>(stats.thread_bytes
+ + stats.central_bytes
+ + stats.transfer_bytes);
+ info.fordblks = static_cast<int>(stats.pageheap.free_bytes +
+ stats.pageheap.unmapped_bytes);
+ info.uordblks = static_cast<int>(stats.pageheap.system_bytes
+ - stats.thread_bytes
+ - stats.central_bytes
+ - stats.transfer_bytes
+ - stats.pageheap.free_bytes
+ - stats.pageheap.unmapped_bytes);
+
+ return info;
+}
+#endif // HAVE_STRUCT_MALLINFO
+
+} // end unnamed namespace
+
+// As promised, the definition of this function, declared above.
+size_t TCMallocImplementation::GetAllocatedSize(const void* ptr) {
+ if (ptr == NULL)
+ return 0;
+ ASSERT(TCMallocImplementation::GetOwnership(ptr)
+ != TCMallocImplementation::kNotOwned);
+ return GetSizeWithCallback(ptr, &InvalidGetAllocatedSize);
+}
+
+void TCMallocImplementation::MarkThreadBusy() {
+ // Allocate to force the creation of a thread cache, but avoid
+ // invoking any hooks.
+ do_free(do_malloc(0));
+}
+
+//-------------------------------------------------------------------
+// Exported routines
+//-------------------------------------------------------------------
+
+extern "C" PERFTOOLS_DLL_DECL const char* tc_version(
+ int* major, int* minor, const char** patch) PERFTOOLS_NOTHROW {
+ if (major) *major = TC_VERSION_MAJOR;
+ if (minor) *minor = TC_VERSION_MINOR;
+ if (patch) *patch = TC_VERSION_PATCH;
+ return TC_VERSION_STRING;
+}
+
+// This function behaves similarly to MSVC's _set_new_mode.
+// If flag is 0 (default), calls to malloc will behave normally.
+// If flag is 1, calls to malloc will behave like calls to new,
+// and the std_new_handler will be invoked on failure.
+// Returns the previous mode.
+extern "C" PERFTOOLS_DLL_DECL int tc_set_new_mode(int flag) PERFTOOLS_NOTHROW {
+ int old_mode = tc_new_mode;
+ tc_new_mode = flag;
+ return old_mode;
+}
+
+extern "C" PERFTOOLS_DLL_DECL int tc_query_new_mode() PERFTOOLS_NOTHROW {
+ return tc_new_mode;
+}
+
+#ifndef TCMALLOC_USING_DEBUGALLOCATION // debugallocation.cc defines its own
+
+// CAVEAT: The code structure below ensures that MallocHook methods are always
+// called from the stack frame of the invoked allocation function.
+// heap-checker.cc depends on this to start a stack trace from
+// the call to the (de)allocation function.
+
+namespace tcmalloc {
+
+
+static ATTRIBUTE_SECTION(google_malloc)
+void invoke_hooks_and_free(void *ptr) {
+ MallocHook::InvokeDeleteHook(ptr);
+ do_free(ptr);
+}
+
+ATTRIBUTE_SECTION(google_malloc)
+void* cpp_throw_oom(size_t size) {
+ return handle_oom(retry_malloc, reinterpret_cast<void *>(size),
+ true, false);
+}
+
+ATTRIBUTE_SECTION(google_malloc)
+void* cpp_nothrow_oom(size_t size) {
+ return handle_oom(retry_malloc, reinterpret_cast<void *>(size),
+ true, true);
+}
+
+ATTRIBUTE_SECTION(google_malloc)
+void* malloc_oom(size_t size) {
+ return handle_oom(retry_malloc, reinterpret_cast<void *>(size),
+ false, true);
+}
+
+// tcmalloc::allocate_full_XXX is called by fast-path malloc when some
+// complex handling is needed (such as fetching object from central
+// freelist or malloc sampling). It contains all 'operator new' logic,
+// as opposed to malloc_fast_path which only deals with important
+// subset of cases.
+//
+// Note that this is under tcmalloc namespace so that pprof
+// can automatically filter it out of growthz/heapz profiles.
+//
+// We have slightly fancy setup because we need to call hooks from
+// function in 'google_malloc' section and we cannot place template
+// into this section. Thus 3 separate functions 'built' by macros.
+//
+// Also note that we're carefully orchestrating for
+// MallocHook::GetCallerStackTrace to work even if compiler isn't
+// optimizing tail calls (e.g. -O0 is given). We still require
+// ATTRIBUTE_ALWAYS_INLINE to work for that case, but it was seen to
+// work for -O0 -fno-inline across both GCC and clang. I.e. in this
+// case we'll get stack frame for tc_new, followed by stack frame for
+// allocate_full_cpp_throw_oom, followed by hooks machinery and user
+// code's stack frames. So GetCallerStackTrace will find 2
+// subsequent stack frames in google_malloc section and correctly
+// 'cut' stack trace just before tc_new.
+template <void* OOMHandler(size_t)>
+ATTRIBUTE_ALWAYS_INLINE inline
+static void* do_allocate_full(size_t size) {
+ void* p = do_malloc(size);
+ if (PREDICT_FALSE(p == NULL)) {
+ p = OOMHandler(size);
+ }
+ MallocHook::InvokeNewHook(p, size);
+ return CheckedMallocResult(p);
+}
+
+#define AF(oom) \
+ ATTRIBUTE_SECTION(google_malloc) \
+ void* allocate_full_##oom(size_t size) { \
+ return do_allocate_full<oom>(size); \
+ }
+
+AF(cpp_throw_oom)
+AF(cpp_nothrow_oom)
+AF(malloc_oom)
+
+#undef AF
+
+template <void* OOMHandler(size_t)>
+static ATTRIBUTE_ALWAYS_INLINE inline void* dispatch_allocate_full(size_t size) {
+ if (OOMHandler == cpp_throw_oom) {
+ return allocate_full_cpp_throw_oom(size);
+ }
+ if (OOMHandler == cpp_nothrow_oom) {
+ return allocate_full_cpp_nothrow_oom(size);
+ }
+ ASSERT(OOMHandler == malloc_oom);
+ return allocate_full_malloc_oom(size);
+}
+
+struct retry_memalign_data {
+ size_t align;
+ size_t size;
+};
+
+static void *retry_do_memalign(void *arg) {
+ retry_memalign_data *data = static_cast<retry_memalign_data *>(arg);
+ return do_memalign_pages(data->align, data->size);
+}
+
+static ATTRIBUTE_SECTION(google_malloc)
+void* memalign_pages(size_t align, size_t size,
+ bool from_operator, bool nothrow) {
+ void *rv = do_memalign_pages(align, size);
+ if (PREDICT_FALSE(rv == NULL)) {
+ retry_memalign_data data;
+ data.align = align;
+ data.size = size;
+ rv = handle_oom(retry_do_memalign, &data,
+ from_operator, nothrow);
+ }
+ MallocHook::InvokeNewHook(rv, size);
+ return CheckedMallocResult(rv);
+}
+
+} // namespace tcmalloc
+
+// This is quick, fast-path-only implementation of malloc/new. It is
+// designed to only have support for fast-path. It checks if more
+// complex handling is needed (such as a pageheap allocation or
+// sampling) and only performs allocation if none of those uncommon
+// conditions hold. When we have one of those odd cases it simply
+// tail-calls to one of tcmalloc::allocate_full_XXX defined above.
+//
+// Such approach was found to be quite effective. Generated code for
+// tc_{new,malloc} either succeeds quickly or tail-calls to
+// allocate_full. Terseness of the source and lack of
+// non-tail calls enables compiler to produce better code. Also
+// produced code is short enough to enable effort-less human
+// comprehension. Which itself led to elimination of various checks
+// that were not necessary for fast-path.
+template <void* OOMHandler(size_t)>
+ATTRIBUTE_ALWAYS_INLINE inline
+static void * malloc_fast_path(size_t size) {
+ if (PREDICT_FALSE(!base::internal::new_hooks_.empty())) {
+ return tcmalloc::dispatch_allocate_full<OOMHandler>(size);
+ }
+
+ ThreadCache *cache = ThreadCache::GetFastPathCache();
+
+ if (PREDICT_FALSE(cache == NULL)) {
+ return tcmalloc::dispatch_allocate_full<OOMHandler>(size);
+ }
+
+ uint32 cl;
+ if (PREDICT_FALSE(!Static::sizemap()->GetSizeClass(size, &cl))) {
+ return tcmalloc::dispatch_allocate_full<OOMHandler>(size);
+ }
+
+ size_t allocated_size = Static::sizemap()->ByteSizeForClass(cl);
+
+ if (PREDICT_FALSE(!cache->TryRecordAllocationFast(allocated_size))) {
+ return tcmalloc::dispatch_allocate_full<OOMHandler>(size);
+ }
+
+ return CheckedMallocResult(cache->Allocate(allocated_size, cl, OOMHandler));
+}
+
+template <void* OOMHandler(size_t)>
+ATTRIBUTE_ALWAYS_INLINE inline
+static void* memalign_fast_path(size_t align, size_t size) {
+ if (PREDICT_FALSE(align > kPageSize)) {
+ if (OOMHandler == tcmalloc::cpp_throw_oom) {
+ return tcmalloc::memalign_pages(align, size, true, false);
+ } else if (OOMHandler == tcmalloc::cpp_nothrow_oom) {
+ return tcmalloc::memalign_pages(align, size, true, true);
+ } else {
+ ASSERT(OOMHandler == tcmalloc::malloc_oom);
+ return tcmalloc::memalign_pages(align, size, false, true);
+ }
+ }
+
+ // Everything with alignment <= kPageSize we can easily delegate to
+ // regular malloc
+
+ return malloc_fast_path<OOMHandler>(align_size_up(size, align));
+}
+
+extern "C" PERFTOOLS_DLL_DECL CACHELINE_ALIGNED_FN
+void* tc_malloc(size_t size) PERFTOOLS_NOTHROW {
+ return malloc_fast_path<tcmalloc::malloc_oom>(size);
+}
+
+static ATTRIBUTE_ALWAYS_INLINE inline
+void free_fast_path(void *ptr) {
+ if (PREDICT_FALSE(!base::internal::delete_hooks_.empty())) {
+ tcmalloc::invoke_hooks_and_free(ptr);
+ return;
+ }
+ do_free(ptr);
+}
+
+extern "C" PERFTOOLS_DLL_DECL CACHELINE_ALIGNED_FN
+void tc_free(void* ptr) PERFTOOLS_NOTHROW {
+ free_fast_path(ptr);
+}
+
+extern "C" PERFTOOLS_DLL_DECL CACHELINE_ALIGNED_FN
+void tc_free_sized(void *ptr, size_t size) PERFTOOLS_NOTHROW {
+ if (PREDICT_FALSE(!base::internal::delete_hooks_.empty())) {
+ tcmalloc::invoke_hooks_and_free(ptr);
+ return;
+ }
+#ifndef NO_TCMALLOC_SAMPLES
+ // if ptr is kPageSize-aligned, then it could be sampled allocation,
+ // thus we don't trust hint and just do plain free. It also handles
+ // nullptr for us.
+ if (PREDICT_FALSE((reinterpret_cast<uintptr_t>(ptr) & (kPageSize-1)) == 0)) {
+ tc_free(ptr);
+ return;
+ }
+#else
+ if (!ptr) {
+ return;
+ }
+#endif
+ do_free_with_callback(ptr, &InvalidFree, true, size);
+}
+
+#ifdef TC_ALIAS
+
+extern "C" PERFTOOLS_DLL_DECL void tc_delete_sized(void *p, size_t size) PERFTOOLS_NOTHROW
+ TC_ALIAS(tc_free_sized);
+extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_sized(void *p, size_t size) PERFTOOLS_NOTHROW
+ TC_ALIAS(tc_free_sized);
+
+#else
+
+extern "C" PERFTOOLS_DLL_DECL void tc_delete_sized(void *p, size_t size) PERFTOOLS_NOTHROW {
+ tc_free_sized(p, size);
+}
+extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_sized(void *p, size_t size) PERFTOOLS_NOTHROW {
+ tc_free_sized(p, size);
+}
+
+#endif
+
+extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t n,
+ size_t elem_size) PERFTOOLS_NOTHROW {
+ if (ThreadCache::IsUseEmergencyMalloc()) {
+ return tcmalloc::EmergencyCalloc(n, elem_size);
+ }
+ void* result = do_calloc(n, elem_size);
+ MallocHook::InvokeNewHook(result, n * elem_size);
+ return result;
+}
+
+extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) PERFTOOLS_NOTHROW
+#ifdef TC_ALIAS
+TC_ALIAS(tc_free);
+#else
+{
+ free_fast_path(ptr);
+}
+#endif
+
+extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* old_ptr,
+ size_t new_size) PERFTOOLS_NOTHROW {
+ if (old_ptr == NULL) {
+ void* result = do_malloc_or_cpp_alloc(new_size);
+ MallocHook::InvokeNewHook(result, new_size);
+ return result;
+ }
+ if (new_size == 0) {
+ MallocHook::InvokeDeleteHook(old_ptr);
+ do_free(old_ptr);
+ return NULL;
+ }
+ if (PREDICT_FALSE(tcmalloc::IsEmergencyPtr(old_ptr))) {
+ return tcmalloc::EmergencyRealloc(old_ptr, new_size);
+ }
+ return do_realloc(old_ptr, new_size);
+}
+
+extern "C" PERFTOOLS_DLL_DECL CACHELINE_ALIGNED_FN
+void* tc_new(size_t size) {
+ return malloc_fast_path<tcmalloc::cpp_throw_oom>(size);
+}
+
+extern "C" PERFTOOLS_DLL_DECL CACHELINE_ALIGNED_FN
+void* tc_new_nothrow(size_t size, const std::nothrow_t&) PERFTOOLS_NOTHROW {
+ return malloc_fast_path<tcmalloc::cpp_nothrow_oom>(size);
+}
+
+extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) PERFTOOLS_NOTHROW
+#ifdef TC_ALIAS
+TC_ALIAS(tc_free);
+#else
+{
+ free_fast_path(p);
+}
+#endif
+
+// Standard C++ library implementations define and use this
+// (via ::operator delete(ptr, nothrow)).
+// But it's really the same as normal delete, so we just do the same thing.
+extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) PERFTOOLS_NOTHROW
+#ifdef TC_ALIAS
+TC_ALIAS(tc_free);
+#else
+{
+ if (PREDICT_FALSE(!base::internal::delete_hooks_.empty())) {
+ tcmalloc::invoke_hooks_and_free(p);
+ return;
+ }
+ do_free(p);
+}
+#endif
+
+extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size)
+#ifdef TC_ALIAS
+TC_ALIAS(tc_new);
+#else
+{
+ return malloc_fast_path<tcmalloc::cpp_throw_oom>(size);
+}
+#endif
+
+extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&)
+ PERFTOOLS_NOTHROW
+#ifdef TC_ALIAS
+TC_ALIAS(tc_new_nothrow);
+#else
+{
+ return malloc_fast_path<tcmalloc::cpp_nothrow_oom>(size);
+}
+#endif
+
+extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) PERFTOOLS_NOTHROW
+#ifdef TC_ALIAS
+TC_ALIAS(tc_free);
+#else
+{
+ free_fast_path(p);
+}
+#endif
+
+extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) PERFTOOLS_NOTHROW
+#ifdef TC_ALIAS
+TC_ALIAS(tc_delete_nothrow);
+#else
+{
+ free_fast_path(p);
+}
+#endif
+
+extern "C" PERFTOOLS_DLL_DECL CACHELINE_ALIGNED_FN
+void* tc_memalign(size_t align, size_t size) PERFTOOLS_NOTHROW {
+ return memalign_fast_path<tcmalloc::malloc_oom>(align, size);
+}
+
+extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign(
+ void** result_ptr, size_t align, size_t size) PERFTOOLS_NOTHROW {
+ if (((align % sizeof(void*)) != 0) ||
+ ((align & (align - 1)) != 0) ||
+ (align == 0)) {
+ return EINVAL;
+ }
+
+ void* result = tc_memalign(align, size);
+ if (PREDICT_FALSE(result == NULL)) {
+ return ENOMEM;
+ } else {
+ *result_ptr = result;
+ return 0;
+ }
+}
+
+#if defined(ENABLE_ALIGNED_NEW_DELETE)
+
+extern "C" PERFTOOLS_DLL_DECL void* tc_new_aligned(size_t size, std::align_val_t align) {
+ return memalign_fast_path<tcmalloc::cpp_throw_oom>(static_cast<size_t>(align), size);
+}
+
+extern "C" PERFTOOLS_DLL_DECL void* tc_new_aligned_nothrow(size_t size, std::align_val_t align, const std::nothrow_t&) PERFTOOLS_NOTHROW {
+ return memalign_fast_path<tcmalloc::cpp_nothrow_oom>(static_cast<size_t>(align), size);
+}
+
+extern "C" PERFTOOLS_DLL_DECL void tc_delete_aligned(void* p, std::align_val_t) PERFTOOLS_NOTHROW
+#ifdef TC_ALIAS
+TC_ALIAS(tc_delete);
+#else
+{
+ free_fast_path(p);
+}
+#endif
+
+// There is no easy way to obtain the actual size used by do_memalign to allocate aligned storage, so for now
+// just ignore the size. It might get useful in the future.
+extern "C" PERFTOOLS_DLL_DECL void tc_delete_sized_aligned(void* p, size_t size, std::align_val_t align) PERFTOOLS_NOTHROW
+#ifdef TC_ALIAS
+TC_ALIAS(tc_delete);
+#else
+{
+ free_fast_path(p);
+}
+#endif
+
+extern "C" PERFTOOLS_DLL_DECL void tc_delete_aligned_nothrow(void* p, std::align_val_t, const std::nothrow_t&) PERFTOOLS_NOTHROW
+#ifdef TC_ALIAS
+TC_ALIAS(tc_delete);
+#else
+{
+ free_fast_path(p);
+}
+#endif
+
+extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_aligned(size_t size, std::align_val_t align)
+#ifdef TC_ALIAS
+TC_ALIAS(tc_new_aligned);
+#else
+{
+ return memalign_fast_path<tcmalloc::cpp_throw_oom>(static_cast<size_t>(align), size);
+}
+#endif
+
+extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_aligned_nothrow(size_t size, std::align_val_t align, const std::nothrow_t& nt) PERFTOOLS_NOTHROW
+#ifdef TC_ALIAS
+TC_ALIAS(tc_new_aligned_nothrow);
+#else
+{
+ return memalign_fast_path<tcmalloc::cpp_nothrow_oom>(static_cast<size_t>(align), size);
+}
+#endif
+
+extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_aligned(void* p, std::align_val_t) PERFTOOLS_NOTHROW
+#ifdef TC_ALIAS
+TC_ALIAS(tc_delete_aligned);
+#else
+{
+ free_fast_path(p);
+}
+#endif
+
+// There is no easy way to obtain the actual size used by do_memalign to allocate aligned storage, so for now
+// just ignore the size. It might get useful in the future.
+extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_sized_aligned(void* p, size_t size, std::align_val_t align) PERFTOOLS_NOTHROW
+#ifdef TC_ALIAS
+TC_ALIAS(tc_delete_sized_aligned);
+#else
+{
+ free_fast_path(p);
+}
+#endif
+
+extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_aligned_nothrow(void* p, std::align_val_t, const std::nothrow_t&) PERFTOOLS_NOTHROW
+#ifdef TC_ALIAS
+TC_ALIAS(tc_delete_aligned_nothrow);
+#else
+{
+ free_fast_path(p);
+}
+#endif
+
+#endif // defined(ENABLE_ALIGNED_NEW_DELETE)
+
+static size_t pagesize = 0;
+
+extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) PERFTOOLS_NOTHROW {
+ // Allocate page-aligned object of length >= size bytes
+ if (pagesize == 0) pagesize = getpagesize();
+ return tc_memalign(pagesize, size);
+}
+
+extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) PERFTOOLS_NOTHROW {
+ // Round up size to a multiple of pagesize
+ if (pagesize == 0) pagesize = getpagesize();
+ if (size == 0) { // pvalloc(0) should allocate one page, according to
+ size = pagesize; // http://man.free4web.biz/man3/libmpatrol.3.html
+ }
+ size = (size + pagesize - 1) & ~(pagesize - 1);
+ return tc_memalign(pagesize, size);
+}
+
+extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) PERFTOOLS_NOTHROW {
+ do_malloc_stats();
+}
+
+extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) PERFTOOLS_NOTHROW {
+ return do_mallopt(cmd, value);
+}
+
+#ifdef HAVE_STRUCT_MALLINFO
+extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) PERFTOOLS_NOTHROW {
+ return do_mallinfo();
+}
+#endif
+
+extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) PERFTOOLS_NOTHROW {
+ return MallocExtension::instance()->GetAllocatedSize(ptr);
+}
+
+extern "C" PERFTOOLS_DLL_DECL void* tc_malloc_skip_new_handler(size_t size) PERFTOOLS_NOTHROW {
+ void* result = do_malloc(size);
+ MallocHook::InvokeNewHook(result, size);
+ return result;
+}
+
+#endif // TCMALLOC_USING_DEBUGALLOCATION