summaryrefslogtreecommitdiff
path: root/src/third_party
diff options
context:
space:
mode:
Diffstat (limited to 'src/third_party')
-rw-r--r--src/third_party/wiredtiger/cmake/configs/ppc64le/linux/config.cmake8
-rw-r--r--src/third_party/wiredtiger/dist/filelist2
-rw-r--r--src/third_party/wiredtiger/dist/s_funcs.list2
-rw-r--r--src/third_party/wiredtiger/dist/s_string.ok16
-rw-r--r--src/third_party/wiredtiger/import.data2
-rw-r--r--src/third_party/wiredtiger/src/checksum/power8/README.md70
-rw-r--r--src/third_party/wiredtiger/src/checksum/power8/clang_workaround.h89
-rw-r--r--src/third_party/wiredtiger/src/checksum/power8/crc32.sx782
-rw-r--r--src/third_party/wiredtiger/src/checksum/power8/crc32_constants.h1953
-rw-r--r--src/third_party/wiredtiger/src/checksum/power8/crc32_wrapper.c68
-rw-r--r--src/third_party/wiredtiger/src/checksum/power8/ppc-opcode.h23
-rw-r--r--src/third_party/wiredtiger/src/checksum/power8/vec_crc32.c672
12 files changed, 1974 insertions, 1713 deletions
diff --git a/src/third_party/wiredtiger/cmake/configs/ppc64le/linux/config.cmake b/src/third_party/wiredtiger/cmake/configs/ppc64le/linux/config.cmake
index 4d1821c9e18..45d7e9c9c3e 100644
--- a/src/third_party/wiredtiger/cmake/configs/ppc64le/linux/config.cmake
+++ b/src/third_party/wiredtiger/cmake/configs/ppc64le/linux/config.cmake
@@ -17,11 +17,3 @@ set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -D_GNU_SOURCE" CACHE STRING "" FORCE)
# Linux requires buffers aligned to 4KB boundaries for O_DIRECT to work.
set(WT_BUFFER_ALIGNMENT_DEFAULT "4096" CACHE STRING "")
-
-# Allow assembler to detect '.sx' file extensions.
-list(APPEND CMAKE_ASM_SOURCE_FILE_EXTENSION "sx")
-
-# Our ASM-based checksum utility 'crc32.sx' triggers unused-macros diagnostic errors
-# when compiling. To avoid editing the original source, override the usage '-Wunused-macros'
-# for this specific file.
-set_source_files_properties(src/checksum/power8/crc32.sx PROPERTIES COMPILE_FLAGS -Wno-unused-macros)
diff --git a/src/third_party/wiredtiger/dist/filelist b/src/third_party/wiredtiger/dist/filelist
index fe205cf10f3..1ca6bf4f32b 100644
--- a/src/third_party/wiredtiger/dist/filelist
+++ b/src/third_party/wiredtiger/dist/filelist
@@ -48,8 +48,8 @@ src/btree/row_key.c
src/btree/row_modify.c
src/btree/row_srch.c
src/checksum/arm64/crc32-arm64.c ARM64_HOST
-src/checksum/power8/crc32.sx POWERPC_HOST
src/checksum/power8/crc32_wrapper.c POWERPC_HOST
+src/checksum/power8/vec_crc32.c POWERPC_HOST
src/checksum/riscv64/crc32-riscv64.c RISCV64_HOST
src/checksum/software/checksum.c
src/checksum/x86/crc32-x86-alt.c X86_HOST
diff --git a/src/third_party/wiredtiger/dist/s_funcs.list b/src/third_party/wiredtiger/dist/s_funcs.list
index 4f3d2a2ca87..a5f61123e88 100644
--- a/src/third_party/wiredtiger/dist/s_funcs.list
+++ b/src/third_party/wiredtiger/dist/s_funcs.list
@@ -1,6 +1,4 @@
# List of functions that aren't found by s_funcs, but that's OK.
-FUNC_END
-FUNC_START
WT_CRC32_ENTRY
WT_CURDUMP_PASS
__bit_ffs
diff --git a/src/third_party/wiredtiger/dist/s_string.ok b/src/third_party/wiredtiger/dist/s_string.ok
index e10b2be439e..c40fe06f231 100644
--- a/src/third_party/wiredtiger/dist/s_string.ok
+++ b/src/third_party/wiredtiger/dist/s_string.ok
@@ -21,6 +21,7 @@ Ailamaki
Alakuijala
Alexandrescu's
Alloc
+Alves
Async
AsyncOp
Athanassoulis
@@ -122,12 +123,14 @@ EACCES
EAGAIN
EB
EBUSY
+EDC
EEXIST
EINTR
EINVAL
EMSG
EMail
ENCRYPTOR
+ENDIAN
ENOENT
ENOMEM
ENOTSUP
@@ -176,6 +179,7 @@ Fsync
Fuerst
GBR
GCC
+GF
GIDs
GLIBC
Gcc
@@ -212,6 +216,7 @@ INMEM
INPROGRESS
INSN
INTL
+INTRINSICS
INULL
INUSE
ISA
@@ -301,6 +306,7 @@ NOLL
NOLOCK
NONINFRINGEMENT
NOOP
+NOP
NOTFOUND
NOTREACHED
NOVALUE
@@ -377,6 +383,7 @@ Redistributions
Refactor
Resize
RocksDB
+Rogerio
Runtime
SIMD
SLIST
@@ -869,6 +876,7 @@ fnv
foc
fopen
formatmessage
+foward
fp
fprintf
fread
@@ -938,6 +946,7 @@ ibackup
icount
idlems
idx
+ie
ifdef
ifdef's
iflag
@@ -978,6 +987,7 @@ intpack
intptr
intr
intrin
+intrinsics
inuse
io
ip
@@ -1007,6 +1017,7 @@ iters
jjj
jprx
json
+kB
kb
kbits
keycmp
@@ -1273,6 +1284,7 @@ pvA
pwrite
py
qdown
+qn
qqq
qrrSS
qsort
@@ -1537,6 +1549,8 @@ valuev
vanishingly
variable's
variadic
+vdata
+vec
vectorized
versa
vfprintf
@@ -1544,6 +1558,7 @@ vh
vm
vpack
vpmsum
+vpmsumd
vprintf
vrfy
vsize
@@ -1584,6 +1599,7 @@ xF
xdeadbeef
xff
xfff
+xxpermdi
xxxx
xxxxx
xxxxxx
diff --git a/src/third_party/wiredtiger/import.data b/src/third_party/wiredtiger/import.data
index 6eeee6fc25f..d5f71b6e206 100644
--- a/src/third_party/wiredtiger/import.data
+++ b/src/third_party/wiredtiger/import.data
@@ -2,5 +2,5 @@
"vendor": "wiredtiger",
"github": "wiredtiger/wiredtiger.git",
"branch": "mongodb-master",
- "commit": "265e20d6a6d8173a54b1ada48308dd80e290bc1a"
+ "commit": "b4eabd7093752f76dafb2cbee9f3ad03da56cbb5"
}
diff --git a/src/third_party/wiredtiger/src/checksum/power8/README.md b/src/third_party/wiredtiger/src/checksum/power8/README.md
index 579d841a02c..7a0122ad801 100644
--- a/src/third_party/wiredtiger/src/checksum/power8/README.md
+++ b/src/third_party/wiredtiger/src/checksum/power8/README.md
@@ -34,18 +34,53 @@ to mitigate any I/O induced variability.
Quick start
-----------
+There's two different versions of crc32. They are, basically, the same
+algorithm. The only difference is that one is implemented in pure assembly
+(crc32.S) and the other in C using gcc (power8) vector intrinsics and
+builtins (vec_crc32.c) to make the compiler generate the asm instructions
+instead.
+
- Modify CRC and OPTIONS in the Makefile. There are examples for the two most
common crc32s.
- Type make to create the constants (crc32_constants.h)
-- Import the code into your application (crc32.sx crc32_wrapper.c
- crc32_constants.h ppc-opcode.h) and call the CRC:
+**If you will use the pure asm version**
+
+- Import the code into your application (crc32.S crc32_wrapper.c
+ crc32_constants.h ppc-opcode.h)
+
+**If you will use the C version**
+
+- Import the code into your application (vec_crc32.c crc32_constants.h)
+
+- Call the CRC:
+
```
unsigned int crc32_vpmsum(unsigned int crc, unsigned char *p, unsigned long len);
```
+Advanced Usage
+--------------
+
+Occasionally you may have a number of CRC32 polynomial implementations.
+
+To do this you'll need to compile the C or assembler implementation with a
+different constants header file and change the function names to avoid linker
+conflicts.
+
+To facilitate this optional defines can be introduced:
+
+- CRC32_CONSTANTS_HEADER to be set to the *quoted* header filename.
+
+- CRC32_FUNCTION to be set to the crc32 function name (instead of crc32_vpmsum)
+
+- CRC32_FUNCTION_ASM (asm version only) to be set to the assember function name used
+by crc32_wrapper.c (defaults to __crc32_vpmsum).
+
+An example of this is with crc32_two_implementations as found in the Makefile.
+
CRC background
--------------
@@ -201,8 +236,39 @@ Examples
- final_fold2: A second method of reduction
+Run time detection
+------------------
+
+The kernel sets the PPC_FEATURE2_VEC_CRYPTO bit in the HWCAP2 field
+when the vpmsum instructions are available. An example of run time
+detection:
+
+```
+#include <sys/auxv.h>
+
+#ifndef PPC_FEATURE2_VEC_CRYPTO
+#define PPC_FEATURE2_VEC_CRYPTO 0x02000000
+#endif
+
+#ifndef AT_HWCAP2
+#define AT_HWCAP2 26
+#endif
+
+...
+
+ if (getauxval(AT_HWCAP2) & PPC_FEATURE2_VEC_CRYPTO) {
+ /* Use crc32-vpmsum optimised version */
+ } else {
+ /* fall back to non accelerated version */
+ }
+```
+
Acknowledgements
----------------
Thanks to Michael Gschwind, Jeff Derby, Lorena Pesantez and Stewart Smith
for their ideas and assistance.
+
+Thanks Rogerio Alves for writing the C implementation.
+
+Thanks Daniel Black for cleanup and testing.
diff --git a/src/third_party/wiredtiger/src/checksum/power8/clang_workaround.h b/src/third_party/wiredtiger/src/checksum/power8/clang_workaround.h
new file mode 100644
index 00000000000..aa792012c26
--- /dev/null
+++ b/src/third_party/wiredtiger/src/checksum/power8/clang_workaround.h
@@ -0,0 +1,89 @@
+#ifndef CLANG_WORKAROUND_H
+#define CLANG_WORKAROUND_H
+
+/*
+ * These stubs fix clang incompatibilities with GCC builtins.
+ */
+
+#ifndef __builtin_crypto_vpmsumw
+#define __builtin_crypto_vpmsumw __builtin_crypto_vpmsumb
+#endif
+#ifndef __builtin_crypto_vpmsumd
+#define __builtin_crypto_vpmsumd __builtin_crypto_vpmsumb
+#endif
+
+static inline __vector unsigned long long __attribute__((overloadable))
+vec_ld(int __a, const __vector unsigned long long *__b)
+{
+ return (__vector unsigned long long)__builtin_altivec_lvx(__a, __b);
+}
+
+/*
+ * GCC __builtin_pack_vector_int128 returns a vector __int128_t but Clang does not recognize this
+ * type. On GCC this builtin is translated to a xxpermdi instruction that only moves the registers
+ * __a, __b instead generates a load.
+ *
+ * Clang has vec_xxpermdi intrinsics. It was implemented in 4.0.0.
+ */
+static inline __vector unsigned long long
+__builtin_pack_vector(unsigned long __a, unsigned long __b)
+{
+#if defined(__BIG_ENDIAN__)
+ __vector unsigned long long __v = {__a, __b};
+#else
+ __vector unsigned long long __v = {__b, __a};
+#endif
+ return __v;
+}
+
+/*
+ * Clang 7 changed the behavior of vec_xxpermdi in order to provide the same behavior of GCC. That
+ * means code adapted to Clang >= 7 does not work on Clang <= 6. So, fallback to
+ * __builtin_unpack_vector() on Clang <= 6.
+ */
+#if !defined vec_xxpermdi || __clang_major__ <= 6
+
+static inline unsigned long
+__builtin_unpack_vector(__vector unsigned long long __v, int __o)
+{
+ return __v[__o];
+}
+
+#if defined(__BIG_ENDIAN__)
+#define __builtin_unpack_vector_0(a) __builtin_unpack_vector((a), 0)
+#ifndef REFLECT
+#define __builtin_unpack_vector_1(a) __builtin_unpack_vector((a), 1)
+#endif
+#else
+#define __builtin_unpack_vector_0(a) __builtin_unpack_vector((a), 1)
+#ifndef REFLECT
+#define __builtin_unpack_vector_1(a) __builtin_unpack_vector((a), 0)
+#endif
+#endif
+
+#else
+
+static inline unsigned long
+__builtin_unpack_vector_0(__vector unsigned long long __v)
+{
+#if defined(__BIG_ENDIAN__)
+ return vec_xxpermdi(__v, __v, 0x0)[0];
+#else
+ return vec_xxpermdi(__v, __v, 0x3)[0];
+#endif
+}
+
+#ifndef REFLECT
+static inline unsigned long
+__builtin_unpack_vector_1(__vector unsigned long long __v)
+{
+#if defined(__BIG_ENDIAN__)
+ return vec_xxpermdi(__v, __v, 0x3)[0];
+#else
+ return vec_xxpermdi(__v, __v, 0x0)[0];
+#endif
+}
+#endif
+#endif /* vec_xxpermdi */
+
+#endif
diff --git a/src/third_party/wiredtiger/src/checksum/power8/crc32.sx b/src/third_party/wiredtiger/src/checksum/power8/crc32.sx
deleted file mode 100644
index 3eca99bdc53..00000000000
--- a/src/third_party/wiredtiger/src/checksum/power8/crc32.sx
+++ /dev/null
@@ -1,782 +0,0 @@
-#include <wiredtiger_config.h>
-#if defined(__powerpc64__) && !defined(HAVE_NO_CRC32_HARDWARE)
-
-/*
- * Calculate the checksum of data that is 16 byte aligned and a multiple of
- * 16 bytes.
- *
- * The first step is to reduce it to 1024 bits. We do this in 8 parallel
- * chunks in order to mask the latency of the vpmsum instructions. If we
- * have more than 32 kB of data to checksum we repeat this step multiple
- * times, passing in the previous 1024 bits.
- *
- * The next step is to reduce the 1024 bits to 64 bits. This step adds
- * 32 bits of 0s to the end - this matches what a CRC does. We just
- * calculate constants that land the data in this 32 bits.
- *
- * We then use fixed point Barrett reduction to compute a mod n over GF(2)
- * for n = CRC using POWER8 instructions. We use x = 32.
- *
- * http://en.wikipedia.org/wiki/Barrett_reduction
- *
- * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
-#include <ppc-asm.h>
-#include "ppc-opcode.h"
-
-#undef toc
-
-#ifndef r1
-#define r1 1
-#endif
-
-#ifndef r2
-#define r2 2
-#endif
-
- .section .rodata
-.balign 16
-
-.byteswap_constant:
- /* byte reverse permute constant */
- .octa 0x0F0E0D0C0B0A09080706050403020100
-
-#define __ASSEMBLY__
-#include "crc32_constants.h"
-
- .text
-
-#if defined(__BIG_ENDIAN__) && defined(REFLECT)
-#define BYTESWAP_DATA
-#elif defined(__LITTLE_ENDIAN__) && !defined(REFLECT)
-#define BYTESWAP_DATA
-#else
-#undef BYTESWAP_DATA
-#endif
-
-#define off16 r25
-#define off32 r26
-#define off48 r27
-#define off64 r28
-#define off80 r29
-#define off96 r30
-#define off112 r31
-
-#define const1 v24
-#define const2 v25
-
-#define byteswap v26
-#define mask_32bit v27
-#define mask_64bit v28
-#define zeroes v29
-
-#ifdef BYTESWAP_DATA
-#define VPERM(A, B, C, D) vperm A, B, C, D
-#else
-#define VPERM(A, B, C, D)
-#endif
-
-/* unsigned int __crc32_vpmsum(unsigned int crc, void *p, unsigned long len) */
-FUNC_START(__crc32_vpmsum)
- std r31,-8(r1)
- std r30,-16(r1)
- std r29,-24(r1)
- std r28,-32(r1)
- std r27,-40(r1)
- std r26,-48(r1)
- std r25,-56(r1)
-
- li off16,16
- li off32,32
- li off48,48
- li off64,64
- li off80,80
- li off96,96
- li off112,112
- li r0,0
-
- /* Enough room for saving 10 non volatile VMX registers */
- subi r6,r1,56+10*16
- subi r7,r1,56+2*16
-
- stvx v20,0,r6
- stvx v21,off16,r6
- stvx v22,off32,r6
- stvx v23,off48,r6
- stvx v24,off64,r6
- stvx v25,off80,r6
- stvx v26,off96,r6
- stvx v27,off112,r6
- stvx v28,0,r7
- stvx v29,off16,r7
-
- mr r10,r3
-
- vxor zeroes,zeroes,zeroes
- vspltisw v0,-1
-
- vsldoi mask_32bit,zeroes,v0,4
- vsldoi mask_64bit,zeroes,v0,8
-
- /* Get the initial value into v8 */
- vxor v8,v8,v8
- MTVRD(v8, r3)
-#ifdef REFLECT
- vsldoi v8,zeroes,v8,8 /* shift into bottom 32 bits */
-#else
- vsldoi v8,v8,zeroes,4 /* shift into top 32 bits */
-#endif
-
-#ifdef BYTESWAP_DATA
- addis r3,r2,.byteswap_constant@toc@ha
- addi r3,r3,.byteswap_constant@toc@l
-
- lvx byteswap,0,r3
- addi r3,r3,16
-#endif
-
- cmpdi r5,256
- blt .Lshort
-
- rldicr r6,r5,0,56
-
- /* Checksum in blocks of MAX_SIZE */
-1: lis r7,MAX_SIZE@h
- ori r7,r7,MAX_SIZE@l
- mr r9,r7
- cmpd r6,r7
- bgt 2f
- mr r7,r6
-2: subf r6,r7,r6
-
- /* our main loop does 128 bytes at a time */
- srdi r7,r7,7
-
- /*
- * Work out the offset into the constants table to start at. Each
- * constant is 16 bytes, and it is used against 128 bytes of input
- * data - 128 / 16 = 8
- */
- sldi r8,r7,4
- srdi r9,r9,3
- subf r8,r8,r9
-
- /* We reduce our final 128 bytes in a separate step */
- addi r7,r7,-1
- mtctr r7
-
- addis r3,r2,.constants@toc@ha
- addi r3,r3,.constants@toc@l
-
- /* Find the start of our constants */
- add r3,r3,r8
-
- /* zero v0-v7 which will contain our checksums */
- vxor v0,v0,v0
- vxor v1,v1,v1
- vxor v2,v2,v2
- vxor v3,v3,v3
- vxor v4,v4,v4
- vxor v5,v5,v5
- vxor v6,v6,v6
- vxor v7,v7,v7
-
- lvx const1,0,r3
-
- /*
- * If we are looping back to consume more data we use the values
- * already in v16-v23.
- */
- cmpdi r0,1
- beq 2f
-
- /* First warm up pass */
- lvx v16,0,r4
- lvx v17,off16,r4
- VPERM(v16,v16,v16,byteswap)
- VPERM(v17,v17,v17,byteswap)
- lvx v18,off32,r4
- lvx v19,off48,r4
- VPERM(v18,v18,v18,byteswap)
- VPERM(v19,v19,v19,byteswap)
- lvx v20,off64,r4
- lvx v21,off80,r4
- VPERM(v20,v20,v20,byteswap)
- VPERM(v21,v21,v21,byteswap)
- lvx v22,off96,r4
- lvx v23,off112,r4
- VPERM(v22,v22,v22,byteswap)
- VPERM(v23,v23,v23,byteswap)
- addi r4,r4,8*16
-
- /* xor in initial value */
- vxor v16,v16,v8
-
-2: bdz .Lfirst_warm_up_done
-
- addi r3,r3,16
- lvx const2,0,r3
-
- /* Second warm up pass */
- VPMSUMD(v8,v16,const1)
- lvx v16,0,r4
- VPERM(v16,v16,v16,byteswap)
- ori r2,r2,0
-
- VPMSUMD(v9,v17,const1)
- lvx v17,off16,r4
- VPERM(v17,v17,v17,byteswap)
- ori r2,r2,0
-
- VPMSUMD(v10,v18,const1)
- lvx v18,off32,r4
- VPERM(v18,v18,v18,byteswap)
- ori r2,r2,0
-
- VPMSUMD(v11,v19,const1)
- lvx v19,off48,r4
- VPERM(v19,v19,v19,byteswap)
- ori r2,r2,0
-
- VPMSUMD(v12,v20,const1)
- lvx v20,off64,r4
- VPERM(v20,v20,v20,byteswap)
- ori r2,r2,0
-
- VPMSUMD(v13,v21,const1)
- lvx v21,off80,r4
- VPERM(v21,v21,v21,byteswap)
- ori r2,r2,0
-
- VPMSUMD(v14,v22,const1)
- lvx v22,off96,r4
- VPERM(v22,v22,v22,byteswap)
- ori r2,r2,0
-
- VPMSUMD(v15,v23,const1)
- lvx v23,off112,r4
- VPERM(v23,v23,v23,byteswap)
-
- addi r4,r4,8*16
-
- bdz .Lfirst_cool_down
-
- /*
- * main loop. We modulo schedule it such that it takes three iterations
- * to complete - first iteration load, second iteration vpmsum, third
- * iteration xor.
- */
- .balign 16
-4: lvx const1,0,r3
- addi r3,r3,16
- ori r2,r2,0
-
- vxor v0,v0,v8
- VPMSUMD(v8,v16,const2)
- lvx v16,0,r4
- VPERM(v16,v16,v16,byteswap)
- ori r2,r2,0
-
- vxor v1,v1,v9
- VPMSUMD(v9,v17,const2)
- lvx v17,off16,r4
- VPERM(v17,v17,v17,byteswap)
- ori r2,r2,0
-
- vxor v2,v2,v10
- VPMSUMD(v10,v18,const2)
- lvx v18,off32,r4
- VPERM(v18,v18,v18,byteswap)
- ori r2,r2,0
-
- vxor v3,v3,v11
- VPMSUMD(v11,v19,const2)
- lvx v19,off48,r4
- VPERM(v19,v19,v19,byteswap)
- lvx const2,0,r3
- ori r2,r2,0
-
- vxor v4,v4,v12
- VPMSUMD(v12,v20,const1)
- lvx v20,off64,r4
- VPERM(v20,v20,v20,byteswap)
- ori r2,r2,0
-
- vxor v5,v5,v13
- VPMSUMD(v13,v21,const1)
- lvx v21,off80,r4
- VPERM(v21,v21,v21,byteswap)
- ori r2,r2,0
-
- vxor v6,v6,v14
- VPMSUMD(v14,v22,const1)
- lvx v22,off96,r4
- VPERM(v22,v22,v22,byteswap)
- ori r2,r2,0
-
- vxor v7,v7,v15
- VPMSUMD(v15,v23,const1)
- lvx v23,off112,r4
- VPERM(v23,v23,v23,byteswap)
-
- addi r4,r4,8*16
-
- bdnz 4b
-
-.Lfirst_cool_down:
- /* First cool down pass */
- lvx const1,0,r3
- addi r3,r3,16
-
- vxor v0,v0,v8
- VPMSUMD(v8,v16,const1)
- ori r2,r2,0
-
- vxor v1,v1,v9
- VPMSUMD(v9,v17,const1)
- ori r2,r2,0
-
- vxor v2,v2,v10
- VPMSUMD(v10,v18,const1)
- ori r2,r2,0
-
- vxor v3,v3,v11
- VPMSUMD(v11,v19,const1)
- ori r2,r2,0
-
- vxor v4,v4,v12
- VPMSUMD(v12,v20,const1)
- ori r2,r2,0
-
- vxor v5,v5,v13
- VPMSUMD(v13,v21,const1)
- ori r2,r2,0
-
- vxor v6,v6,v14
- VPMSUMD(v14,v22,const1)
- ori r2,r2,0
-
- vxor v7,v7,v15
- VPMSUMD(v15,v23,const1)
- ori r2,r2,0
-
-.Lsecond_cool_down:
- /* Second cool down pass */
- vxor v0,v0,v8
- vxor v1,v1,v9
- vxor v2,v2,v10
- vxor v3,v3,v11
- vxor v4,v4,v12
- vxor v5,v5,v13
- vxor v6,v6,v14
- vxor v7,v7,v15
-
-#ifdef REFLECT
- /*
- * vpmsumd produces a 96 bit result in the least significant bits
- * of the register. Since we are bit reflected we have to shift it
- * left 32 bits so it occupies the least significant bits in the
- * bit reflected domain.
- */
- vsldoi v0,v0,zeroes,4
- vsldoi v1,v1,zeroes,4
- vsldoi v2,v2,zeroes,4
- vsldoi v3,v3,zeroes,4
- vsldoi v4,v4,zeroes,4
- vsldoi v5,v5,zeroes,4
- vsldoi v6,v6,zeroes,4
- vsldoi v7,v7,zeroes,4
-#endif
-
- /* xor with last 1024 bits */
- lvx v8,0,r4
- lvx v9,off16,r4
- VPERM(v8,v8,v8,byteswap)
- VPERM(v9,v9,v9,byteswap)
- lvx v10,off32,r4
- lvx v11,off48,r4
- VPERM(v10,v10,v10,byteswap)
- VPERM(v11,v11,v11,byteswap)
- lvx v12,off64,r4
- lvx v13,off80,r4
- VPERM(v12,v12,v12,byteswap)
- VPERM(v13,v13,v13,byteswap)
- lvx v14,off96,r4
- lvx v15,off112,r4
- VPERM(v14,v14,v14,byteswap)
- VPERM(v15,v15,v15,byteswap)
-
- addi r4,r4,8*16
-
- vxor v16,v0,v8
- vxor v17,v1,v9
- vxor v18,v2,v10
- vxor v19,v3,v11
- vxor v20,v4,v12
- vxor v21,v5,v13
- vxor v22,v6,v14
- vxor v23,v7,v15
-
- li r0,1
- cmpdi r6,0
- addi r6,r6,128
- bne 1b
-
- /* Work out how many bytes we have left */
- andi. r5,r5,127
-
- /* Calculate where in the constant table we need to start */
- subfic r6,r5,128
- add r3,r3,r6
-
- /* How many 16 byte chunks are in the tail */
- srdi r7,r5,4
- mtctr r7
-
- /*
- * Reduce the previously calculated 1024 bits to 64 bits, shifting
- * 32 bits to include the trailing 32 bits of zeros
- */
- lvx v0,0,r3
- lvx v1,off16,r3
- lvx v2,off32,r3
- lvx v3,off48,r3
- lvx v4,off64,r3
- lvx v5,off80,r3
- lvx v6,off96,r3
- lvx v7,off112,r3
- addi r3,r3,8*16
-
- VPMSUMW(v0,v16,v0)
- VPMSUMW(v1,v17,v1)
- VPMSUMW(v2,v18,v2)
- VPMSUMW(v3,v19,v3)
- VPMSUMW(v4,v20,v4)
- VPMSUMW(v5,v21,v5)
- VPMSUMW(v6,v22,v6)
- VPMSUMW(v7,v23,v7)
-
- /* Now reduce the tail (0 - 112 bytes) */
- cmpdi r7,0
- beq 1f
-
- lvx v16,0,r4
- lvx v17,0,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
-
- lvx v16,off16,r4
- lvx v17,off16,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
-
- lvx v16,off32,r4
- lvx v17,off32,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
-
- lvx v16,off48,r4
- lvx v17,off48,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
-
- lvx v16,off64,r4
- lvx v17,off64,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
-
- lvx v16,off80,r4
- lvx v17,off80,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
- bdz 1f
-
- lvx v16,off96,r4
- lvx v17,off96,r3
- VPERM(v16,v16,v16,byteswap)
- VPMSUMW(v16,v16,v17)
- vxor v0,v0,v16
-
- /* Now xor all the parallel chunks together */
-1: vxor v0,v0,v1
- vxor v2,v2,v3
- vxor v4,v4,v5
- vxor v6,v6,v7
-
- vxor v0,v0,v2
- vxor v4,v4,v6
-
- vxor v0,v0,v4
-
-.Lbarrett_reduction:
- /* Barrett constants */
- addis r3,r2,.barrett_constants@toc@ha
- addi r3,r3,.barrett_constants@toc@l
-
- lvx const1,0,r3
- lvx const2,off16,r3
-
- vsldoi v1,v0,v0,8
- vxor v0,v0,v1 /* xor two 64 bit results together */
-
-#ifdef REFLECT
- /* shift left one bit */
- vspltisb v1,1
- vsl v0,v0,v1
-#endif
-
- vand v0,v0,mask_64bit
-
-#ifndef REFLECT
- /*
- * Now for the Barrett reduction algorithm. The idea is to calculate q,
- * the multiple of our polynomial that we need to subtract. By
- * doing the computation 2x bits higher (ie 64 bits) and shifting the
- * result back down 2x bits, we round down to the nearest multiple.
- */
- VPMSUMD(v1,v0,const1) /* ma */
- vsldoi v1,zeroes,v1,8 /* q = floor(ma/(2^64)) */
- VPMSUMD(v1,v1,const2) /* qn */
- vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */
-
- /*
- * Get the result into r3. We need to shift it left 8 bytes:
- * V0 [ 0 1 2 X ]
- * V0 [ 0 X 2 3 ]
- */
- vsldoi v0,v0,zeroes,8 /* shift result into top 64 bits */
-#else
- /*
- * The reflected version of Barrett reduction. Instead of bit
- * reflecting our data (which is expensive to do), we bit reflect our
- * constants and our algorithm, which means the intermediate data in
- * our vector registers goes from 0-63 instead of 63-0. We can reflect
- * the algorithm because we don't carry in mod 2 arithmetic.
- */
- vand v1,v0,mask_32bit /* bottom 32 bits of a */
- VPMSUMD(v1,v1,const1) /* ma */
- vand v1,v1,mask_32bit /* bottom 32bits of ma */
- VPMSUMD(v1,v1,const2) /* qn */
- vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */
-
- /*
- * Since we are bit reflected, the result (ie the low 32 bits) is in
- * the high 32 bits. We just need to shift it left 4 bytes
- * V0 [ 0 1 X 3 ]
- * V0 [ 0 X 2 3 ]
- */
- vsldoi v0,v0,zeroes,4 /* shift result into top 64 bits of */
-#endif
-
- /* Get it into r3 */
- MFVRD(r3, v0)
-
-.Lout:
- subi r6,r1,56+10*16
- subi r7,r1,56+2*16
-
- lvx v20,0,r6
- lvx v21,off16,r6
- lvx v22,off32,r6
- lvx v23,off48,r6
- lvx v24,off64,r6
- lvx v25,off80,r6
- lvx v26,off96,r6
- lvx v27,off112,r6
- lvx v28,0,r7
- lvx v29,off16,r7
-
- ld r31,-8(r1)
- ld r30,-16(r1)
- ld r29,-24(r1)
- ld r28,-32(r1)
- ld r27,-40(r1)
- ld r26,-48(r1)
- ld r25,-56(r1)
-
- blr
-
-.Lfirst_warm_up_done:
- lvx const1,0,r3
- addi r3,r3,16
-
- VPMSUMD(v8,v16,const1)
- VPMSUMD(v9,v17,const1)
- VPMSUMD(v10,v18,const1)
- VPMSUMD(v11,v19,const1)
- VPMSUMD(v12,v20,const1)
- VPMSUMD(v13,v21,const1)
- VPMSUMD(v14,v22,const1)
- VPMSUMD(v15,v23,const1)
-
- b .Lsecond_cool_down
-
-.Lshort:
- cmpdi r5,0
- beq .Lzero
-
- addis r3,r2,.short_constants@toc@ha
- addi r3,r3,.short_constants@toc@l
-
- /* Calculate where in the constant table we need to start */
- subfic r6,r5,256
- add r3,r3,r6
-
- /* How many 16 byte chunks? */
- srdi r7,r5,4
- mtctr r7
-
- vxor v19,v19,v19
- vxor v20,v20,v20
-
- lvx v0,0,r4
- lvx v16,0,r3
- VPERM(v0,v0,v16,byteswap)
- vxor v0,v0,v8 /* xor in initial value */
- VPMSUMW(v0,v0,v16)
- bdz .Lv0
-
- lvx v1,off16,r4
- lvx v17,off16,r3
- VPERM(v1,v1,v17,byteswap)
- VPMSUMW(v1,v1,v17)
- bdz .Lv1
-
- lvx v2,off32,r4
- lvx v16,off32,r3
- VPERM(v2,v2,v16,byteswap)
- VPMSUMW(v2,v2,v16)
- bdz .Lv2
-
- lvx v3,off48,r4
- lvx v17,off48,r3
- VPERM(v3,v3,v17,byteswap)
- VPMSUMW(v3,v3,v17)
- bdz .Lv3
-
- lvx v4,off64,r4
- lvx v16,off64,r3
- VPERM(v4,v4,v16,byteswap)
- VPMSUMW(v4,v4,v16)
- bdz .Lv4
-
- lvx v5,off80,r4
- lvx v17,off80,r3
- VPERM(v5,v5,v17,byteswap)
- VPMSUMW(v5,v5,v17)
- bdz .Lv5
-
- lvx v6,off96,r4
- lvx v16,off96,r3
- VPERM(v6,v6,v16,byteswap)
- VPMSUMW(v6,v6,v16)
- bdz .Lv6
-
- lvx v7,off112,r4
- lvx v17,off112,r3
- VPERM(v7,v7,v17,byteswap)
- VPMSUMW(v7,v7,v17)
- bdz .Lv7
-
- addi r3,r3,128
- addi r4,r4,128
-
- lvx v8,0,r4
- lvx v16,0,r3
- VPERM(v8,v8,v16,byteswap)
- VPMSUMW(v8,v8,v16)
- bdz .Lv8
-
- lvx v9,off16,r4
- lvx v17,off16,r3
- VPERM(v9,v9,v17,byteswap)
- VPMSUMW(v9,v9,v17)
- bdz .Lv9
-
- lvx v10,off32,r4
- lvx v16,off32,r3
- VPERM(v10,v10,v16,byteswap)
- VPMSUMW(v10,v10,v16)
- bdz .Lv10
-
- lvx v11,off48,r4
- lvx v17,off48,r3
- VPERM(v11,v11,v17,byteswap)
- VPMSUMW(v11,v11,v17)
- bdz .Lv11
-
- lvx v12,off64,r4
- lvx v16,off64,r3
- VPERM(v12,v12,v16,byteswap)
- VPMSUMW(v12,v12,v16)
- bdz .Lv12
-
- lvx v13,off80,r4
- lvx v17,off80,r3
- VPERM(v13,v13,v17,byteswap)
- VPMSUMW(v13,v13,v17)
- bdz .Lv13
-
- lvx v14,off96,r4
- lvx v16,off96,r3
- VPERM(v14,v14,v16,byteswap)
- VPMSUMW(v14,v14,v16)
- bdz .Lv14
-
- lvx v15,off112,r4
- lvx v17,off112,r3
- VPERM(v15,v15,v17,byteswap)
- VPMSUMW(v15,v15,v17)
-
-.Lv15: vxor v19,v19,v15
-.Lv14: vxor v20,v20,v14
-.Lv13: vxor v19,v19,v13
-.Lv12: vxor v20,v20,v12
-.Lv11: vxor v19,v19,v11
-.Lv10: vxor v20,v20,v10
-.Lv9: vxor v19,v19,v9
-.Lv8: vxor v20,v20,v8
-.Lv7: vxor v19,v19,v7
-.Lv6: vxor v20,v20,v6
-.Lv5: vxor v19,v19,v5
-.Lv4: vxor v20,v20,v4
-.Lv3: vxor v19,v19,v3
-.Lv2: vxor v20,v20,v2
-.Lv1: vxor v19,v19,v1
-.Lv0: vxor v20,v20,v0
-
- vxor v0,v19,v20
-
- b .Lbarrett_reduction
-
-.Lzero:
- mr r3,r10
- b .Lout
-
-FUNC_END(__crc32_vpmsum)
-#endif
-
-/* Make sure the stack isn't executable with GCC (regardless of platform). */
-#ifdef __ELF__
-.section .note.GNU-stack,"",@progbits
-#endif
-/*
- * DO NOT add an #endif after this line, this section must always be output
- * and can never be #ifdef'd out as part of conditional compilation.
- */
diff --git a/src/third_party/wiredtiger/src/checksum/power8/crc32_constants.h b/src/third_party/wiredtiger/src/checksum/power8/crc32_constants.h
index bcdf3a8b8a3..c0b6e101a78 100644
--- a/src/third_party/wiredtiger/src/checksum/power8/crc32_constants.h
+++ b/src/third_party/wiredtiger/src/checksum/power8/crc32_constants.h
@@ -1,8 +1,19 @@
+/*
+*
+* THIS FILE IS GENERATED WITH
+./crc32_constants -r -x -c 0x11EDC6F41
+
+* This is from https://github.com/antonblanchard/crc32-vpmsum/
+* DO NOT MODIFY IT MANUALLY!
+*
+*/
+
#define CRC 0x1edc6f41
#define CRC_XOR
#define REFLECT
+#define MAX_SIZE 32768
-#ifndef __ASSEMBLY__
+#ifndef __ASSEMBLER__
#ifdef CRC_TABLE
static const unsigned int crc_table[] = {
0x00000000,
@@ -263,832 +274,1122 @@ static const unsigned int crc_table[] = {
0xad7d5351,
};
-#endif
-#else
-#define MAX_SIZE 32768
-.constants :
-
- /* Reduce 262144 kbits to 1024 bits */
- /* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */
- .octa 0x00000000b6ca9e20000000009c37c408
-
- /* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */
- .octa 0x00000000350249a800000001b51df26c
-
- /* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */
- .octa 0x00000001862dac54000000000724b9d0
-
- /* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */
- .octa 0x00000001d87fb48c00000001c00532fe
-
- /* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */
- .octa 0x00000001f39b699e00000000f05a9362
-
- /* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */
- .octa 0x0000000101da11b400000001e1007970
-
- /* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */
- .octa 0x00000001cab571e000000000a57366ee
-
- /* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */
- .octa 0x00000000c7020cfe0000000192011284
-
- /* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */
- .octa 0x00000000cdaed1ae0000000162716d9a
-
- /* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */
- .octa 0x00000001e804effc00000000cd97ecde
-
- /* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */
- .octa 0x0000000077c3ea3a0000000058812bc0
-
- /* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */
- .octa 0x0000000068df31b40000000088b8c12e
-
- /* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */
- .octa 0x00000000b059b6c200000001230b234c
-
- /* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */
- .octa 0x0000000145fb8ed800000001120b416e
-
- /* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */
- .octa 0x00000000cbc0916800000001974aecb0
-
- /* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */
- .octa 0x000000005ceeedc2000000008ee3f226
-
- /* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */
- .octa 0x0000000047d74e8600000001089aba9a
-
- /* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */
- .octa 0x00000001407e9e220000000065113872
-
- /* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */
- .octa 0x00000001da967bda000000005c07ec10
-
- /* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */
- .octa 0x000000006c8983680000000187590924
-
- /* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */
- .octa 0x00000000f2d14c9800000000e35da7c6
-
- /* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */
- .octa 0x00000001993c6ad4000000000415855a
-
- /* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */
- .octa 0x000000014683d1ac0000000073617758
-
- /* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */
- .octa 0x00000001a7c93e6c0000000176021d28
-
- /* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */
- .octa 0x000000010211e90a00000001c358fd0a
-
- /* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */
- .octa 0x000000001119403e00000001ff7a2c18
-
- /* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */
- .octa 0x000000001c3261aa00000000f2d9f7e4
-
- /* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */
- .octa 0x000000014e37a634000000016cf1f9c8
-
- /* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */
- .octa 0x0000000073786c0c000000010af9279a
-
- /* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */
- .octa 0x000000011dc037f80000000004f101e8
-
- /* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */
- .octa 0x0000000031433dfc0000000070bcf184
-
- /* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */
- .octa 0x000000009cde8348000000000a8de642
-
- /* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */
- .octa 0x0000000038d3c2a60000000062ea130c
-
- /* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */
- .octa 0x000000011b25f26000000001eb31cbb2
-
- /* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */
- .octa 0x000000001629e6f00000000170783448
-
- /* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */
- .octa 0x0000000160838b4c00000001a684b4c6
-
- /* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */
- .octa 0x000000007a44011c00000000253ca5b4
-
- /* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */
- .octa 0x00000000226f417a0000000057b4b1e2
-
- /* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */
- .octa 0x0000000045eb2eb400000000b6bd084c
-
- /* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */
- .octa 0x000000014459d70c0000000123c2d592
-
- /* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */
- .octa 0x00000001d406ed8200000000159dafce
-
- /* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */
- .octa 0x0000000160c8e1a80000000127e1a64e
-
- /* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */
- .octa 0x0000000027ba80980000000056860754
-
- /* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */
- .octa 0x000000006d92d01800000001e661aae8
-
- /* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */
- .octa 0x000000012ed7e3f200000000f82c6166
-
- /* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */
- .octa 0x000000002dc8778800000000c4f9c7ae
-
- /* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */
- .octa 0x0000000018240bb80000000074203d20
-
- /* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */
- .octa 0x000000001ad381580000000198173052
-
- /* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */
- .octa 0x00000001396b78f200000001ce8aba54
-
- /* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */
- .octa 0x000000011a68133400000001850d5d94
-
- /* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */
- .octa 0x000000012104732e00000001d609239c
-
- /* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */
- .octa 0x00000000a140d90c000000001595f048
-
- /* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */
- .octa 0x00000001b7215eda0000000042ccee08
-
- /* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */
- .octa 0x00000001aaf1df3c000000010a389d74
-
- /* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */
- .octa 0x0000000029d15b8a000000012a840da6
-
- /* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */
- .octa 0x00000000f1a96922000000001d181c0c
-
- /* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */
- .octa 0x00000001ac80d03c0000000068b7d1f6
-
- /* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */
- .octa 0x000000000f11d56a000000005b0f14fc
-
- /* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */
- .octa 0x00000001f1c022a20000000179e9e730
-
- /* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */
- .octa 0x0000000173d00ae200000001ce1368d6
-
- /* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */
- .octa 0x00000001d4ffe4ac0000000112c3a84c
-
- /* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */
- .octa 0x000000016edc5ae400000000de940fee
-
- /* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */
- .octa 0x00000001f1a0214000000000fe896b7e
-
- /* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */
- .octa 0x00000000ca0b28a000000001f797431c
-
- /* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */
- .octa 0x00000001928e30a20000000053e989ba
-
- /* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */
- .octa 0x0000000097b1b002000000003920cd16
-
- /* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */
- .octa 0x00000000b15bf90600000001e6f579b8
-
- /* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */
- .octa 0x00000000411c5d52000000007493cb0a
-
- /* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */
- .octa 0x00000001c36f330000000001bdd376d8
-
- /* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */
- .octa 0x00000001119227e0000000016badfee6
-
- /* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */
- .octa 0x00000000114d47020000000071de5c58
-
- /* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */
- .octa 0x00000000458b5b9800000000453f317c
-
- /* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */
- .octa 0x000000012e31fb8e0000000121675cce
-
- /* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */
- .octa 0x000000005cf619d800000001f409ee92
-
- /* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */
- .octa 0x0000000063f4d8b200000000f36b9c88
-
- /* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */
- .octa 0x000000004138dc8a0000000036b398f4
-
- /* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */
- .octa 0x00000001d29ee8e000000001748f9adc
-
- /* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */
- .octa 0x000000006a08ace800000001be94ec00
-
- /* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */
- .octa 0x0000000127d4201000000000b74370d6
-
- /* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */
- .octa 0x0000000019d76b6200000001174d0b98
-
- /* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */
- .octa 0x00000001b1471f6e00000000befc06a4
-
- /* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */
- .octa 0x00000001f64c19cc00000001ae125288
-
- /* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */
- .octa 0x00000000003c0ea00000000095c19b34
-
- /* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */
- .octa 0x000000014d73abf600000001a78496f2
-
- /* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */
- .octa 0x00000001620eb84400000001ac5390a0
-
- /* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */
- .octa 0x0000000147655048000000002a80ed6e
-
- /* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */
- .octa 0x0000000067b5077e00000001fa9b0128
-
- /* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */
- .octa 0x0000000010ffe20600000001ea94929e
-
- /* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */
- .octa 0x000000000fee8f1e0000000125f4305c
-
- /* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */
- .octa 0x00000001da26fbae00000001471e2002
-
- /* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */
- .octa 0x00000001b3a8bd880000000132d2253a
-
- /* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */
- .octa 0x00000000e8f3898e00000000f26b3592
-
- /* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */
- .octa 0x00000000b0d0d28c00000000bc8b67b0
-
- /* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */
- .octa 0x0000000030f2a798000000013a826ef2
-
- /* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */
- .octa 0x000000000fba10020000000081482c84
-
- /* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */
- .octa 0x00000000bdb9bd7200000000e77307c2
-
- /* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */
- .octa 0x0000000075d3bf5a00000000d4a07ec8
-
- /* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */
- .octa 0x00000000ef1f98a00000000017102100
-
- /* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */
- .octa 0x00000000689c760200000000db406486
-
- /* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */
- .octa 0x000000016d5fa5fe0000000192db7f88
-
- /* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */
- .octa 0x00000001d0d2b9ca000000018bf67b1e
-
- /* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */
- .octa 0x0000000041e7b470000000007c09163e
-
- /* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */
- .octa 0x00000001cbb6495e000000000adac060
-
- /* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */
- .octa 0x000000010052a0b000000000bd8316ae
-
- /* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */
- .octa 0x00000001d8effb5c000000019f09ab54
-
- /* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */
- .octa 0x00000001d969853c0000000125155542
-
- /* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */
- .octa 0x00000000523ccce2000000018fdb5882
-
- /* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */
- .octa 0x000000001e2436bc00000000e794b3f4
-
- /* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */
- .octa 0x00000000ddd1c3a2000000016f9bb022
-
- /* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */
- .octa 0x0000000019fcfe3800000000290c9978
-
- /* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */
- .octa 0x00000001ce95db640000000083c0f350
-
- /* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */
- .octa 0x00000000af5828060000000173ea6628
-
- /* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */
- .octa 0x00000001006388f600000001c8b4e00a
-
- /* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */
- .octa 0x0000000179eca00a00000000de95d6aa
-
- /* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */
- .octa 0x0000000122410a6a000000010b7f7248
-
- /* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */
- .octa 0x000000004288e87c00000001326e3a06
-
- /* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */
- .octa 0x000000016c5490da00000000bb62c2e6
-
- /* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */
- .octa 0x00000000d1c71f6e0000000156a4b2c2
-
- /* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */
- .octa 0x00000001b4ce08a6000000011dfe763a
-
- /* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */
- .octa 0x00000001466ba60c000000007bcca8e2
-
- /* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */
- .octa 0x00000001f6c488a40000000186118faa
-
- /* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */
- .octa 0x000000013bfb06820000000111a65a88
-
- /* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */
- .octa 0x00000000690e9e54000000003565e1c4
-
- /* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */
- .octa 0x00000000281346b6000000012ed02a82
-
- /* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */
- .octa 0x000000015646402400000000c486ecfc
-
- /* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */
- .octa 0x000000016063a8dc0000000001b951b2
-
- /* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */
- .octa 0x0000000116a663620000000048143916
-
- /* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */
- .octa 0x000000017e8aa4d200000001dc2ae124
-
- /* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */
- .octa 0x00000001728eb10c00000001416c58d6
-
- /* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */
- .octa 0x00000001b08fd7fa00000000a479744a
-
- /* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */
- .octa 0x00000001092a16e80000000096ca3a26
-
- /* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */
- .octa 0x00000000a505637c00000000ff223d4e
-
- /* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */
- .octa 0x00000000d94869b2000000010e84da42
-
- /* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */
- .octa 0x00000001c8b203ae00000001b61ba3d0
-
- /* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */
- .octa 0x000000005704aea000000000680f2de8
-
- /* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */
- .octa 0x000000012e295fa2000000008772a9a8
-
- /* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */
- .octa 0x000000011d0908bc0000000155f295bc
-
- /* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */
- .octa 0x0000000193ed97ea00000000595f9282
-
- /* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */
- .octa 0x000000013a0f1c520000000164b1c25a
-
- /* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */
- .octa 0x000000010c2c40c000000000fbd67c50
-
- /* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */
- .octa 0x00000000ff6fac3e0000000096076268
-
- /* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */
- .octa 0x000000017b3609c000000001d288e4cc
-
- /* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */
- .octa 0x0000000088c8c92200000001eaac1bdc
-
- /* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */
- .octa 0x00000001751baae600000001f1ea39e2
-
- /* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */
- .octa 0x000000010795297200000001eb6506fc
-
- /* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */
- .octa 0x0000000162b00abe000000010f806ffe
-
- /* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */
- .octa 0x000000000d7b404c000000010408481e
-
- /* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */
- .octa 0x00000000763b13d40000000188260534
-
- /* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */
- .octa 0x00000000f6dc22d80000000058fc73e0
-
- /* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */
- .octa 0x000000007daae06000000000391c59b8
-
- /* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */
- .octa 0x000000013359ab7c000000018b638400
-
- /* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */
- .octa 0x000000008add438a000000011738f5c4
-
- /* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */
- .octa 0x00000001edbefdea000000008cf7c6da
-
- /* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */
- .octa 0x000000004104e0f800000001ef97fb16
-
- /* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */
- .octa 0x00000000b48a82220000000102130e20
-
- /* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */
- .octa 0x00000001bcb4684400000000db968898
-
- /* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */
- .octa 0x000000013293ce0a00000000b5047b5e
-
- /* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */
- .octa 0x00000001710d0844000000010b90fdb2
-
- /* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */
- .octa 0x0000000117907f6e000000004834a32e
-
- /* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */
- .octa 0x0000000087ddf93e0000000059c8f2b0
-
- /* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */
- .octa 0x000000005970e9b00000000122cec508
-
- /* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */
- .octa 0x0000000185b2b7d0000000000a330cda
-
- /* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */
- .octa 0x00000001dcee0efc000000014a47148c
-
- /* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */
- .octa 0x0000000030da27220000000042c61cb8
-
- /* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */
- .octa 0x000000012f925a180000000012fe6960
-
- /* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */
- .octa 0x00000000dd2e357c00000000dbda2c20
-
- /* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */
- .octa 0x00000000071c80de000000011122410c
-
- /* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */
- .octa 0x000000011513140a00000000977b2070
-
- /* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */
- .octa 0x00000001df876e8e000000014050438e
-
- /* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */
- .octa 0x000000015f81d6ce0000000147c840e8
-
- /* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */
- .octa 0x000000019dd94dbe00000001cc7c88ce
-
- /* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */
- .octa 0x00000001373d206e00000001476b35a4
-
- /* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */
- .octa 0x00000000668ccade000000013d52d508
-
- /* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */
- .octa 0x00000001b192d268000000008e4be32e
-
- /* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */
- .octa 0x00000000e30f3a7800000000024120fe
-
- /* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */
- .octa 0x000000010ef1f7bc00000000ddecddb4
-
- /* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */
- .octa 0x00000001f5ac738000000000d4d403bc
-
- /* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */
- .octa 0x000000011822ea7000000001734b89aa
-
- /* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */
- .octa 0x00000000c3a33848000000010e7a58d6
-
- /* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */
- .octa 0x00000001bd151c2400000001f9f04e9c
-
- /* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */
- .octa 0x0000000056002d7600000000b692225e
-
- /* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */
- .octa 0x000000014657c4f4000000019b8d3f3e
-
- /* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */
- .octa 0x0000000113742d7c00000001a874f11e
-
- /* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */
- .octa 0x000000019c5920ba000000010d5a4254
-
- /* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */
- .octa 0x000000005216d2d600000000bbb2f5d6
-
- /* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */
- .octa 0x0000000136f5ad8a0000000179cc0e36
-
- /* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */
- .octa 0x000000018b07beb600000001dca1da4a
-
- /* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */
- .octa 0x00000000db1e93b000000000feb1a192
-
- /* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */
- .octa 0x000000000b96fa3a00000000d1eeedd6
-
- /* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */
- .octa 0x00000001d9968af0000000008fad9bb4
-
- /* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */
- .octa 0x000000000e4a77a200000001884938e4
-
- /* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */
- .octa 0x00000000508c2ac800000001bc2e9bc0
-
- /* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */
- .octa 0x0000000021572a8000000001f9658a68
-
- /* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */
- .octa 0x00000001b859daf2000000001b9224fc
-
- /* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */
- .octa 0x000000016f7884740000000055b2fb84
-
- /* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */
- .octa 0x00000001b438810e000000018b090348
-
- /* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */
- .octa 0x0000000095ddc6f2000000011ccbd5ea
-
- /* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */
- .octa 0x00000001d977c20c0000000007ae47f8
-
- /* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */
- .octa 0x00000000ebedb99a0000000172acbec0
-
- /* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */
- .octa 0x00000001df9e9e9200000001c6e3ff20
-
- /* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */
- .octa 0x00000001a4a3f95200000000e1b38744
-
- /* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */
- .octa 0x00000000e2f5122000000000791585b2
-
- /* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */
- .octa 0x000000004aa01f3e00000000ac53b894
-
- /* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */
- .octa 0x00000000b3e90a5800000001ed5f2cf4
-
- /* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */
- .octa 0x000000000c9ca2aa00000001df48b2e0
-
- /* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */
- .octa 0x000000015168231600000000049c1c62
-
- /* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */
- .octa 0x0000000036fce78c000000017c460c12
-
- /* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */
- .octa 0x000000009037dc10000000015be4da7e
-
- /* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */
- .octa 0x00000000d3298582000000010f38f668
-
- /* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */
- .octa 0x00000001b42e8ad60000000039f40a00
-
- /* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */
- .octa 0x00000000142a983800000000bd4c10c4
-
- /* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */
- .octa 0x0000000109c7f1900000000042db1d98
-
- /* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */
- .octa 0x0000000056ff931000000001c905bae6
-
- /* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */
- .octa 0x00000001594513aa00000000069d40ea
-
- /* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */
- .octa 0x00000001e3b5b1e8000000008e4fbad0
-
- /* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */
- .octa 0x000000011dd5fc080000000047bedd46
-
- /* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */
- .octa 0x00000001675f0cc20000000026396bf8
-
- /* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */
- .octa 0x00000000d1c8dd4400000000379beb92
-
- /* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */
- .octa 0x0000000115ebd3d8000000000abae54a
-
- /* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */
- .octa 0x00000001ecbd0dac0000000007e6a128
-
- /* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */
- .octa 0x00000000cdf67af2000000000ade29d2
-
- /* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */
- .octa 0x000000004c01ff4c00000000f974c45c
-
- /* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */
- .octa 0x00000000f2d8657e00000000e77ac60a
-
- /* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */
- .octa 0x000000006bae74c40000000145895816
-
- /* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */
- .octa 0x0000000152af8aa00000000038e362be
-
- /* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */
- .octa 0x0000000004663802000000007f991a64
-
- /* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */
- .octa 0x00000001ab2f5afc00000000fa366d3a
-
- /* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */
- .octa 0x0000000074a4ebd400000001a2bb34f0
-
- /* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */
- .octa 0x00000001d7ab3a4c0000000028a9981e
-
- /* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */
- .octa 0x00000001a8da60c600000001dbc672be
-
- /* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */
- .octa 0x000000013cf6382000000000b04d77f6
-
- /* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */
- .octa 0x00000000bec12e1e0000000124400d96
-
- /* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */
- .octa 0x00000001c6368010000000014ca4b414
-
- /* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */
- .octa 0x00000001e6e78758000000012fe2c938
-
- /* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */
- .octa 0x000000008d7f2b3c00000001faed01e6
-
- /* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */
- .octa 0x000000016b4a156e000000007e80ecfe
-
- /* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */
- .octa 0x00000001c63cfeb60000000098daee94
-
- /* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */
- .octa 0x000000015f902670000000010a04edea
-
- /* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */
- .octa 0x00000001cd5de11e00000001c00b4524
-
- /* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */
- .octa 0x000000001acaec540000000170296550
-
- /* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */
- .octa 0x000000002bd0ca780000000181afaa48
-
- /* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */
- .octa 0x0000000032d63d5c0000000185a31ffa
-
- /* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */
- .octa 0x000000001c6d4e4c000000002469f608
-
- /* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */
- .octa 0x0000000106a60b92000000006980102a
-
- /* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */
- .octa 0x00000000d3855e120000000111ea9ca8
-
- /* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */
- .octa 0x00000000e312563600000001bd1d29ce
-
- /* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */
- .octa 0x000000009e8f7ea400000001b34b9580
-
- /* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */
- .octa 0x00000001c82e562c000000003076054e
-
- /* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */
- .octa 0x00000000ca9f09ce000000012a608ea4
-
- /* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */
- .octa 0x00000000c63764e600000000784d05fe
-
- /* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */
- .octa 0x0000000168d2e49e000000016ef0d82a
-
- /* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */
- .octa 0x00000000e986c1480000000075bda454
-
- /* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */
- .octa 0x00000000cfb65894000000003dc0a1c4
-
- /* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */
- .octa 0x0000000111cadee400000000e9a5d8be
-
- /* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */
- .octa 0x0000000171fb63ce00000001609bc4b4
-
- .short_constants :
-
- /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of
- zeros */
- /* x^1952 mod p(x)`, x^1984 mod p(x)`, x^2016 mod p(x)`, x^2048 mod p(x)` */
- .octa 0x7fec2963e5bf80485cf015c388e56f72
-
- /* x^1824 mod p(x)`, x^1856 mod p(x)`, x^1888 mod p(x)`, x^1920 mod p(x)` */
- .octa 0x38e888d4844752a9963a18920246e2e6
-
- /* x^1696 mod p(x)`, x^1728 mod p(x)`, x^1760 mod p(x)`, x^1792 mod p(x)` */
- .octa 0x42316c00730206ad419a441956993a31
-
- /* x^1568 mod p(x)`, x^1600 mod p(x)`, x^1632 mod p(x)`, x^1664 mod p(x)` */
- .octa 0x543d5c543e65ddf9924752ba2b830011
-
- /* x^1440 mod p(x)`, x^1472 mod p(x)`, x^1504 mod p(x)`, x^1536 mod p(x)` */
- .octa 0x78e87aaf56767c9255bd7f9518e4a304
-
- /* x^1312 mod p(x)`, x^1344 mod p(x)`, x^1376 mod p(x)`, x^1408 mod p(x)` */
- .octa 0x8f68fcec1903da7f6d76739fe0553f1e
-
- /* x^1184 mod p(x)`, x^1216 mod p(x)`, x^1248 mod p(x)`, x^1280 mod p(x)` */
- .octa 0x3f4840246791d588c133722b1fe0b5c3
-
- /* x^1056 mod p(x)`, x^1088 mod p(x)`, x^1120 mod p(x)`, x^1152 mod p(x)` */
- .octa 0x34c96751b04de25a64b67ee0e55ef1f3
-
- /* x^928 mod p(x)`, x^960 mod p(x)`, x^992 mod p(x)`, x^1024 mod p(x)` */
- .octa 0x156c8e180b4a395b069db049b8fdb1e7
-
- /* x^800 mod p(x)`, x^832 mod p(x)`, x^864 mod p(x)`, x^896 mod p(x)` */
- .octa 0xe0b99ccbe661f7bea11bfaf3c9e90b9e
-
- /* x^672 mod p(x)`, x^704 mod p(x)`, x^736 mod p(x)`, x^768 mod p(x)` */
- .octa 0x041d37768cd75659817cdc5119b29a35
-
- /* x^544 mod p(x)`, x^576 mod p(x)`, x^608 mod p(x)`, x^640 mod p(x)` */
- .octa 0x3a0777818cfaa9651ce9d94b36c41f1c
-
- /* x^416 mod p(x)`, x^448 mod p(x)`, x^480 mod p(x)`, x^512 mod p(x)` */
- .octa 0x0e148e8252377a554f256efcb82be955
+#endif /* CRC_TABLE */
+#ifdef POWER8_INTRINSICS
+
+/* Constants */
+
+/* Reduce 262144 kbits to 1024 bits */
+static const __vector unsigned long long vcrc_const[255] __attribute__((aligned(16))) = {
+#ifdef __LITTLE_ENDIAN__
+ /* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */
+ {0x000000009c37c408, 0x00000000b6ca9e20},
+ /* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */
+ {0x00000001b51df26c, 0x00000000350249a8},
+ /* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */
+ {0x000000000724b9d0, 0x00000001862dac54},
+ /* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */
+ {0x00000001c00532fe, 0x00000001d87fb48c},
+ /* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */
+ {0x00000000f05a9362, 0x00000001f39b699e},
+ /* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */
+ {0x00000001e1007970, 0x0000000101da11b4},
+ /* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */
+ {0x00000000a57366ee, 0x00000001cab571e0},
+ /* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */
+ {0x0000000192011284, 0x00000000c7020cfe},
+ /* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */
+ {0x0000000162716d9a, 0x00000000cdaed1ae},
+ /* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */
+ {0x00000000cd97ecde, 0x00000001e804effc},
+ /* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */
+ {0x0000000058812bc0, 0x0000000077c3ea3a},
+ /* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */
+ {0x0000000088b8c12e, 0x0000000068df31b4},
+ /* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */
+ {0x00000001230b234c, 0x00000000b059b6c2},
+ /* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */
+ {0x00000001120b416e, 0x0000000145fb8ed8},
+ /* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */
+ {0x00000001974aecb0, 0x00000000cbc09168},
+ /* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */
+ {0x000000008ee3f226, 0x000000005ceeedc2},
+ /* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */
+ {0x00000001089aba9a, 0x0000000047d74e86},
+ /* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */
+ {0x0000000065113872, 0x00000001407e9e22},
+ /* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */
+ {0x000000005c07ec10, 0x00000001da967bda},
+ /* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */
+ {0x0000000187590924, 0x000000006c898368},
+ /* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */
+ {0x00000000e35da7c6, 0x00000000f2d14c98},
+ /* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */
+ {0x000000000415855a, 0x00000001993c6ad4},
+ /* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */
+ {0x0000000073617758, 0x000000014683d1ac},
+ /* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */
+ {0x0000000176021d28, 0x00000001a7c93e6c},
+ /* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */
+ {0x00000001c358fd0a, 0x000000010211e90a},
+ /* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */
+ {0x00000001ff7a2c18, 0x000000001119403e},
+ /* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */
+ {0x00000000f2d9f7e4, 0x000000001c3261aa},
+ /* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */
+ {0x000000016cf1f9c8, 0x000000014e37a634},
+ /* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */
+ {0x000000010af9279a, 0x0000000073786c0c},
+ /* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */
+ {0x0000000004f101e8, 0x000000011dc037f8},
+ /* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */
+ {0x0000000070bcf184, 0x0000000031433dfc},
+ /* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */
+ {0x000000000a8de642, 0x000000009cde8348},
+ /* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */
+ {0x0000000062ea130c, 0x0000000038d3c2a6},
+ /* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */
+ {0x00000001eb31cbb2, 0x000000011b25f260},
+ /* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */
+ {0x0000000170783448, 0x000000001629e6f0},
+ /* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */
+ {0x00000001a684b4c6, 0x0000000160838b4c},
+ /* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */
+ {0x00000000253ca5b4, 0x000000007a44011c},
+ /* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */
+ {0x0000000057b4b1e2, 0x00000000226f417a},
+ /* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */
+ {0x00000000b6bd084c, 0x0000000045eb2eb4},
+ /* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */
+ {0x0000000123c2d592, 0x000000014459d70c},
+ /* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */
+ {0x00000000159dafce, 0x00000001d406ed82},
+ /* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */
+ {0x0000000127e1a64e, 0x0000000160c8e1a8},
+ /* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */
+ {0x0000000056860754, 0x0000000027ba8098},
+ /* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */
+ {0x00000001e661aae8, 0x000000006d92d018},
+ /* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */
+ {0x00000000f82c6166, 0x000000012ed7e3f2},
+ /* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */
+ {0x00000000c4f9c7ae, 0x000000002dc87788},
+ /* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */
+ {0x0000000074203d20, 0x0000000018240bb8},
+ /* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */
+ {0x0000000198173052, 0x000000001ad38158},
+ /* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */
+ {0x00000001ce8aba54, 0x00000001396b78f2},
+ /* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */
+ {0x00000001850d5d94, 0x000000011a681334},
+ /* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */
+ {0x00000001d609239c, 0x000000012104732e},
+ /* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */
+ {0x000000001595f048, 0x00000000a140d90c},
+ /* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */
+ {0x0000000042ccee08, 0x00000001b7215eda},
+ /* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */
+ {0x000000010a389d74, 0x00000001aaf1df3c},
+ /* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */
+ {0x000000012a840da6, 0x0000000029d15b8a},
+ /* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */
+ {0x000000001d181c0c, 0x00000000f1a96922},
+ /* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */
+ {0x0000000068b7d1f6, 0x00000001ac80d03c},
+ /* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */
+ {0x000000005b0f14fc, 0x000000000f11d56a},
+ /* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */
+ {0x0000000179e9e730, 0x00000001f1c022a2},
+ /* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */
+ {0x00000001ce1368d6, 0x0000000173d00ae2},
+ /* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */
+ {0x0000000112c3a84c, 0x00000001d4ffe4ac},
+ /* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */
+ {0x00000000de940fee, 0x000000016edc5ae4},
+ /* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */
+ {0x00000000fe896b7e, 0x00000001f1a02140},
+ /* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */
+ {0x00000001f797431c, 0x00000000ca0b28a0},
+ /* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */
+ {0x0000000053e989ba, 0x00000001928e30a2},
+ /* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */
+ {0x000000003920cd16, 0x0000000097b1b002},
+ /* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */
+ {0x00000001e6f579b8, 0x00000000b15bf906},
+ /* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */
+ {0x000000007493cb0a, 0x00000000411c5d52},
+ /* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */
+ {0x00000001bdd376d8, 0x00000001c36f3300},
+ /* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */
+ {0x000000016badfee6, 0x00000001119227e0},
+ /* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */
+ {0x0000000071de5c58, 0x00000000114d4702},
+ /* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */
+ {0x00000000453f317c, 0x00000000458b5b98},
+ /* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */
+ {0x0000000121675cce, 0x000000012e31fb8e},
+ /* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */
+ {0x00000001f409ee92, 0x000000005cf619d8},
+ /* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */
+ {0x00000000f36b9c88, 0x0000000063f4d8b2},
+ /* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */
+ {0x0000000036b398f4, 0x000000004138dc8a},
+ /* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */
+ {0x00000001748f9adc, 0x00000001d29ee8e0},
+ /* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */
+ {0x00000001be94ec00, 0x000000006a08ace8},
+ /* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */
+ {0x00000000b74370d6, 0x0000000127d42010},
+ /* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */
+ {0x00000001174d0b98, 0x0000000019d76b62},
+ /* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */
+ {0x00000000befc06a4, 0x00000001b1471f6e},
+ /* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */
+ {0x00000001ae125288, 0x00000001f64c19cc},
+ /* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */
+ {0x0000000095c19b34, 0x00000000003c0ea0},
+ /* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */
+ {0x00000001a78496f2, 0x000000014d73abf6},
+ /* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */
+ {0x00000001ac5390a0, 0x00000001620eb844},
+ /* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */
+ {0x000000002a80ed6e, 0x0000000147655048},
+ /* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */
+ {0x00000001fa9b0128, 0x0000000067b5077e},
+ /* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */
+ {0x00000001ea94929e, 0x0000000010ffe206},
+ /* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */
+ {0x0000000125f4305c, 0x000000000fee8f1e},
+ /* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */
+ {0x00000001471e2002, 0x00000001da26fbae},
+ /* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */
+ {0x0000000132d2253a, 0x00000001b3a8bd88},
+ /* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */
+ {0x00000000f26b3592, 0x00000000e8f3898e},
+ /* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */
+ {0x00000000bc8b67b0, 0x00000000b0d0d28c},
+ /* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */
+ {0x000000013a826ef2, 0x0000000030f2a798},
+ /* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */
+ {0x0000000081482c84, 0x000000000fba1002},
+ /* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */
+ {0x00000000e77307c2, 0x00000000bdb9bd72},
+ /* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */
+ {0x00000000d4a07ec8, 0x0000000075d3bf5a},
+ /* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */
+ {0x0000000017102100, 0x00000000ef1f98a0},
+ /* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */
+ {0x00000000db406486, 0x00000000689c7602},
+ /* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */
+ {0x0000000192db7f88, 0x000000016d5fa5fe},
+ /* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */
+ {0x000000018bf67b1e, 0x00000001d0d2b9ca},
+ /* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */
+ {0x000000007c09163e, 0x0000000041e7b470},
+ /* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */
+ {0x000000000adac060, 0x00000001cbb6495e},
+ /* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */
+ {0x00000000bd8316ae, 0x000000010052a0b0},
+ /* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */
+ {0x000000019f09ab54, 0x00000001d8effb5c},
+ /* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */
+ {0x0000000125155542, 0x00000001d969853c},
+ /* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */
+ {0x000000018fdb5882, 0x00000000523ccce2},
+ /* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */
+ {0x00000000e794b3f4, 0x000000001e2436bc},
+ /* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */
+ {0x000000016f9bb022, 0x00000000ddd1c3a2},
+ /* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */
+ {0x00000000290c9978, 0x0000000019fcfe38},
+ /* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */
+ {0x0000000083c0f350, 0x00000001ce95db64},
+ /* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */
+ {0x0000000173ea6628, 0x00000000af582806},
+ /* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */
+ {0x00000001c8b4e00a, 0x00000001006388f6},
+ /* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */
+ {0x00000000de95d6aa, 0x0000000179eca00a},
+ /* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */
+ {0x000000010b7f7248, 0x0000000122410a6a},
+ /* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */
+ {0x00000001326e3a06, 0x000000004288e87c},
+ /* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */
+ {0x00000000bb62c2e6, 0x000000016c5490da},
+ /* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */
+ {0x0000000156a4b2c2, 0x00000000d1c71f6e},
+ /* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */
+ {0x000000011dfe763a, 0x00000001b4ce08a6},
+ /* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */
+ {0x000000007bcca8e2, 0x00000001466ba60c},
+ /* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */
+ {0x0000000186118faa, 0x00000001f6c488a4},
+ /* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */
+ {0x0000000111a65a88, 0x000000013bfb0682},
+ /* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */
+ {0x000000003565e1c4, 0x00000000690e9e54},
+ /* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */
+ {0x000000012ed02a82, 0x00000000281346b6},
+ /* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */
+ {0x00000000c486ecfc, 0x0000000156464024},
+ /* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */
+ {0x0000000001b951b2, 0x000000016063a8dc},
+ /* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */
+ {0x0000000048143916, 0x0000000116a66362},
+ /* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */
+ {0x00000001dc2ae124, 0x000000017e8aa4d2},
+ /* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */
+ {0x00000001416c58d6, 0x00000001728eb10c},
+ /* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */
+ {0x00000000a479744a, 0x00000001b08fd7fa},
+ /* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */
+ {0x0000000096ca3a26, 0x00000001092a16e8},
+ /* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */
+ {0x00000000ff223d4e, 0x00000000a505637c},
+ /* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */
+ {0x000000010e84da42, 0x00000000d94869b2},
+ /* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */
+ {0x00000001b61ba3d0, 0x00000001c8b203ae},
+ /* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */
+ {0x00000000680f2de8, 0x000000005704aea0},
+ /* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */
+ {0x000000008772a9a8, 0x000000012e295fa2},
+ /* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */
+ {0x0000000155f295bc, 0x000000011d0908bc},
+ /* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */
+ {0x00000000595f9282, 0x0000000193ed97ea},
+ /* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */
+ {0x0000000164b1c25a, 0x000000013a0f1c52},
+ /* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */
+ {0x00000000fbd67c50, 0x000000010c2c40c0},
+ /* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */
+ {0x0000000096076268, 0x00000000ff6fac3e},
+ /* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */
+ {0x00000001d288e4cc, 0x000000017b3609c0},
+ /* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */
+ {0x00000001eaac1bdc, 0x0000000088c8c922},
+ /* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */
+ {0x00000001f1ea39e2, 0x00000001751baae6},
+ /* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */
+ {0x00000001eb6506fc, 0x0000000107952972},
+ /* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */
+ {0x000000010f806ffe, 0x0000000162b00abe},
+ /* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */
+ {0x000000010408481e, 0x000000000d7b404c},
+ /* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */
+ {0x0000000188260534, 0x00000000763b13d4},
+ /* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */
+ {0x0000000058fc73e0, 0x00000000f6dc22d8},
+ /* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */
+ {0x00000000391c59b8, 0x000000007daae060},
+ /* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */
+ {0x000000018b638400, 0x000000013359ab7c},
+ /* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */
+ {0x000000011738f5c4, 0x000000008add438a},
+ /* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */
+ {0x000000008cf7c6da, 0x00000001edbefdea},
+ /* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */
+ {0x00000001ef97fb16, 0x000000004104e0f8},
+ /* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */
+ {0x0000000102130e20, 0x00000000b48a8222},
+ /* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */
+ {0x00000000db968898, 0x00000001bcb46844},
+ /* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */
+ {0x00000000b5047b5e, 0x000000013293ce0a},
+ /* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */
+ {0x000000010b90fdb2, 0x00000001710d0844},
+ /* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */
+ {0x000000004834a32e, 0x0000000117907f6e},
+ /* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */
+ {0x0000000059c8f2b0, 0x0000000087ddf93e},
+ /* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */
+ {0x0000000122cec508, 0x000000005970e9b0},
+ /* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */
+ {0x000000000a330cda, 0x0000000185b2b7d0},
+ /* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */
+ {0x000000014a47148c, 0x00000001dcee0efc},
+ /* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */
+ {0x0000000042c61cb8, 0x0000000030da2722},
+ /* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */
+ {0x0000000012fe6960, 0x000000012f925a18},
+ /* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */
+ {0x00000000dbda2c20, 0x00000000dd2e357c},
+ /* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */
+ {0x000000011122410c, 0x00000000071c80de},
+ /* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */
+ {0x00000000977b2070, 0x000000011513140a},
+ /* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */
+ {0x000000014050438e, 0x00000001df876e8e},
+ /* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */
+ {0x0000000147c840e8, 0x000000015f81d6ce},
+ /* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */
+ {0x00000001cc7c88ce, 0x000000019dd94dbe},
+ /* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */
+ {0x00000001476b35a4, 0x00000001373d206e},
+ /* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */
+ {0x000000013d52d508, 0x00000000668ccade},
+ /* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */
+ {0x000000008e4be32e, 0x00000001b192d268},
+ /* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */
+ {0x00000000024120fe, 0x00000000e30f3a78},
+ /* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */
+ {0x00000000ddecddb4, 0x000000010ef1f7bc},
+ /* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */
+ {0x00000000d4d403bc, 0x00000001f5ac7380},
+ /* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */
+ {0x00000001734b89aa, 0x000000011822ea70},
+ /* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */
+ {0x000000010e7a58d6, 0x00000000c3a33848},
+ /* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */
+ {0x00000001f9f04e9c, 0x00000001bd151c24},
+ /* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */
+ {0x00000000b692225e, 0x0000000056002d76},
+ /* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */
+ {0x000000019b8d3f3e, 0x000000014657c4f4},
+ /* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */
+ {0x00000001a874f11e, 0x0000000113742d7c},
+ /* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */
+ {0x000000010d5a4254, 0x000000019c5920ba},
+ /* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */
+ {0x00000000bbb2f5d6, 0x000000005216d2d6},
+ /* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */
+ {0x0000000179cc0e36, 0x0000000136f5ad8a},
+ /* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */
+ {0x00000001dca1da4a, 0x000000018b07beb6},
+ /* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */
+ {0x00000000feb1a192, 0x00000000db1e93b0},
+ /* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */
+ {0x00000000d1eeedd6, 0x000000000b96fa3a},
+ /* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */
+ {0x000000008fad9bb4, 0x00000001d9968af0},
+ /* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */
+ {0x00000001884938e4, 0x000000000e4a77a2},
+ /* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */
+ {0x00000001bc2e9bc0, 0x00000000508c2ac8},
+ /* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */
+ {0x00000001f9658a68, 0x0000000021572a80},
+ /* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */
+ {0x000000001b9224fc, 0x00000001b859daf2},
+ /* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */
+ {0x0000000055b2fb84, 0x000000016f788474},
+ /* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */
+ {0x000000018b090348, 0x00000001b438810e},
+ /* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */
+ {0x000000011ccbd5ea, 0x0000000095ddc6f2},
+ /* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */
+ {0x0000000007ae47f8, 0x00000001d977c20c},
+ /* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */
+ {0x0000000172acbec0, 0x00000000ebedb99a},
+ /* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */
+ {0x00000001c6e3ff20, 0x00000001df9e9e92},
+ /* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */
+ {0x00000000e1b38744, 0x00000001a4a3f952},
+ /* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */
+ {0x00000000791585b2, 0x00000000e2f51220},
+ /* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */
+ {0x00000000ac53b894, 0x000000004aa01f3e},
+ /* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */
+ {0x00000001ed5f2cf4, 0x00000000b3e90a58},
+ /* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */
+ {0x00000001df48b2e0, 0x000000000c9ca2aa},
+ /* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */
+ {0x00000000049c1c62, 0x0000000151682316},
+ /* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */
+ {0x000000017c460c12, 0x0000000036fce78c},
+ /* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */
+ {0x000000015be4da7e, 0x000000009037dc10},
+ /* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */
+ {0x000000010f38f668, 0x00000000d3298582},
+ /* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */
+ {0x0000000039f40a00, 0x00000001b42e8ad6},
+ /* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */
+ {0x00000000bd4c10c4, 0x00000000142a9838},
+ /* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */
+ {0x0000000042db1d98, 0x0000000109c7f190},
+ /* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */
+ {0x00000001c905bae6, 0x0000000056ff9310},
+ /* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */
+ {0x00000000069d40ea, 0x00000001594513aa},
+ /* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */
+ {0x000000008e4fbad0, 0x00000001e3b5b1e8},
+ /* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */
+ {0x0000000047bedd46, 0x000000011dd5fc08},
+ /* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */
+ {0x0000000026396bf8, 0x00000001675f0cc2},
+ /* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */
+ {0x00000000379beb92, 0x00000000d1c8dd44},
+ /* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */
+ {0x000000000abae54a, 0x0000000115ebd3d8},
+ /* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */
+ {0x0000000007e6a128, 0x00000001ecbd0dac},
+ /* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */
+ {0x000000000ade29d2, 0x00000000cdf67af2},
+ /* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */
+ {0x00000000f974c45c, 0x000000004c01ff4c},
+ /* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */
+ {0x00000000e77ac60a, 0x00000000f2d8657e},
+ /* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */
+ {0x0000000145895816, 0x000000006bae74c4},
+ /* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */
+ {0x0000000038e362be, 0x0000000152af8aa0},
+ /* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */
+ {0x000000007f991a64, 0x0000000004663802},
+ /* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */
+ {0x00000000fa366d3a, 0x00000001ab2f5afc},
+ /* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */
+ {0x00000001a2bb34f0, 0x0000000074a4ebd4},
+ /* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */
+ {0x0000000028a9981e, 0x00000001d7ab3a4c},
+ /* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */
+ {0x00000001dbc672be, 0x00000001a8da60c6},
+ /* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */
+ {0x00000000b04d77f6, 0x000000013cf63820},
+ /* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */
+ {0x0000000124400d96, 0x00000000bec12e1e},
+ /* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */
+ {0x000000014ca4b414, 0x00000001c6368010},
+ /* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */
+ {0x000000012fe2c938, 0x00000001e6e78758},
+ /* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */
+ {0x00000001faed01e6, 0x000000008d7f2b3c},
+ /* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */
+ {0x000000007e80ecfe, 0x000000016b4a156e},
+ /* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */
+ {0x0000000098daee94, 0x00000001c63cfeb6},
+ /* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */
+ {0x000000010a04edea, 0x000000015f902670},
+ /* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */
+ {0x00000001c00b4524, 0x00000001cd5de11e},
+ /* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */
+ {0x0000000170296550, 0x000000001acaec54},
+ /* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */
+ {0x0000000181afaa48, 0x000000002bd0ca78},
+ /* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */
+ {0x0000000185a31ffa, 0x0000000032d63d5c},
+ /* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */
+ {0x000000002469f608, 0x000000001c6d4e4c},
+ /* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */
+ {0x000000006980102a, 0x0000000106a60b92},
+ /* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */
+ {0x0000000111ea9ca8, 0x00000000d3855e12},
+ /* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */
+ {0x00000001bd1d29ce, 0x00000000e3125636},
+ /* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */
+ {0x00000001b34b9580, 0x000000009e8f7ea4},
+ /* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */
+ {0x000000003076054e, 0x00000001c82e562c},
+ /* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */
+ {0x000000012a608ea4, 0x00000000ca9f09ce},
+ /* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */
+ {0x00000000784d05fe, 0x00000000c63764e6},
+ /* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */
+ {0x000000016ef0d82a, 0x0000000168d2e49e},
+ /* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */
+ {0x0000000075bda454, 0x00000000e986c148},
+ /* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */
+ {0x000000003dc0a1c4, 0x00000000cfb65894},
+ /* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */
+ {0x00000000e9a5d8be, 0x0000000111cadee4},
+ /* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */
+ {0x00000001609bc4b4, 0x0000000171fb63ce}
+#else /* __LITTLE_ENDIAN__ */
+ /* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */
+ {0x00000000b6ca9e20, 0x000000009c37c408},
+ /* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */
+ {0x00000000350249a8, 0x00000001b51df26c},
+ /* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */
+ {0x00000001862dac54, 0x000000000724b9d0},
+ /* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */
+ {0x00000001d87fb48c, 0x00000001c00532fe},
+ /* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */
+ {0x00000001f39b699e, 0x00000000f05a9362},
+ /* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */
+ {0x0000000101da11b4, 0x00000001e1007970},
+ /* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */
+ {0x00000001cab571e0, 0x00000000a57366ee},
+ /* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */
+ {0x00000000c7020cfe, 0x0000000192011284},
+ /* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */
+ {0x00000000cdaed1ae, 0x0000000162716d9a},
+ /* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */
+ {0x00000001e804effc, 0x00000000cd97ecde},
+ /* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */
+ {0x0000000077c3ea3a, 0x0000000058812bc0},
+ /* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */
+ {0x0000000068df31b4, 0x0000000088b8c12e},
+ /* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */
+ {0x00000000b059b6c2, 0x00000001230b234c},
+ /* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */
+ {0x0000000145fb8ed8, 0x00000001120b416e},
+ /* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */
+ {0x00000000cbc09168, 0x00000001974aecb0},
+ /* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */
+ {0x000000005ceeedc2, 0x000000008ee3f226},
+ /* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */
+ {0x0000000047d74e86, 0x00000001089aba9a},
+ /* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */
+ {0x00000001407e9e22, 0x0000000065113872},
+ /* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */
+ {0x00000001da967bda, 0x000000005c07ec10},
+ /* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */
+ {0x000000006c898368, 0x0000000187590924},
+ /* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */
+ {0x00000000f2d14c98, 0x00000000e35da7c6},
+ /* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */
+ {0x00000001993c6ad4, 0x000000000415855a},
+ /* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */
+ {0x000000014683d1ac, 0x0000000073617758},
+ /* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */
+ {0x00000001a7c93e6c, 0x0000000176021d28},
+ /* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */
+ {0x000000010211e90a, 0x00000001c358fd0a},
+ /* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */
+ {0x000000001119403e, 0x00000001ff7a2c18},
+ /* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */
+ {0x000000001c3261aa, 0x00000000f2d9f7e4},
+ /* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */
+ {0x000000014e37a634, 0x000000016cf1f9c8},
+ /* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */
+ {0x0000000073786c0c, 0x000000010af9279a},
+ /* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */
+ {0x000000011dc037f8, 0x0000000004f101e8},
+ /* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */
+ {0x0000000031433dfc, 0x0000000070bcf184},
+ /* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */
+ {0x000000009cde8348, 0x000000000a8de642},
+ /* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */
+ {0x0000000038d3c2a6, 0x0000000062ea130c},
+ /* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */
+ {0x000000011b25f260, 0x00000001eb31cbb2},
+ /* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */
+ {0x000000001629e6f0, 0x0000000170783448},
+ /* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */
+ {0x0000000160838b4c, 0x00000001a684b4c6},
+ /* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */
+ {0x000000007a44011c, 0x00000000253ca5b4},
+ /* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */
+ {0x00000000226f417a, 0x0000000057b4b1e2},
+ /* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */
+ {0x0000000045eb2eb4, 0x00000000b6bd084c},
+ /* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */
+ {0x000000014459d70c, 0x0000000123c2d592},
+ /* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */
+ {0x00000001d406ed82, 0x00000000159dafce},
+ /* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */
+ {0x0000000160c8e1a8, 0x0000000127e1a64e},
+ /* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */
+ {0x0000000027ba8098, 0x0000000056860754},
+ /* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */
+ {0x000000006d92d018, 0x00000001e661aae8},
+ /* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */
+ {0x000000012ed7e3f2, 0x00000000f82c6166},
+ /* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */
+ {0x000000002dc87788, 0x00000000c4f9c7ae},
+ /* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */
+ {0x0000000018240bb8, 0x0000000074203d20},
+ /* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */
+ {0x000000001ad38158, 0x0000000198173052},
+ /* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */
+ {0x00000001396b78f2, 0x00000001ce8aba54},
+ /* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */
+ {0x000000011a681334, 0x00000001850d5d94},
+ /* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */
+ {0x000000012104732e, 0x00000001d609239c},
+ /* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */
+ {0x00000000a140d90c, 0x000000001595f048},
+ /* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */
+ {0x00000001b7215eda, 0x0000000042ccee08},
+ /* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */
+ {0x00000001aaf1df3c, 0x000000010a389d74},
+ /* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */
+ {0x0000000029d15b8a, 0x000000012a840da6},
+ /* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */
+ {0x00000000f1a96922, 0x000000001d181c0c},
+ /* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */
+ {0x00000001ac80d03c, 0x0000000068b7d1f6},
+ /* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */
+ {0x000000000f11d56a, 0x000000005b0f14fc},
+ /* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */
+ {0x00000001f1c022a2, 0x0000000179e9e730},
+ /* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */
+ {0x0000000173d00ae2, 0x00000001ce1368d6},
+ /* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */
+ {0x00000001d4ffe4ac, 0x0000000112c3a84c},
+ /* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */
+ {0x000000016edc5ae4, 0x00000000de940fee},
+ /* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */
+ {0x00000001f1a02140, 0x00000000fe896b7e},
+ /* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */
+ {0x00000000ca0b28a0, 0x00000001f797431c},
+ /* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */
+ {0x00000001928e30a2, 0x0000000053e989ba},
+ /* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */
+ {0x0000000097b1b002, 0x000000003920cd16},
+ /* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */
+ {0x00000000b15bf906, 0x00000001e6f579b8},
+ /* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */
+ {0x00000000411c5d52, 0x000000007493cb0a},
+ /* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */
+ {0x00000001c36f3300, 0x00000001bdd376d8},
+ /* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */
+ {0x00000001119227e0, 0x000000016badfee6},
+ /* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */
+ {0x00000000114d4702, 0x0000000071de5c58},
+ /* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */
+ {0x00000000458b5b98, 0x00000000453f317c},
+ /* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */
+ {0x000000012e31fb8e, 0x0000000121675cce},
+ /* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */
+ {0x000000005cf619d8, 0x00000001f409ee92},
+ /* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */
+ {0x0000000063f4d8b2, 0x00000000f36b9c88},
+ /* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */
+ {0x000000004138dc8a, 0x0000000036b398f4},
+ /* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */
+ {0x00000001d29ee8e0, 0x00000001748f9adc},
+ /* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */
+ {0x000000006a08ace8, 0x00000001be94ec00},
+ /* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */
+ {0x0000000127d42010, 0x00000000b74370d6},
+ /* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */
+ {0x0000000019d76b62, 0x00000001174d0b98},
+ /* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */
+ {0x00000001b1471f6e, 0x00000000befc06a4},
+ /* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */
+ {0x00000001f64c19cc, 0x00000001ae125288},
+ /* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */
+ {0x00000000003c0ea0, 0x0000000095c19b34},
+ /* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */
+ {0x000000014d73abf6, 0x00000001a78496f2},
+ /* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */
+ {0x00000001620eb844, 0x00000001ac5390a0},
+ /* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */
+ {0x0000000147655048, 0x000000002a80ed6e},
+ /* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */
+ {0x0000000067b5077e, 0x00000001fa9b0128},
+ /* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */
+ {0x0000000010ffe206, 0x00000001ea94929e},
+ /* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */
+ {0x000000000fee8f1e, 0x0000000125f4305c},
+ /* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */
+ {0x00000001da26fbae, 0x00000001471e2002},
+ /* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */
+ {0x00000001b3a8bd88, 0x0000000132d2253a},
+ /* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */
+ {0x00000000e8f3898e, 0x00000000f26b3592},
+ /* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */
+ {0x00000000b0d0d28c, 0x00000000bc8b67b0},
+ /* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */
+ {0x0000000030f2a798, 0x000000013a826ef2},
+ /* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */
+ {0x000000000fba1002, 0x0000000081482c84},
+ /* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */
+ {0x00000000bdb9bd72, 0x00000000e77307c2},
+ /* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */
+ {0x0000000075d3bf5a, 0x00000000d4a07ec8},
+ /* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */
+ {0x00000000ef1f98a0, 0x0000000017102100},
+ /* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */
+ {0x00000000689c7602, 0x00000000db406486},
+ /* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */
+ {0x000000016d5fa5fe, 0x0000000192db7f88},
+ /* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */
+ {0x00000001d0d2b9ca, 0x000000018bf67b1e},
+ /* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */
+ {0x0000000041e7b470, 0x000000007c09163e},
+ /* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */
+ {0x00000001cbb6495e, 0x000000000adac060},
+ /* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */
+ {0x000000010052a0b0, 0x00000000bd8316ae},
+ /* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */
+ {0x00000001d8effb5c, 0x000000019f09ab54},
+ /* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */
+ {0x00000001d969853c, 0x0000000125155542},
+ /* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */
+ {0x00000000523ccce2, 0x000000018fdb5882},
+ /* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */
+ {0x000000001e2436bc, 0x00000000e794b3f4},
+ /* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */
+ {0x00000000ddd1c3a2, 0x000000016f9bb022},
+ /* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */
+ {0x0000000019fcfe38, 0x00000000290c9978},
+ /* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */
+ {0x00000001ce95db64, 0x0000000083c0f350},
+ /* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */
+ {0x00000000af582806, 0x0000000173ea6628},
+ /* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */
+ {0x00000001006388f6, 0x00000001c8b4e00a},
+ /* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */
+ {0x0000000179eca00a, 0x00000000de95d6aa},
+ /* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */
+ {0x0000000122410a6a, 0x000000010b7f7248},
+ /* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */
+ {0x000000004288e87c, 0x00000001326e3a06},
+ /* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */
+ {0x000000016c5490da, 0x00000000bb62c2e6},
+ /* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */
+ {0x00000000d1c71f6e, 0x0000000156a4b2c2},
+ /* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */
+ {0x00000001b4ce08a6, 0x000000011dfe763a},
+ /* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */
+ {0x00000001466ba60c, 0x000000007bcca8e2},
+ /* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */
+ {0x00000001f6c488a4, 0x0000000186118faa},
+ /* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */
+ {0x000000013bfb0682, 0x0000000111a65a88},
+ /* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */
+ {0x00000000690e9e54, 0x000000003565e1c4},
+ /* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */
+ {0x00000000281346b6, 0x000000012ed02a82},
+ /* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */
+ {0x0000000156464024, 0x00000000c486ecfc},
+ /* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */
+ {0x000000016063a8dc, 0x0000000001b951b2},
+ /* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */
+ {0x0000000116a66362, 0x0000000048143916},
+ /* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */
+ {0x000000017e8aa4d2, 0x00000001dc2ae124},
+ /* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */
+ {0x00000001728eb10c, 0x00000001416c58d6},
+ /* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */
+ {0x00000001b08fd7fa, 0x00000000a479744a},
+ /* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */
+ {0x00000001092a16e8, 0x0000000096ca3a26},
+ /* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */
+ {0x00000000a505637c, 0x00000000ff223d4e},
+ /* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */
+ {0x00000000d94869b2, 0x000000010e84da42},
+ /* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */
+ {0x00000001c8b203ae, 0x00000001b61ba3d0},
+ /* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */
+ {0x000000005704aea0, 0x00000000680f2de8},
+ /* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */
+ {0x000000012e295fa2, 0x000000008772a9a8},
+ /* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */
+ {0x000000011d0908bc, 0x0000000155f295bc},
+ /* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */
+ {0x0000000193ed97ea, 0x00000000595f9282},
+ /* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */
+ {0x000000013a0f1c52, 0x0000000164b1c25a},
+ /* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */
+ {0x000000010c2c40c0, 0x00000000fbd67c50},
+ /* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */
+ {0x00000000ff6fac3e, 0x0000000096076268},
+ /* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */
+ {0x000000017b3609c0, 0x00000001d288e4cc},
+ /* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */
+ {0x0000000088c8c922, 0x00000001eaac1bdc},
+ /* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */
+ {0x00000001751baae6, 0x00000001f1ea39e2},
+ /* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */
+ {0x0000000107952972, 0x00000001eb6506fc},
+ /* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */
+ {0x0000000162b00abe, 0x000000010f806ffe},
+ /* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */
+ {0x000000000d7b404c, 0x000000010408481e},
+ /* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */
+ {0x00000000763b13d4, 0x0000000188260534},
+ /* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */
+ {0x00000000f6dc22d8, 0x0000000058fc73e0},
+ /* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */
+ {0x000000007daae060, 0x00000000391c59b8},
+ /* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */
+ {0x000000013359ab7c, 0x000000018b638400},
+ /* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */
+ {0x000000008add438a, 0x000000011738f5c4},
+ /* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */
+ {0x00000001edbefdea, 0x000000008cf7c6da},
+ /* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */
+ {0x000000004104e0f8, 0x00000001ef97fb16},
+ /* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */
+ {0x00000000b48a8222, 0x0000000102130e20},
+ /* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */
+ {0x00000001bcb46844, 0x00000000db968898},
+ /* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */
+ {0x000000013293ce0a, 0x00000000b5047b5e},
+ /* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */
+ {0x00000001710d0844, 0x000000010b90fdb2},
+ /* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */
+ {0x0000000117907f6e, 0x000000004834a32e},
+ /* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */
+ {0x0000000087ddf93e, 0x0000000059c8f2b0},
+ /* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */
+ {0x000000005970e9b0, 0x0000000122cec508},
+ /* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */
+ {0x0000000185b2b7d0, 0x000000000a330cda},
+ /* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */
+ {0x00000001dcee0efc, 0x000000014a47148c},
+ /* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */
+ {0x0000000030da2722, 0x0000000042c61cb8},
+ /* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */
+ {0x000000012f925a18, 0x0000000012fe6960},
+ /* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */
+ {0x00000000dd2e357c, 0x00000000dbda2c20},
+ /* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */
+ {0x00000000071c80de, 0x000000011122410c},
+ /* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */
+ {0x000000011513140a, 0x00000000977b2070},
+ /* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */
+ {0x00000001df876e8e, 0x000000014050438e},
+ /* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */
+ {0x000000015f81d6ce, 0x0000000147c840e8},
+ /* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */
+ {0x000000019dd94dbe, 0x00000001cc7c88ce},
+ /* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */
+ {0x00000001373d206e, 0x00000001476b35a4},
+ /* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */
+ {0x00000000668ccade, 0x000000013d52d508},
+ /* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */
+ {0x00000001b192d268, 0x000000008e4be32e},
+ /* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */
+ {0x00000000e30f3a78, 0x00000000024120fe},
+ /* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */
+ {0x000000010ef1f7bc, 0x00000000ddecddb4},
+ /* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */
+ {0x00000001f5ac7380, 0x00000000d4d403bc},
+ /* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */
+ {0x000000011822ea70, 0x00000001734b89aa},
+ /* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */
+ {0x00000000c3a33848, 0x000000010e7a58d6},
+ /* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */
+ {0x00000001bd151c24, 0x00000001f9f04e9c},
+ /* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */
+ {0x0000000056002d76, 0x00000000b692225e},
+ /* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */
+ {0x000000014657c4f4, 0x000000019b8d3f3e},
+ /* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */
+ {0x0000000113742d7c, 0x00000001a874f11e},
+ /* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */
+ {0x000000019c5920ba, 0x000000010d5a4254},
+ /* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */
+ {0x000000005216d2d6, 0x00000000bbb2f5d6},
+ /* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */
+ {0x0000000136f5ad8a, 0x0000000179cc0e36},
+ /* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */
+ {0x000000018b07beb6, 0x00000001dca1da4a},
+ /* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */
+ {0x00000000db1e93b0, 0x00000000feb1a192},
+ /* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */
+ {0x000000000b96fa3a, 0x00000000d1eeedd6},
+ /* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */
+ {0x00000001d9968af0, 0x000000008fad9bb4},
+ /* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */
+ {0x000000000e4a77a2, 0x00000001884938e4},
+ /* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */
+ {0x00000000508c2ac8, 0x00000001bc2e9bc0},
+ /* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */
+ {0x0000000021572a80, 0x00000001f9658a68},
+ /* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */
+ {0x00000001b859daf2, 0x000000001b9224fc},
+ /* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */
+ {0x000000016f788474, 0x0000000055b2fb84},
+ /* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */
+ {0x00000001b438810e, 0x000000018b090348},
+ /* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */
+ {0x0000000095ddc6f2, 0x000000011ccbd5ea},
+ /* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */
+ {0x00000001d977c20c, 0x0000000007ae47f8},
+ /* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */
+ {0x00000000ebedb99a, 0x0000000172acbec0},
+ /* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */
+ {0x00000001df9e9e92, 0x00000001c6e3ff20},
+ /* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */
+ {0x00000001a4a3f952, 0x00000000e1b38744},
+ /* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */
+ {0x00000000e2f51220, 0x00000000791585b2},
+ /* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */
+ {0x000000004aa01f3e, 0x00000000ac53b894},
+ /* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */
+ {0x00000000b3e90a58, 0x00000001ed5f2cf4},
+ /* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */
+ {0x000000000c9ca2aa, 0x00000001df48b2e0},
+ /* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */
+ {0x0000000151682316, 0x00000000049c1c62},
+ /* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */
+ {0x0000000036fce78c, 0x000000017c460c12},
+ /* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */
+ {0x000000009037dc10, 0x000000015be4da7e},
+ /* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */
+ {0x00000000d3298582, 0x000000010f38f668},
+ /* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */
+ {0x00000001b42e8ad6, 0x0000000039f40a00},
+ /* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */
+ {0x00000000142a9838, 0x00000000bd4c10c4},
+ /* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */
+ {0x0000000109c7f190, 0x0000000042db1d98},
+ /* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */
+ {0x0000000056ff9310, 0x00000001c905bae6},
+ /* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */
+ {0x00000001594513aa, 0x00000000069d40ea},
+ /* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */
+ {0x00000001e3b5b1e8, 0x000000008e4fbad0},
+ /* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */
+ {0x000000011dd5fc08, 0x0000000047bedd46},
+ /* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */
+ {0x00000001675f0cc2, 0x0000000026396bf8},
+ /* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */
+ {0x00000000d1c8dd44, 0x00000000379beb92},
+ /* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */
+ {0x0000000115ebd3d8, 0x000000000abae54a},
+ /* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */
+ {0x00000001ecbd0dac, 0x0000000007e6a128},
+ /* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */
+ {0x00000000cdf67af2, 0x000000000ade29d2},
+ /* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */
+ {0x000000004c01ff4c, 0x00000000f974c45c},
+ /* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */
+ {0x00000000f2d8657e, 0x00000000e77ac60a},
+ /* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */
+ {0x000000006bae74c4, 0x0000000145895816},
+ /* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */
+ {0x0000000152af8aa0, 0x0000000038e362be},
+ /* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */
+ {0x0000000004663802, 0x000000007f991a64},
+ /* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */
+ {0x00000001ab2f5afc, 0x00000000fa366d3a},
+ /* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */
+ {0x0000000074a4ebd4, 0x00000001a2bb34f0},
+ /* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */
+ {0x00000001d7ab3a4c, 0x0000000028a9981e},
+ /* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */
+ {0x00000001a8da60c6, 0x00000001dbc672be},
+ /* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */
+ {0x000000013cf63820, 0x00000000b04d77f6},
+ /* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */
+ {0x00000000bec12e1e, 0x0000000124400d96},
+ /* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */
+ {0x00000001c6368010, 0x000000014ca4b414},
+ /* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */
+ {0x00000001e6e78758, 0x000000012fe2c938},
+ /* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */
+ {0x000000008d7f2b3c, 0x00000001faed01e6},
+ /* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */
+ {0x000000016b4a156e, 0x000000007e80ecfe},
+ /* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */
+ {0x00000001c63cfeb6, 0x0000000098daee94},
+ /* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */
+ {0x000000015f902670, 0x000000010a04edea},
+ /* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */
+ {0x00000001cd5de11e, 0x00000001c00b4524},
+ /* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */
+ {0x000000001acaec54, 0x0000000170296550},
+ /* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */
+ {0x000000002bd0ca78, 0x0000000181afaa48},
+ /* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */
+ {0x0000000032d63d5c, 0x0000000185a31ffa},
+ /* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */
+ {0x000000001c6d4e4c, 0x000000002469f608},
+ /* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */
+ {0x0000000106a60b92, 0x000000006980102a},
+ /* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */
+ {0x00000000d3855e12, 0x0000000111ea9ca8},
+ /* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */
+ {0x00000000e3125636, 0x00000001bd1d29ce},
+ /* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */
+ {0x000000009e8f7ea4, 0x00000001b34b9580},
+ /* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */
+ {0x00000001c82e562c, 0x000000003076054e},
+ /* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */
+ {0x00000000ca9f09ce, 0x000000012a608ea4},
+ /* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */
+ {0x00000000c63764e6, 0x00000000784d05fe},
+ /* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */
+ {0x0000000168d2e49e, 0x000000016ef0d82a},
+ /* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */
+ {0x00000000e986c148, 0x0000000075bda454},
+ /* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */
+ {0x00000000cfb65894, 0x000000003dc0a1c4},
+ /* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */
+ {0x0000000111cadee4, 0x00000000e9a5d8be},
+ /* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */
+ {0x0000000171fb63ce, 0x00000001609bc4b4}
+#endif /* __LITTLE_ENDIAN__ */
+};
- /* x^288 mod p(x)`, x^320 mod p(x)`, x^352 mod p(x)`, x^384 mod p(x)` */
- .octa 0x9c25531d19e65ddeec1631edb2dea967
+/* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros
+ */
+
+static const __vector unsigned long long vcrc_short_const[16] __attribute__((aligned(16))) = {
+#ifdef __LITTLE_ENDIAN__
+ /* x^1952 mod p(x) , x^1984 mod p(x) , x^2016 mod p(x) , x^2048 mod p(x) */
+ {0x5cf015c388e56f72, 0x7fec2963e5bf8048},
+ /* x^1824 mod p(x) , x^1856 mod p(x) , x^1888 mod p(x) , x^1920 mod p(x) */
+ {0x963a18920246e2e6, 0x38e888d4844752a9},
+ /* x^1696 mod p(x) , x^1728 mod p(x) , x^1760 mod p(x) , x^1792 mod p(x) */
+ {0x419a441956993a31, 0x42316c00730206ad},
+ /* x^1568 mod p(x) , x^1600 mod p(x) , x^1632 mod p(x) , x^1664 mod p(x) */
+ {0x924752ba2b830011, 0x543d5c543e65ddf9},
+ /* x^1440 mod p(x) , x^1472 mod p(x) , x^1504 mod p(x) , x^1536 mod p(x) */
+ {0x55bd7f9518e4a304, 0x78e87aaf56767c92},
+ /* x^1312 mod p(x) , x^1344 mod p(x) , x^1376 mod p(x) , x^1408 mod p(x) */
+ {0x6d76739fe0553f1e, 0x8f68fcec1903da7f},
+ /* x^1184 mod p(x) , x^1216 mod p(x) , x^1248 mod p(x) , x^1280 mod p(x) */
+ {0xc133722b1fe0b5c3, 0x3f4840246791d588},
+ /* x^1056 mod p(x) , x^1088 mod p(x) , x^1120 mod p(x) , x^1152 mod p(x) */
+ {0x64b67ee0e55ef1f3, 0x34c96751b04de25a},
+ /* x^928 mod p(x) , x^960 mod p(x) , x^992 mod p(x) , x^1024 mod p(x) */
+ {0x069db049b8fdb1e7, 0x156c8e180b4a395b},
+ /* x^800 mod p(x) , x^832 mod p(x) , x^864 mod p(x) , x^896 mod p(x) */
+ {0xa11bfaf3c9e90b9e, 0xe0b99ccbe661f7be},
+ /* x^672 mod p(x) , x^704 mod p(x) , x^736 mod p(x) , x^768 mod p(x) */
+ {0x817cdc5119b29a35, 0x041d37768cd75659},
+ /* x^544 mod p(x) , x^576 mod p(x) , x^608 mod p(x) , x^640 mod p(x) */
+ {0x1ce9d94b36c41f1c, 0x3a0777818cfaa965},
+ /* x^416 mod p(x) , x^448 mod p(x) , x^480 mod p(x) , x^512 mod p(x) */
+ {0x4f256efcb82be955, 0x0e148e8252377a55},
+ /* x^288 mod p(x) , x^320 mod p(x) , x^352 mod p(x) , x^384 mod p(x) */
+ {0xec1631edb2dea967, 0x9c25531d19e65dde},
+ /* x^160 mod p(x) , x^192 mod p(x) , x^224 mod p(x) , x^256 mod p(x) */
+ {0x5d27e147510ac59a, 0x790606ff9957c0a6},
+ /* x^32 mod p(x) , x^64 mod p(x) , x^96 mod p(x) , x^128 mod p(x) */
+ {0xa66805eb18b8ea18, 0x82f63b786ea2d55c}
+#else /* __LITTLE_ENDIAN__ */
+ /* x^1952 mod p(x) , x^1984 mod p(x) , x^2016 mod p(x) , x^2048 mod p(x) */
+ {0x7fec2963e5bf8048, 0x5cf015c388e56f72},
+ /* x^1824 mod p(x) , x^1856 mod p(x) , x^1888 mod p(x) , x^1920 mod p(x) */
+ {0x38e888d4844752a9, 0x963a18920246e2e6},
+ /* x^1696 mod p(x) , x^1728 mod p(x) , x^1760 mod p(x) , x^1792 mod p(x) */
+ {0x42316c00730206ad, 0x419a441956993a31},
+ /* x^1568 mod p(x) , x^1600 mod p(x) , x^1632 mod p(x) , x^1664 mod p(x) */
+ {0x543d5c543e65ddf9, 0x924752ba2b830011},
+ /* x^1440 mod p(x) , x^1472 mod p(x) , x^1504 mod p(x) , x^1536 mod p(x) */
+ {0x78e87aaf56767c92, 0x55bd7f9518e4a304},
+ /* x^1312 mod p(x) , x^1344 mod p(x) , x^1376 mod p(x) , x^1408 mod p(x) */
+ {0x8f68fcec1903da7f, 0x6d76739fe0553f1e},
+ /* x^1184 mod p(x) , x^1216 mod p(x) , x^1248 mod p(x) , x^1280 mod p(x) */
+ {0x3f4840246791d588, 0xc133722b1fe0b5c3},
+ /* x^1056 mod p(x) , x^1088 mod p(x) , x^1120 mod p(x) , x^1152 mod p(x) */
+ {0x34c96751b04de25a, 0x64b67ee0e55ef1f3},
+ /* x^928 mod p(x) , x^960 mod p(x) , x^992 mod p(x) , x^1024 mod p(x) */
+ {0x156c8e180b4a395b, 0x069db049b8fdb1e7},
+ /* x^800 mod p(x) , x^832 mod p(x) , x^864 mod p(x) , x^896 mod p(x) */
+ {0xe0b99ccbe661f7be, 0xa11bfaf3c9e90b9e},
+ /* x^672 mod p(x) , x^704 mod p(x) , x^736 mod p(x) , x^768 mod p(x) */
+ {0x041d37768cd75659, 0x817cdc5119b29a35},
+ /* x^544 mod p(x) , x^576 mod p(x) , x^608 mod p(x) , x^640 mod p(x) */
+ {0x3a0777818cfaa965, 0x1ce9d94b36c41f1c},
+ /* x^416 mod p(x) , x^448 mod p(x) , x^480 mod p(x) , x^512 mod p(x) */
+ {0x0e148e8252377a55, 0x4f256efcb82be955},
+ /* x^288 mod p(x) , x^320 mod p(x) , x^352 mod p(x) , x^384 mod p(x) */
+ {0x9c25531d19e65dde, 0xec1631edb2dea967},
+ /* x^160 mod p(x) , x^192 mod p(x) , x^224 mod p(x) , x^256 mod p(x) */
+ {0x790606ff9957c0a6, 0x5d27e147510ac59a},
+ /* x^32 mod p(x) , x^64 mod p(x) , x^96 mod p(x) , x^128 mod p(x) */
+ {0x82f63b786ea2d55c, 0xa66805eb18b8ea18}
+#endif /* __LITTLE_ENDIAN__ */
+};
- /* x^160 mod p(x)`, x^192 mod p(x)`, x^224 mod p(x)`, x^256 mod p(x)` */
- .octa 0x790606ff9957c0a65d27e147510ac59a
+/* Barrett constants */
+/* 33 bit reflected Barrett constant m - (4^32)/n */
- /* x^32 mod p(x)`, x^64 mod p(x)`, x^96 mod p(x)`, x^128 mod p(x)` */
- .octa 0x82f63b786ea2d55ca66805eb18b8ea18
+static const __vector unsigned long long v_Barrett_const[2] __attribute__((aligned(16))) = {
+/* x^64 div p(x) */
+#ifdef __LITTLE_ENDIAN__
+ {0x00000000dea713f1, 0x0000000000000000}, {0x0000000105ec76f1, 0x0000000000000000}
+#else /* __LITTLE_ENDIAN__ */
+ {0x0000000000000000, 0x00000000dea713f1}, {0x0000000000000000, 0x0000000105ec76f1}
+#endif /* __LITTLE_ENDIAN__ */
+};
+#endif /* POWER8_INTRINSICS */
- .barrett_constants :
- /* 33 bit reflected Barrett constant m - (4^32)/n */
- .octa 0x000000000000000000000000dea713f1 /* x^64 div p(x)` */
- /* 33 bit reflected Barrett constant n */
- .octa 0x00000000000000000000000105ec76f1
-#endif
+#endif /* __ASSEMBLER__ */
diff --git a/src/third_party/wiredtiger/src/checksum/power8/crc32_wrapper.c b/src/third_party/wiredtiger/src/checksum/power8/crc32_wrapper.c
index c8fbaba0886..60537c735d7 100644
--- a/src/third_party/wiredtiger/src/checksum/power8/crc32_wrapper.c
+++ b/src/third_party/wiredtiger/src/checksum/power8/crc32_wrapper.c
@@ -3,78 +3,10 @@
#include <stddef.h>
#if defined(__powerpc64__) && !defined(HAVE_NO_CRC32_HARDWARE)
-#define CRC_TABLE
-#include "crc32_constants.h"
-#define VMX_ALIGN 16U
-#define VMX_ALIGN_MASK (VMX_ALIGN - 1)
-
-/*
- * crc32_align --
- * Align helper for CRC32 functions.
- */
-static unsigned int
-crc32_align(unsigned int crc, const unsigned char *p, unsigned long len)
-{
-#ifdef REFLECT
- while (len--)
- crc = crc_table[(crc ^ *p++) & 0xff] ^ (crc >> 8);
- return crc;
-#else
- while (len--)
- crc = crc_table[((crc >> 24) ^ *p++) & 0xff] ^ (crc << 8);
- return crc;
-#endif
-}
-
-unsigned int __crc32_vpmsum(unsigned int crc, const unsigned char *p, unsigned long len);
-
-/* -Werror=missing-prototypes */
unsigned int crc32_vpmsum(unsigned int crc, const unsigned char *p, unsigned long len);
/*
- * crc32_vpmsum --
- * VPM sum helper for CRC32 functions.
- */
-unsigned int
-crc32_vpmsum(unsigned int crc, const unsigned char *p, unsigned long len)
-{
- unsigned int prealign;
- unsigned int tail;
-
-#ifdef CRC_XOR
- crc ^= 0xffffffff;
-#endif
-
- if (len < VMX_ALIGN + VMX_ALIGN_MASK) {
- crc = crc32_align(crc, p, len);
- goto out;
- }
-
- if ((unsigned long)p & VMX_ALIGN_MASK) {
- prealign = VMX_ALIGN - ((unsigned long)p & VMX_ALIGN_MASK);
- crc = crc32_align(crc, p, prealign);
- len -= prealign;
- p += prealign;
- }
-
- crc = __crc32_vpmsum(crc, p, len & ~VMX_ALIGN_MASK);
-
- tail = len & VMX_ALIGN_MASK;
- if (tail) {
- p += len & ~VMX_ALIGN_MASK;
- crc = crc32_align(crc, p, tail);
- }
-
-out:
-#ifdef CRC_XOR
- crc ^= 0xffffffff;
-#endif
-
- return crc;
-}
-
-/*
* __wt_checksum_hw --
* WiredTiger: return a checksum for a chunk of memory.
*/
diff --git a/src/third_party/wiredtiger/src/checksum/power8/ppc-opcode.h b/src/third_party/wiredtiger/src/checksum/power8/ppc-opcode.h
deleted file mode 100644
index 0e5a189dc9d..00000000000
--- a/src/third_party/wiredtiger/src/checksum/power8/ppc-opcode.h
+++ /dev/null
@@ -1,23 +0,0 @@
-#ifndef __OPCODES_H
-#define __OPCODES_H
-
-#define __PPC_RA(a) (((a)&0x1f) << 16)
-#define __PPC_RB(b) (((b)&0x1f) << 11)
-#define __PPC_XA(a) ((((a)&0x1f) << 16) | (((a)&0x20) >> 3))
-#define __PPC_XB(b) ((((b)&0x1f) << 11) | (((b)&0x20) >> 4))
-#define __PPC_XS(s) ((((s)&0x1f) << 21) | (((s)&0x20) >> 5))
-#define __PPC_XT(s) __PPC_XS(s)
-#define VSX_XX3(t, a, b) (__PPC_XT(t) | __PPC_XA(a) | __PPC_XB(b))
-#define VSX_XX1(s, a, b) (__PPC_XS(s) | __PPC_RA(a) | __PPC_RB(b))
-
-#define PPC_INST_VPMSUMW 0x10000488
-#define PPC_INST_VPMSUMD 0x100004c8
-#define PPC_INST_MFVSRD 0x7c000066
-#define PPC_INST_MTVSRD 0x7c000166
-
-#define VPMSUMW(t, a, b) .long PPC_INST_VPMSUMW | VSX_XX3((t), a, b)
-#define VPMSUMD(t, a, b) .long PPC_INST_VPMSUMD | VSX_XX3((t), a, b)
-#define MFVRD(a, t) .long PPC_INST_MFVSRD | VSX_XX1((t) + 32, a, 0)
-#define MTVRD(t, a) .long PPC_INST_MTVSRD | VSX_XX1((t) + 32, a, 0)
-
-#endif
diff --git a/src/third_party/wiredtiger/src/checksum/power8/vec_crc32.c b/src/third_party/wiredtiger/src/checksum/power8/vec_crc32.c
new file mode 100644
index 00000000000..4356d505007
--- /dev/null
+++ b/src/third_party/wiredtiger/src/checksum/power8/vec_crc32.c
@@ -0,0 +1,672 @@
+#include <wiredtiger_config.h>
+#if defined(__powerpc64__) && !defined(HAVE_NO_CRC32_HARDWARE)
+/*
+ * Calculate the checksum of data that is 16 byte aligned and a multiple of
+ * 16 bytes.
+ *
+ * The first step is to reduce it to 1024 bits. We do this in 8 parallel
+ * chunks in order to mask the latency of the vpmsum instructions. If we
+ * have more than 32 kB of data to checksum we repeat this step multiple
+ * times, passing in the previous 1024 bits.
+ *
+ * The next step is to reduce the 1024 bits to 64 bits. This step adds
+ * 32 bits of 0s to the end - this matches what a CRC does. We just
+ * calculate constants that land the data in this 32 bits.
+ *
+ * We then use fixed point Barrett reduction to compute a mod n over GF(2)
+ * for n = CRC using POWER8 instructions. We use x = 32.
+ *
+ * http://en.wikipedia.org/wiki/Barrett_reduction
+ *
+ * This code uses gcc vector builtins instead using assembly directly.
+ *
+ * Copyright (C) 2017 Rogerio Alves <rogealve@br.ibm.com>, IBM
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of either:
+ *
+ * a) the GNU General Public License as published by the Free Software
+ * Foundation; either version 2 of the License, or (at your option)
+ * any later version, or
+ * b) the Apache License, Version 2.0
+ */
+
+#include <altivec.h>
+
+#define POWER8_INTRINSICS
+#define CRC_TABLE
+
+#include "crc32_constants.h"
+
+#define VMX_ALIGN 16UL
+#define VMX_ALIGN_MASK (VMX_ALIGN - 1)
+
+#ifdef REFLECT
+/*
+ * crc32_align --
+ * Align helper for CRC32 functions.
+ */
+static unsigned int
+crc32_align(unsigned int crc, const unsigned char *p, unsigned long len)
+{
+ while (len--)
+ crc = crc_table[(crc ^ *p++) & 0xff] ^ (crc >> 8);
+ return crc;
+}
+#else
+/*
+ * crc32_align --
+ * Align helper for CRC32 functions.
+ */
+static unsigned int
+crc32_align(unsigned int crc, const unsigned char *p, unsigned long len)
+{
+ while (len--)
+ crc = crc_table[((crc >> 24) ^ *p++) & 0xff] ^ (crc << 8);
+ return crc;
+}
+#endif
+
+static unsigned int __attribute__((aligned(32)))
+__crc32_vpmsum(unsigned int crc, const void *p, unsigned long len);
+
+/* -Werror=missing-prototypes */
+unsigned int crc32_vpmsum(unsigned int crc, const unsigned char *p, unsigned long len);
+
+/*
+ * crc32_vpmsum --
+ * VPM sum helper for CRC32 functions.
+ */
+unsigned int
+crc32_vpmsum(unsigned int crc, const unsigned char *p, unsigned long len)
+{
+ unsigned int prealign;
+ unsigned int tail;
+
+#ifdef CRC_XOR
+ crc ^= 0xffffffff;
+#endif
+
+ if (len < VMX_ALIGN + VMX_ALIGN_MASK) {
+ crc = crc32_align(crc, p, len);
+ goto out;
+ }
+
+ if ((unsigned long)p & VMX_ALIGN_MASK) {
+ prealign = VMX_ALIGN - ((unsigned long)p & VMX_ALIGN_MASK);
+ crc = crc32_align(crc, p, prealign);
+ len -= prealign;
+ p += prealign;
+ }
+
+ crc = __crc32_vpmsum(crc, p, len & ~VMX_ALIGN_MASK);
+
+ tail = len & VMX_ALIGN_MASK;
+ if (tail) {
+ p += len & ~VMX_ALIGN_MASK;
+ crc = crc32_align(crc, p, tail);
+ }
+
+out:
+#ifdef CRC_XOR
+ crc ^= 0xffffffff;
+#endif
+
+ return crc;
+}
+
+#if defined(__clang__)
+#include "clang_workaround.h"
+#else
+#define __builtin_pack_vector(a, b) __builtin_pack_vector_int128((a), (b))
+#define __builtin_unpack_vector_0(a) __builtin_unpack_vector_int128((vector __int128_t)(a), 0)
+#ifndef REFLECT
+#define __builtin_unpack_vector_1(a) __builtin_unpack_vector_int128((vector __int128_t)(a), 1)
+#endif
+#endif
+
+/* When we have a load-store in a single-dispatch group and address overlap
+ * such that foward is not allowed (load-hit-store) the group must be flushed.
+ * A group ending NOP prevents the flush.
+ */
+#define GROUP_ENDING_NOP __asm__("ori 2,2,0" ::: "memory")
+
+#if defined(__BIG_ENDIAN__) && defined(REFLECT)
+#define BYTESWAP_DATA
+#elif defined(__LITTLE_ENDIAN__) && !defined(REFLECT)
+#define BYTESWAP_DATA
+#endif
+
+#ifdef BYTESWAP_DATA
+#define VEC_PERM(vr, va, vb, vc) vr = vec_perm(va, vb, (__vector unsigned char)vc)
+#if defined(__LITTLE_ENDIAN__)
+/* Byte reverse permute constant LE. */
+static const __vector unsigned long long vperm_const
+ __attribute__((aligned(16))) = {0x08090A0B0C0D0E0FUL, 0x0001020304050607UL};
+#else
+static const __vector unsigned long long vperm_const
+ __attribute__((aligned(16))) = {0x0F0E0D0C0B0A0908UL, 0X0706050403020100UL};
+#endif
+#else
+#define VEC_PERM(vr, va, vb, vc)
+#endif
+
+static unsigned int __attribute__((aligned(32)))
+__crc32_vpmsum(unsigned int crc, const void *p, unsigned long len)
+{
+
+ const __vector unsigned long long vzero = {0, 0};
+ const __vector unsigned long long vones = {0xffffffffffffffffUL, 0xffffffffffffffffUL};
+
+#ifdef REFLECT
+ const __vector unsigned long long vmask_32bit = (__vector unsigned long long)vec_sld(
+ (__vector unsigned char)vzero, (__vector unsigned char)vones, 4);
+#endif
+
+ const __vector unsigned long long vmask_64bit = (__vector unsigned long long)vec_sld(
+ (__vector unsigned char)vzero, (__vector unsigned char)vones, 8);
+
+ __vector unsigned long long vcrc;
+
+ __vector unsigned long long vconst1, vconst2;
+
+ /* vdata0-vdata7 will contain our data (p). */
+ __vector unsigned long long vdata0, vdata1, vdata2, vdata3, vdata4, vdata5, vdata6, vdata7;
+
+ /* v0-v7 will contain our checksums */
+ __vector unsigned long long v0 = {0, 0};
+ __vector unsigned long long v1 = {0, 0};
+ __vector unsigned long long v2 = {0, 0};
+ __vector unsigned long long v3 = {0, 0};
+ __vector unsigned long long v4 = {0, 0};
+ __vector unsigned long long v5 = {0, 0};
+ __vector unsigned long long v6 = {0, 0};
+ __vector unsigned long long v7 = {0, 0};
+
+ /* Vector auxiliary variables. */
+ __vector unsigned long long va0, va1, va2, va3, va4, va5, va6, va7;
+
+ unsigned int result = 0;
+ unsigned int offset; /* Constant table offset. */
+
+ unsigned long i; /* Counter. */
+ unsigned long chunks;
+
+ unsigned long block_size;
+ int next_block = 0;
+
+ /* Align by 128 bits. The last 128 bit block will be processed at end. */
+ unsigned long length = len & 0xFFFFFFFFFFFFFF80UL;
+#ifdef REFLECT
+ __vector unsigned char vsht_splat;
+#endif
+
+#ifdef REFLECT
+ vcrc = (__vector unsigned long long)__builtin_pack_vector(0UL, crc);
+#else
+ vcrc = (__vector unsigned long long)__builtin_pack_vector(crc, 0UL);
+
+ /* Shift into top 32 bits */
+ vcrc = (__vector unsigned long long)vec_sld(
+ (__vector unsigned char)vcrc, (__vector unsigned char)vzero, 4);
+#endif
+
+ /* Short version. */
+ if (len < 256) {
+ /* Calculate where in the constant table we need to start. */
+ offset = 256 - len;
+
+ vconst1 = vec_ld(offset, vcrc_short_const);
+ vdata0 = vec_ld(0, (__vector unsigned long long *)p);
+ VEC_PERM(vdata0, vdata0, vconst1, vperm_const);
+
+ /* xor initial value*/
+ vdata0 = vec_xor(vdata0, vcrc);
+
+ vdata0 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
+ (__vector unsigned int)vdata0, (__vector unsigned int)vconst1);
+ v0 = vec_xor(v0, vdata0);
+
+ for (i = 16; i < len; i += 16) {
+ vconst1 = vec_ld(offset + i, vcrc_short_const);
+ vdata0 = vec_ld(i, (__vector unsigned long long *)p);
+ VEC_PERM(vdata0, vdata0, vconst1, vperm_const);
+ vdata0 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
+ (__vector unsigned int)vdata0, (__vector unsigned int)vconst1);
+ v0 = vec_xor(v0, vdata0);
+ }
+ } else {
+
+ /* Load initial values. */
+ vdata0 = vec_ld(0, (__vector unsigned long long *)p);
+ vdata1 = vec_ld(16, (__vector unsigned long long *)p);
+
+ VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
+ VEC_PERM(vdata1, vdata1, vdata1, vperm_const);
+
+ vdata2 = vec_ld(32, (__vector unsigned long long *)p);
+ vdata3 = vec_ld(48, (__vector unsigned long long *)p);
+
+ VEC_PERM(vdata2, vdata2, vdata2, vperm_const);
+ VEC_PERM(vdata3, vdata3, vdata3, vperm_const);
+
+ vdata4 = vec_ld(64, (__vector unsigned long long *)p);
+ vdata5 = vec_ld(80, (__vector unsigned long long *)p);
+
+ VEC_PERM(vdata4, vdata4, vdata4, vperm_const);
+ VEC_PERM(vdata5, vdata5, vdata5, vperm_const);
+
+ vdata6 = vec_ld(96, (__vector unsigned long long *)p);
+ vdata7 = vec_ld(112, (__vector unsigned long long *)p);
+
+ VEC_PERM(vdata6, vdata6, vdata6, vperm_const);
+ VEC_PERM(vdata7, vdata7, vdata7, vperm_const);
+
+ /* xor in initial value */
+ vdata0 = vec_xor(vdata0, vcrc);
+
+ p = (char *)p + 128;
+
+ do {
+ /* Checksum in blocks of MAX_SIZE. */
+ block_size = length;
+ if (block_size > MAX_SIZE) {
+ block_size = MAX_SIZE;
+ }
+
+ length = length - block_size;
+
+ /*
+ * Work out the offset into the constants table to start at. Each constant is 16 bytes,
+ * and it is used against 128 bytes of input data - 128 / 16 = 8
+ */
+ offset = (MAX_SIZE / 8) - (block_size / 8);
+ /* We reduce our final 128 bytes in a separate step */
+ chunks = (block_size / 128) - 1;
+
+ vconst1 = vec_ld(offset, vcrc_const);
+
+ va0 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata0, (__vector unsigned long long)vconst1);
+ va1 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata1, (__vector unsigned long long)vconst1);
+ va2 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata2, (__vector unsigned long long)vconst1);
+ va3 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata3, (__vector unsigned long long)vconst1);
+ va4 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata4, (__vector unsigned long long)vconst1);
+ va5 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata5, (__vector unsigned long long)vconst1);
+ va6 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata6, (__vector unsigned long long)vconst1);
+ va7 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata7, (__vector unsigned long long)vconst1);
+
+ if (chunks > 1) {
+ offset += 16;
+ vconst2 = vec_ld(offset, vcrc_const);
+ GROUP_ENDING_NOP;
+
+ vdata0 = vec_ld(0, (__vector unsigned long long *)p);
+ VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
+
+ vdata1 = vec_ld(16, (__vector unsigned long long *)p);
+ VEC_PERM(vdata1, vdata1, vdata1, vperm_const);
+
+ vdata2 = vec_ld(32, (__vector unsigned long long *)p);
+ VEC_PERM(vdata2, vdata2, vdata2, vperm_const);
+
+ vdata3 = vec_ld(48, (__vector unsigned long long *)p);
+ VEC_PERM(vdata3, vdata3, vdata3, vperm_const);
+
+ vdata4 = vec_ld(64, (__vector unsigned long long *)p);
+ VEC_PERM(vdata4, vdata4, vdata4, vperm_const);
+
+ vdata5 = vec_ld(80, (__vector unsigned long long *)p);
+ VEC_PERM(vdata5, vdata5, vdata5, vperm_const);
+
+ vdata6 = vec_ld(96, (__vector unsigned long long *)p);
+ VEC_PERM(vdata6, vdata6, vdata6, vperm_const);
+
+ vdata7 = vec_ld(112, (__vector unsigned long long *)p);
+ VEC_PERM(vdata7, vdata7, vdata7, vperm_const);
+
+ p = (char *)p + 128;
+
+ /*
+ * main loop. We modulo schedule it such that it takes three iterations to complete
+ * - first iteration load, second iteration vpmsum, third iteration xor.
+ */
+ for (i = 0; i < chunks - 2; i++) {
+ vconst1 = vec_ld(offset, vcrc_const);
+ offset += 16;
+ GROUP_ENDING_NOP;
+
+ v0 = vec_xor(v0, va0);
+ va0 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata0, (__vector unsigned long long)vconst2);
+ vdata0 = vec_ld(0, (__vector unsigned long long *)p);
+ VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
+ GROUP_ENDING_NOP;
+
+ v1 = vec_xor(v1, va1);
+ va1 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata1, (__vector unsigned long long)vconst2);
+ vdata1 = vec_ld(16, (__vector unsigned long long *)p);
+ VEC_PERM(vdata1, vdata1, vdata1, vperm_const);
+ GROUP_ENDING_NOP;
+
+ v2 = vec_xor(v2, va2);
+ va2 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata2, (__vector unsigned long long)vconst2);
+ vdata2 = vec_ld(32, (__vector unsigned long long *)p);
+ VEC_PERM(vdata2, vdata2, vdata2, vperm_const);
+ GROUP_ENDING_NOP;
+
+ v3 = vec_xor(v3, va3);
+ va3 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata3, (__vector unsigned long long)vconst2);
+ vdata3 = vec_ld(48, (__vector unsigned long long *)p);
+ VEC_PERM(vdata3, vdata3, vdata3, vperm_const);
+
+ vconst2 = vec_ld(offset, vcrc_const);
+ GROUP_ENDING_NOP;
+
+ v4 = vec_xor(v4, va4);
+ va4 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata4, (__vector unsigned long long)vconst1);
+ vdata4 = vec_ld(64, (__vector unsigned long long *)p);
+ VEC_PERM(vdata4, vdata4, vdata4, vperm_const);
+ GROUP_ENDING_NOP;
+
+ v5 = vec_xor(v5, va5);
+ va5 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata5, (__vector unsigned long long)vconst1);
+ vdata5 = vec_ld(80, (__vector unsigned long long *)p);
+ VEC_PERM(vdata5, vdata5, vdata5, vperm_const);
+ GROUP_ENDING_NOP;
+
+ v6 = vec_xor(v6, va6);
+ va6 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata6, (__vector unsigned long long)vconst1);
+ vdata6 = vec_ld(96, (__vector unsigned long long *)p);
+ VEC_PERM(vdata6, vdata6, vdata6, vperm_const);
+ GROUP_ENDING_NOP;
+
+ v7 = vec_xor(v7, va7);
+ va7 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata7, (__vector unsigned long long)vconst1);
+ vdata7 = vec_ld(112, (__vector unsigned long long *)p);
+ VEC_PERM(vdata7, vdata7, vdata7, vperm_const);
+
+ p = (char *)p + 128;
+ }
+
+ /* First cool down*/
+ vconst1 = vec_ld(offset, vcrc_const);
+ offset += 16;
+
+ v0 = vec_xor(v0, va0);
+ va0 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata0, (__vector unsigned long long)vconst1);
+ GROUP_ENDING_NOP;
+
+ v1 = vec_xor(v1, va1);
+ va1 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata1, (__vector unsigned long long)vconst1);
+ GROUP_ENDING_NOP;
+
+ v2 = vec_xor(v2, va2);
+ va2 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata2, (__vector unsigned long long)vconst1);
+ GROUP_ENDING_NOP;
+
+ v3 = vec_xor(v3, va3);
+ va3 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata3, (__vector unsigned long long)vconst1);
+ GROUP_ENDING_NOP;
+
+ v4 = vec_xor(v4, va4);
+ va4 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata4, (__vector unsigned long long)vconst1);
+ GROUP_ENDING_NOP;
+
+ v5 = vec_xor(v5, va5);
+ va5 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata5, (__vector unsigned long long)vconst1);
+ GROUP_ENDING_NOP;
+
+ v6 = vec_xor(v6, va6);
+ va6 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata6, (__vector unsigned long long)vconst1);
+ GROUP_ENDING_NOP;
+
+ v7 = vec_xor(v7, va7);
+ va7 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)vdata7, (__vector unsigned long long)vconst1);
+ } /* else */
+
+ /* Second cool down. */
+ v0 = vec_xor(v0, va0);
+ v1 = vec_xor(v1, va1);
+ v2 = vec_xor(v2, va2);
+ v3 = vec_xor(v3, va3);
+ v4 = vec_xor(v4, va4);
+ v5 = vec_xor(v5, va5);
+ v6 = vec_xor(v6, va6);
+ v7 = vec_xor(v7, va7);
+
+#ifdef REFLECT
+ /*
+ * vpmsumd produces a 96 bit result in the least significant bits of the register. Since
+ * we are bit reflected we have to shift it left 32 bits so it occupies the least
+ * significant bits in the bit reflected domain.
+ */
+ v0 = (__vector unsigned long long)vec_sld(
+ (__vector unsigned char)v0, (__vector unsigned char)vzero, 4);
+ v1 = (__vector unsigned long long)vec_sld(
+ (__vector unsigned char)v1, (__vector unsigned char)vzero, 4);
+ v2 = (__vector unsigned long long)vec_sld(
+ (__vector unsigned char)v2, (__vector unsigned char)vzero, 4);
+ v3 = (__vector unsigned long long)vec_sld(
+ (__vector unsigned char)v3, (__vector unsigned char)vzero, 4);
+ v4 = (__vector unsigned long long)vec_sld(
+ (__vector unsigned char)v4, (__vector unsigned char)vzero, 4);
+ v5 = (__vector unsigned long long)vec_sld(
+ (__vector unsigned char)v5, (__vector unsigned char)vzero, 4);
+ v6 = (__vector unsigned long long)vec_sld(
+ (__vector unsigned char)v6, (__vector unsigned char)vzero, 4);
+ v7 = (__vector unsigned long long)vec_sld(
+ (__vector unsigned char)v7, (__vector unsigned char)vzero, 4);
+#endif
+
+ /* xor with the last 1024 bits. */
+ va0 = vec_ld(0, (__vector unsigned long long *)p);
+ VEC_PERM(va0, va0, va0, vperm_const);
+
+ va1 = vec_ld(16, (__vector unsigned long long *)p);
+ VEC_PERM(va1, va1, va1, vperm_const);
+
+ va2 = vec_ld(32, (__vector unsigned long long *)p);
+ VEC_PERM(va2, va2, va2, vperm_const);
+
+ va3 = vec_ld(48, (__vector unsigned long long *)p);
+ VEC_PERM(va3, va3, va3, vperm_const);
+
+ va4 = vec_ld(64, (__vector unsigned long long *)p);
+ VEC_PERM(va4, va4, va4, vperm_const);
+
+ va5 = vec_ld(80, (__vector unsigned long long *)p);
+ VEC_PERM(va5, va5, va5, vperm_const);
+
+ va6 = vec_ld(96, (__vector unsigned long long *)p);
+ VEC_PERM(va6, va6, va6, vperm_const);
+
+ va7 = vec_ld(112, (__vector unsigned long long *)p);
+ VEC_PERM(va7, va7, va7, vperm_const);
+
+ p = (char *)p + 128;
+
+ vdata0 = vec_xor(v0, va0);
+ vdata1 = vec_xor(v1, va1);
+ vdata2 = vec_xor(v2, va2);
+ vdata3 = vec_xor(v3, va3);
+ vdata4 = vec_xor(v4, va4);
+ vdata5 = vec_xor(v5, va5);
+ vdata6 = vec_xor(v6, va6);
+ vdata7 = vec_xor(v7, va7);
+
+ /* Check if we have more blocks to process */
+ next_block = 0;
+ if (length != 0) {
+ next_block = 1;
+
+ /* zero v0-v7 */
+ v0 = vec_xor(v0, v0);
+ v1 = vec_xor(v1, v1);
+ v2 = vec_xor(v2, v2);
+ v3 = vec_xor(v3, v3);
+ v4 = vec_xor(v4, v4);
+ v5 = vec_xor(v5, v5);
+ v6 = vec_xor(v6, v6);
+ v7 = vec_xor(v7, v7);
+ }
+ length = length + 128;
+
+ } while (next_block);
+
+ /* Calculate how many bytes we have left. */
+ length = (len & 127);
+
+ /* Calculate where in (short) constant table we need to start. */
+ offset = 128 - length;
+
+ v0 = vec_ld(offset, vcrc_short_const);
+ v1 = vec_ld(offset + 16, vcrc_short_const);
+ v2 = vec_ld(offset + 32, vcrc_short_const);
+ v3 = vec_ld(offset + 48, vcrc_short_const);
+ v4 = vec_ld(offset + 64, vcrc_short_const);
+ v5 = vec_ld(offset + 80, vcrc_short_const);
+ v6 = vec_ld(offset + 96, vcrc_short_const);
+ v7 = vec_ld(offset + 112, vcrc_short_const);
+
+ offset += 128;
+
+ v0 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
+ (__vector unsigned int)vdata0, (__vector unsigned int)v0);
+ v1 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
+ (__vector unsigned int)vdata1, (__vector unsigned int)v1);
+ v2 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
+ (__vector unsigned int)vdata2, (__vector unsigned int)v2);
+ v3 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
+ (__vector unsigned int)vdata3, (__vector unsigned int)v3);
+ v4 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
+ (__vector unsigned int)vdata4, (__vector unsigned int)v4);
+ v5 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
+ (__vector unsigned int)vdata5, (__vector unsigned int)v5);
+ v6 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
+ (__vector unsigned int)vdata6, (__vector unsigned int)v6);
+ v7 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
+ (__vector unsigned int)vdata7, (__vector unsigned int)v7);
+
+ /* Now reduce the tail (0-112 bytes). */
+ for (i = 0; i < length; i += 16) {
+ vdata0 = vec_ld(i, (__vector unsigned long long *)p);
+ VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
+ va0 = vec_ld(offset + i, vcrc_short_const);
+ va0 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
+ (__vector unsigned int)vdata0, (__vector unsigned int)va0);
+ v0 = vec_xor(v0, va0);
+ }
+
+ /* xor all parallel chunks together. */
+ v0 = vec_xor(v0, v1);
+ v2 = vec_xor(v2, v3);
+ v4 = vec_xor(v4, v5);
+ v6 = vec_xor(v6, v7);
+
+ v0 = vec_xor(v0, v2);
+ v4 = vec_xor(v4, v6);
+
+ v0 = vec_xor(v0, v4);
+ }
+
+ /* Barrett Reduction */
+ vconst1 = vec_ld(0, v_Barrett_const);
+ vconst2 = vec_ld(16, v_Barrett_const);
+
+ v1 = (__vector unsigned long long)vec_sld(
+ (__vector unsigned char)v0, (__vector unsigned char)v0, 8);
+ v0 = vec_xor(v1, v0);
+
+#ifdef REFLECT
+ /* shift left one bit */
+ vsht_splat = vec_splat_u8(1);
+ v0 = (__vector unsigned long long)vec_sll((__vector unsigned char)v0, vsht_splat);
+#endif
+
+ v0 = vec_and(v0, vmask_64bit);
+
+#ifndef REFLECT
+
+ /*
+ * Now for the actual algorithm. The idea is to calculate q, the multiple of our polynomial that
+ * we need to subtract. By doing the computation 2x bits higher (ie 64 bits) and shifting the
+ * result back down 2x bits, we round down to the nearest multiple.
+ */
+
+ /* ma */
+ v1 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)v0, (__vector unsigned long long)vconst1);
+ /* q = floor(ma/(2^64)) */
+ v1 = (__vector unsigned long long)vec_sld(
+ (__vector unsigned char)vzero, (__vector unsigned char)v1, 8);
+ /* qn */
+ v1 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)v1, (__vector unsigned long long)vconst2);
+ /* a - qn, subtraction is xor in GF(2) */
+ v0 = vec_xor(v0, v1);
+ /*
+ * Get the result into r3. We need to shift it left 8 bytes: V0 [ 0 1 2 X ] V0 [ 0 X 2 3 ]
+ */
+ result = __builtin_unpack_vector_1(v0);
+#else
+
+ /*
+ * The reflected version of Barrett reduction. Instead of bit reflecting our data (which is
+ * expensive to do), we bit reflect our constants and our algorithm, which means the
+ * intermediate data in our vector registers goes from 0-63 instead of 63-0. We can reflect the
+ * algorithm because we don't carry in mod 2 arithmetic.
+ */
+
+ /* bottom 32 bits of a */
+ v1 = vec_and(v0, vmask_32bit);
+
+ /* ma */
+ v1 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)v1, (__vector unsigned long long)vconst1);
+
+ /* bottom 32bits of ma */
+ v1 = vec_and(v1, vmask_32bit);
+ /* qn */
+ v1 = __builtin_crypto_vpmsumd(
+ (__vector unsigned long long)v1, (__vector unsigned long long)vconst2);
+ /* a - qn, subtraction is xor in GF(2) */
+ v0 = vec_xor(v0, v1);
+
+ /*
+ * Since we are bit reflected, the result (ie the low 32 bits) is in the high 32 bits. We just
+ * need to shift it left 4 bytes V0 [ 0 1 X 3 ] V0 [ 0 X 2 3 ]
+ */
+
+ /* shift result into top 64 bits of */
+ v0 = (__vector unsigned long long)vec_sld(
+ (__vector unsigned char)v0, (__vector unsigned char)vzero, 4);
+
+ result = __builtin_unpack_vector_0(v0);
+#endif
+
+ return result;
+}
+#endif