// geo2d.cpp
/**
* Copyright (C) 2008 10gen Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License, version 3,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see .
*/
#include "pch.h"
#include "../namespace-inl.h"
#include "../jsobj.h"
#include "../index.h"
#include "../../util/unittest.h"
#include "../commands.h"
#include "../pdfile.h"
#include "../btree.h"
#include "../curop-inl.h"
#include "../matcher.h"
#include "core.h"
// Note: we use indexinterface herein to talk to the btree code. In the future it would be nice to
// be able to use the V1 key class (see key.h) instead of toBson() which has some cost.
// toBson() is new with v1 so this could be slower than it used to be? a quick profiling
// might make sense.
namespace mongo {
class GeoKeyNode {
GeoKeyNode();
public:
GeoKeyNode(DiskLoc r, BSONObj k) : recordLoc(r), _key(k) { }
const DiskLoc recordLoc;
const BSONObj _key;
};
// just use old indexes for geo for now. todo.
// typedef BtreeBucket GeoBtreeBucket;
// typedef GeoBtreeBucket::KeyNode GeoKeyNode;
//#define BTREE btree
#if 0
# define GEODEBUGGING
# define GEODEBUG(x) cout << x << endl;
# define GEODEBUGPRINT(x) PRINT(x)
inline void PREFIXDEBUG(GeoHash prefix, const GeoConvert* g) {
if (!prefix.constrains()) {
cout << "\t empty prefix" << endl;
return ;
}
Point ll (g, prefix); // lower left
prefix.move(1,1);
Point tr (g, prefix); // top right
Point center ( (ll._x+tr._x)/2, (ll._y+tr._y)/2 );
double radius = fabs(ll._x - tr._x) / 2;
cout << "\t ll: " << ll.toString() << " tr: " << tr.toString()
<< " center: " << center.toString() << " radius: " << radius << endl;
}
#else
# define GEODEBUG(x)
# define GEODEBUGPRINT(x)
# define PREFIXDEBUG(x, y)
#endif
const double EARTH_RADIUS_KM = 6371;
const double EARTH_RADIUS_MILES = EARTH_RADIUS_KM * 0.621371192;
enum GeoDistType {
GEO_PLAIN,
GEO_SPHERE
};
inline double computeXScanDistance(double y, double maxDistDegrees) {
// TODO: this overestimates for large madDistDegrees far from the equator
return maxDistDegrees / min(cos(deg2rad(min(+89.0, y + maxDistDegrees))),
cos(deg2rad(max(-89.0, y - maxDistDegrees))));
}
GeoBitSets geoBitSets;
const string GEO2DNAME = "2d";
class Geo2dType : public IndexType , public GeoConvert {
public:
virtual ~Geo2dType() { }
Geo2dType( const IndexPlugin * plugin , const IndexSpec* spec )
: IndexType( plugin , spec ) {
BSONObjBuilder orderBuilder;
BSONObjIterator i( spec->keyPattern );
while ( i.more() ) {
BSONElement e = i.next();
if ( e.type() == String && GEO2DNAME == e.valuestr() ) {
uassert( 13022 , "can't have 2 geo field" , _geo.size() == 0 );
uassert( 13023 , "2d has to be first in index" , _other.size() == 0 );
_geo = e.fieldName();
}
else {
_other.push_back( e.fieldName() );
}
orderBuilder.append( "" , 1 );
}
uassert( 13024 , "no geo field specified" , _geo.size() );
double bits = _configval( spec , "bits" , 26 ); // for lat/long, ~ 1ft
uassert( 13028 , "bits in geo index must be between 1 and 32" , bits > 0 && bits <= 32 );
_bits = (unsigned) bits;
_max = _configval( spec , "max" , 180.0 );
_min = _configval( spec , "min" , -180.0 );
double numBuckets = (1024 * 1024 * 1024 * 4.0);
_scaling = numBuckets / ( _max - _min );
_order = orderBuilder.obj();
GeoHash a(0, 0, _bits);
GeoHash b = a;
b.move(1, 1);
// Epsilon is 1/100th of a bucket size
// TODO: Can we actually find error bounds for the sqrt function?
double epsilon = 0.001 / _scaling;
_error = distance(a, b) + epsilon;
// Error in radians
_errorSphere = deg2rad( _error );
}
double _configval( const IndexSpec* spec , const string& name , double def ) {
BSONElement e = spec->info[name];
if ( e.isNumber() ) {
return e.numberDouble();
}
return def;
}
virtual BSONObj fixKey( const BSONObj& in ) {
if ( in.firstElement().type() == BinData )
return in;
BSONObjBuilder b(in.objsize()+16);
if ( in.firstElement().isABSONObj() )
_hash( in.firstElement().embeddedObject() ).append( b , "" );
else if ( in.firstElement().type() == String )
GeoHash( in.firstElement().valuestr() ).append( b , "" );
else if ( in.firstElement().type() == RegEx )
GeoHash( in.firstElement().regex() ).append( b , "" );
else
return in;
BSONObjIterator i(in);
i.next();
while ( i.more() )
b.append( i.next() );
return b.obj();
}
/** Finds the key objects to put in an index */
virtual void getKeys( const BSONObj& obj, BSONObjSet& keys ) const {
getKeys( obj, &keys, NULL );
}
/** Finds all locations in a geo-indexed object */
// TODO: Can we just return references to the locs, if they won't change?
void getKeys( const BSONObj& obj, vector< BSONObj >& locs ) const {
getKeys( obj, NULL, &locs );
}
/** Finds the key objects and/or locations for a geo-indexed object */
void getKeys( const BSONObj &obj, BSONObjSet* keys, vector< BSONObj >* locs ) const {
BSONElementMSet bSet;
// Get all the nested location fields, but don't return individual elements from
// the last array, if it exists.
obj.getFieldsDotted(_geo.c_str(), bSet, false);
if( bSet.empty() )
return;
for( BSONElementMSet::iterator setI = bSet.begin(); setI != bSet.end(); ++setI ) {
BSONElement geo = *setI;
GEODEBUG( "Element " << geo << " found for query " << _geo.c_str() );
if ( geo.eoo() || ! geo.isABSONObj() )
continue;
//
// Grammar for location lookup:
// locs ::= [loc,loc,...,loc]|{:loc,:loc}|loc
// loc ::= { : #, : # }|[#, #]|{}
//
// Empty locations are ignored, preserving single-location semantics
//
BSONObj embed = geo.embeddedObject();
if ( embed.isEmpty() )
continue;
// Differentiate between location arrays and locations
// by seeing if the first element value is a number
bool singleElement = embed.firstElement().isNumber();
BSONObjIterator oi(embed);
while( oi.more() ) {
BSONObj locObj;
if( singleElement ) locObj = embed;
else {
BSONElement locElement = oi.next();
uassert( 13654, str::stream() << "location object expected, location array not in correct format",
locElement.isABSONObj() );
locObj = locElement.embeddedObject();
if( locObj.isEmpty() )
continue;
}
BSONObjBuilder b(64);
// Remember the actual location object if needed
if( locs )
locs->push_back( locObj );
// Stop if we don't need to get anything but location objects
if( ! keys ) {
if( singleElement ) break;
else continue;
}
_hash( locObj ).append( b , "" );
// Go through all the other index keys
for ( vector::const_iterator i = _other.begin(); i != _other.end(); ++i ) {
// Get *all* fields for the index key
BSONElementSet eSet;
obj.getFieldsDotted( *i, eSet );
if ( eSet.size() == 0 )
b.appendAs( _spec->missingField(), "" );
else if ( eSet.size() == 1 )
b.appendAs( *(eSet.begin()), "" );
else {
// If we have more than one key, store as an array of the objects
BSONArrayBuilder aBuilder;
for( BSONElementSet::iterator ei = eSet.begin(); ei != eSet.end(); ++ei ) {
aBuilder.append( *ei );
}
BSONArray arr = aBuilder.arr();
b.append( "", arr );
}
}
keys->insert( b.obj() );
if( singleElement ) break;
}
}
}
BSONObj _fromBSONHash( const BSONElement& e ) const {
return _unhash( _tohash( e ) );
}
BSONObj _fromBSONHash( const BSONObj& o ) const {
return _unhash( _tohash( o.firstElement() ) );
}
GeoHash _tohash( const BSONElement& e ) const {
if ( e.isABSONObj() )
return _hash( e.embeddedObject() );
return GeoHash( e , _bits );
}
GeoHash _hash( const BSONObj& o ) const {
BSONObjIterator i(o);
uassert( 13067 , "geo field is empty" , i.more() );
BSONElement x = i.next();
uassert( 13068 , "geo field only has 1 element" , i.more() );
BSONElement y = i.next();
uassert( 13026 , "geo values have to be numbers: " + o.toString() , x.isNumber() && y.isNumber() );
return hash( x.number() , y.number() );
}
GeoHash hash( const Point& p ) const {
return hash( p._x, p._y );
}
GeoHash hash( double x , double y ) const {
return GeoHash( _convert(x), _convert(y) , _bits );
}
BSONObj _unhash( const GeoHash& h ) const {
unsigned x , y;
h.unhash( x , y );
BSONObjBuilder b;
b.append( "x" , _unconvert( x ) );
b.append( "y" , _unconvert( y ) );
return b.obj();
}
unsigned _convert( double in ) const {
uassert( 13027 , str::stream() << "point not in interval of [ " << _min << ", " << _max << " )", in < _max && in >= _min );
in -= _min;
assert( in >= 0 );
return (unsigned)(in * _scaling);
}
double _unconvert( unsigned in ) const {
double x = in;
x /= _scaling;
x += _min;
return x;
}
void unhash( const GeoHash& h , double& x , double& y ) const {
unsigned a,b;
h.unhash(a,b);
x = _unconvert( a );
y = _unconvert( b );
}
double distance( const GeoHash& a , const GeoHash& b ) const {
double ax,ay,bx,by;
unhash( a , ax , ay );
unhash( b , bx , by );
double dx = bx - ax;
double dy = by - ay;
return sqrt( ( dx * dx ) + ( dy * dy ) );
}
double sizeDiag( const GeoHash& a ) const {
GeoHash b = a;
b.move( 1 , 1 );
return distance( a , b );
}
double sizeEdge( const GeoHash& a ) const {
if( ! a.constrains() )
return _max - _min;
double ax,ay,bx,by;
GeoHash b = a;
b.move( 1 , 1 );
unhash( a, ax, ay );
unhash( b, bx, by );
// _min and _max are a singularity
if (bx == _min)
bx = _max;
return (fabs(ax-bx));
}
const IndexDetails* getDetails() const {
return _spec->getDetails();
}
virtual shared_ptr newCursor( const BSONObj& query , const BSONObj& order , int numWanted ) const;
virtual IndexSuitability suitability( const BSONObj& query , const BSONObj& order ) const {
BSONElement e = query.getFieldDotted(_geo.c_str());
switch ( e.type() ) {
case Object: {
BSONObj sub = e.embeddedObject();
switch ( sub.firstElement().getGtLtOp() ) {
case BSONObj::opNEAR:
case BSONObj::opWITHIN:
return OPTIMAL;
default:
// We can try to match if there's no other indexing defined,
// this is assumed a point
return HELPFUL;
}
}
case Array:
// We can try to match if there's no other indexing defined,
// this is assumed a point
return HELPFUL;
default:
return USELESS;
}
}
string _geo;
vector _other;
unsigned _bits;
double _max;
double _min;
double _scaling;
BSONObj _order;
double _error;
double _errorSphere;
};
class Box {
public:
Box( const Geo2dType * g , const GeoHash& hash )
: _min( g , hash ) ,
_max( _min._x + g->sizeEdge( hash ) , _min._y + g->sizeEdge( hash ) ) {
}
Box( double x , double y , double size )
: _min( x , y ) ,
_max( x + size , y + size ) {
}
Box( Point min , Point max )
: _min( min ) , _max( max ) {
}
Box() {}
BSONArray toBSON() const {
return BSON_ARRAY( BSON_ARRAY( _min._x << _min._y ) << BSON_ARRAY( _max._x << _max._y ) );
}
string toString() const {
StringBuilder buf(64);
buf << _min.toString() << " -->> " << _max.toString();
return buf.str();
}
bool between( double min , double max , double val , double fudge=0) const {
return val + fudge >= min && val <= max + fudge;
}
bool onBoundary( double bound, double val, double fudge = 0 ) const {
return ( val >= bound - fudge && val <= bound + fudge );
}
bool mid( double amin , double amax , double bmin , double bmax , bool min , double& res ) const {
assert( amin <= amax );
assert( bmin <= bmax );
if ( amin < bmin ) {
if ( amax < bmin )
return false;
res = min ? bmin : amax;
return true;
}
if ( amin > bmax )
return false;
res = min ? amin : bmax;
return true;
}
double intersects( const Box& other ) const {
Point boundMin(0,0);
Point boundMax(0,0);
if ( mid( _min._x , _max._x , other._min._x , other._max._x , true , boundMin._x ) == false ||
mid( _min._x , _max._x , other._min._x , other._max._x , false , boundMax._x ) == false ||
mid( _min._y , _max._y , other._min._y , other._max._y , true , boundMin._y ) == false ||
mid( _min._y , _max._y , other._min._y , other._max._y , false , boundMax._y ) == false )
return 0;
Box intersection( boundMin , boundMax );
return intersection.area() / area();
}
double area() const {
return ( _max._x - _min._x ) * ( _max._y - _min._y );
}
double maxDim() const {
return max( _max._x - _min._x, _max._y - _min._y );
}
Point center() const {
return Point( ( _min._x + _max._x ) / 2 ,
( _min._y + _max._y ) / 2 );
}
bool onBoundary( Point p, double fudge = 0 ) {
return onBoundary( _min._x, p._x, fudge ) ||
onBoundary( _max._x, p._x, fudge ) ||
onBoundary( _min._y, p._y, fudge ) ||
onBoundary( _max._y, p._y, fudge );
}
bool inside( Point p , double fudge = 0 ) {
bool res = inside( p._x , p._y , fudge );
//cout << "is : " << p.toString() << " in " << toString() << " = " << res << endl;
return res;
}
bool inside( double x , double y , double fudge = 0 ) {
return
between( _min._x , _max._x , x , fudge ) &&
between( _min._y , _max._y , y , fudge );
}
bool contains(const Box& other, double fudge=0) {
return inside(other._min, fudge) && inside(other._max, fudge);
}
Point _min;
Point _max;
};
class Polygon {
public:
Polygon( void ) : _centroidCalculated( false ) {}
Polygon( vector points ) : _centroidCalculated( false ),
_points( points ) { }
void add( Point p ) {
_centroidCalculated = false;
_points.push_back( p );
}
int size( void ) const {
return _points.size();
}
/**
* Determine if the point supplied is contained by the current polygon.
*
* The algorithm uses a ray casting method.
*/
bool contains( const Point& p ) const {
return contains( p, 0 ) > 0;
}
int contains( const Point &p, double fudge ) const {
Box fudgeBox( Point( p._x - fudge, p._y - fudge ), Point( p._x + fudge, p._y + fudge ) );
int counter = 0;
Point p1 = _points[0];
for ( int i = 1; i <= size(); i++ ) {
Point p2 = _points[i % size()];
GEODEBUG( "Doing intersection check of " << fudgeBox.toString() << " with seg " << p1.toString() << " to " << p2.toString() );
// We need to check whether or not this segment intersects our error box
if( fudge > 0 &&
// Points not too far below box
fudgeBox._min._y <= std::max( p1._y, p2._y ) &&
// Points not too far above box
fudgeBox._max._y >= std::min( p1._y, p2._y ) &&
// Points not too far to left of box
fudgeBox._min._x <= std::max( p1._x, p2._x ) &&
// Points not too far to right of box
fudgeBox._max._x >= std::min( p1._x, p2._x ) ) {
GEODEBUG( "Doing detailed check" );
// If our box contains one or more of these points, we need to do an exact check.
if( fudgeBox.inside(p1) ) {
GEODEBUG( "Point 1 inside" );
return 0;
}
if( fudgeBox.inside(p2) ) {
GEODEBUG( "Point 2 inside" );
return 0;
}
// Do intersection check for vertical sides
if ( p1._y != p2._y ) {
double invSlope = ( p2._x - p1._x ) / ( p2._y - p1._y );
double xintersT = ( fudgeBox._max._y - p1._y ) * invSlope + p1._x;
if( fudgeBox._min._x <= xintersT && fudgeBox._max._x >= xintersT ) {
GEODEBUG( "Top intersection @ " << xintersT );
return 0;
}
double xintersB = ( fudgeBox._min._y - p1._y ) * invSlope + p1._x;
if( fudgeBox._min._x <= xintersB && fudgeBox._max._x >= xintersB ) {
GEODEBUG( "Bottom intersection @ " << xintersB );
return 0;
}
}
// Do intersection check for horizontal sides
if( p1._x != p2._x ) {
double slope = ( p2._y - p1._y ) / ( p2._x - p1._x );
double yintersR = ( p1._x - fudgeBox._max._x ) * slope + p1._y;
if( fudgeBox._min._y <= yintersR && fudgeBox._max._y >= yintersR ) {
GEODEBUG( "Right intersection @ " << yintersR );
return 0;
}
double yintersL = ( p1._x - fudgeBox._min._x ) * slope + p1._y;
if( fudgeBox._min._y <= yintersL && fudgeBox._max._y >= yintersL ) {
GEODEBUG( "Left intersection @ " << yintersL );
return 0;
}
}
}
else if( fudge == 0 ){
if( p._y == p1._y && p._x == p1._x ) return true;
else if( p._y == p2._y && p._x == p2._x ) return true;
}
// Normal intersection test.
// TODO: Invert these for clearer logic?
if ( p._y > std::min( p1._y, p2._y ) ) {
if ( p._y <= std::max( p1._y, p2._y ) ) {
if ( p._x <= std::max( p1._x, p2._x ) ) {
if ( p1._y != p2._y ) {
double xinters = (p._y-p1._y)*(p2._x-p1._x)/(p2._y-p1._y)+p1._x;
if ( p1._x == p2._x || p._x <= xinters ) {
counter++;
}
}
}
}
}
p1 = p2;
}
if ( counter % 2 == 0 ) {
return -1;
}
else {
return 1;
}
}
/**
* Calculate the centroid, or center of mass of the polygon object.
*/
Point centroid( void ) {
/* Centroid is cached, it won't change betwen points */
if ( _centroidCalculated ) {
return _centroid;
}
Point cent;
double signedArea = 0.0;
double area = 0.0; // Partial signed area
/// For all vertices except last
int i = 0;
for ( i = 0; i < size() - 1; ++i ) {
area = _points[i]._x * _points[i+1]._y - _points[i+1]._x * _points[i]._y ;
signedArea += area;
cent._x += ( _points[i]._x + _points[i+1]._x ) * area;
cent._y += ( _points[i]._y + _points[i+1]._y ) * area;
}
// Do last vertex
area = _points[i]._x * _points[0]._y - _points[0]._x * _points[i]._y;
cent._x += ( _points[i]._x + _points[0]._x ) * area;
cent._y += ( _points[i]._y + _points[0]._y ) * area;
signedArea += area;
signedArea *= 0.5;
cent._x /= ( 6 * signedArea );
cent._y /= ( 6 * signedArea );
_centroidCalculated = true;
_centroid = cent;
return cent;
}
Box bounds( void ) {
// TODO: Cache this
_bounds._max = _points[0];
_bounds._min = _points[0];
for ( int i = 1; i < size(); i++ ) {
_bounds._max._x = max( _bounds._max._x, _points[i]._x );
_bounds._max._y = max( _bounds._max._y, _points[i]._y );
_bounds._min._x = min( _bounds._min._x, _points[i]._x );
_bounds._min._y = min( _bounds._min._y, _points[i]._y );
}
return _bounds;
}
private:
bool _centroidCalculated;
Point _centroid;
Box _bounds;
vector _points;
};
class Geo2dPlugin : public IndexPlugin {
public:
Geo2dPlugin() : IndexPlugin( GEO2DNAME ) {
}
virtual IndexType* generate( const IndexSpec* spec ) const {
return new Geo2dType( this , spec );
}
} geo2dplugin;
void __forceLinkGeoPlugin() {
geo2dplugin.getName();
}
class GeoHopper;
class GeoPoint {
public:
GeoPoint() : _distance( -1 ), _exact( false )
{}
//// Distance not used ////
GeoPoint( const GeoKeyNode& node )
: _key( node._key ) , _loc( node.recordLoc ) , _o( node.recordLoc.obj() ), _distance( -1 ) , _exact( false ) {
}
//// Immediate initialization of distance ////
GeoPoint( const GeoKeyNode& node, double distance, bool exact )
: _key( node._key ) , _loc( node.recordLoc ) , _o( node.recordLoc.obj() ), _distance( distance ), _exact( exact ) {
}
GeoPoint( const GeoPoint& pt, double distance, bool exact )
: _key( pt.key() ) , _loc( pt.loc() ) , _o( pt.obj() ), _distance( distance ), _exact( exact ) {
}
bool operator<( const GeoPoint& other ) const {
if( _distance != other._distance ) return _distance < other._distance;
if( _exact != other._exact ) return _exact < other._exact;
return _loc < other._loc;
}
double distance() const {
return _distance;
}
bool isExact() const {
return _exact;
}
BSONObj key() const {
return _key;
}
DiskLoc loc() const {
return _loc;
}
BSONObj obj() const {
return _o;
}
bool isEmpty() {
return _o.isEmpty();
}
string toString() const {
return str::stream() << "Point from " << _o << " dist : " << _distance << ( _exact ? " (ex)" : " (app)" );
}
BSONObj _key;
DiskLoc _loc;
BSONObj _o;
double _distance;
bool _exact;
};
// GeoBrowse subclasses this
class GeoAccumulator {
public:
GeoAccumulator( const Geo2dType * g , const BSONObj& filter, bool uniqueDocs, bool needDistance )
: _g(g) ,
_keysChecked(0) ,
_lookedAt(0) ,
_matchesPerfd(0) ,
_objectsLoaded(0) ,
_pointsLoaded(0) ,
_found(0) ,
_uniqueDocs( uniqueDocs ) ,
_needDistance( needDistance )
{
if ( ! filter.isEmpty() ) {
_matcher.reset( new CoveredIndexMatcher( filter , g->keyPattern() ) );
GEODEBUG( "Matcher is now " << _matcher->docMatcher().toString() );
}
}
virtual ~GeoAccumulator() { }
/** Check if we've already looked at a key. ALSO marks as seen, anticipating a follow-up call
to add(). This is broken out to avoid some work extracting the key bson if it's an
already seen point.
*/
private:
set< pair > _seen;
public:
bool seen(DiskLoc bucket, int pos) {
_keysChecked++;
pair< set >::iterator, bool > seenBefore = _seen.insert( make_pair(bucket,pos) );
if ( ! seenBefore.second ) {
GEODEBUG( "\t\t\t\t already seen : " << bucket.toString() << ' ' << pos ); // node.key.toString() << " @ " << Point( _g, GeoHash( node.key.firstElement() ) ).toString() << " with " << node.recordLoc.obj()["_id"] );
return true;
}
return false;
}
enum KeyResult { BAD, BORDER, GOOD };
virtual void add( const GeoKeyNode& node ) {
GEODEBUG( "\t\t\t\t checking key " << node._key.toString() )
_lookedAt++;
////
// Approximate distance check using key data
////
double keyD = 0;
Point keyP( _g, GeoHash( node._key.firstElement(), _g->_bits ) );
KeyResult keyOk = approxKeyCheck( keyP, keyD );
if ( keyOk == BAD ) {
GEODEBUG( "\t\t\t\t bad distance : " << node.recordLoc.obj() << "\t" << keyD );
return;
}
GEODEBUG( "\t\t\t\t good distance : " << node.recordLoc.obj() << "\t" << keyD );
////
// Check for match using other key (and potentially doc) criteria
////
// Remember match results for each object
map::iterator match = _matched.find( node.recordLoc );
bool newDoc = match == _matched.end();
if( newDoc ) {
GEODEBUG( "\t\t\t\t matching new doc with " << (_matcher ? _matcher->docMatcher().toString() : "(empty)" ) );
// matcher
MatchDetails details;
if ( _matcher.get() ) {
bool good = _matcher->matchesWithSingleKeyIndex( node._key , node.recordLoc , &details );
_matchesPerfd++;
if ( details._loadedObject )
_objectsLoaded++;
if ( ! good ) {
GEODEBUG( "\t\t\t\t didn't match : " << node.recordLoc.obj()["_id"] );
_matched[ node.recordLoc ] = false;
return;
}
}
_matched[ node.recordLoc ] = true;
if ( ! details._loadedObject ) // don't double count
_objectsLoaded++;
}
else if( !((*match).second) ) {
GEODEBUG( "\t\t\t\t previously didn't match : " << node.recordLoc.obj()["_id"] );
return;
}
////
// Exact check with particular data fields
////
// Can add multiple points
int diff = addSpecific( node , keyP, keyOk == BORDER, keyD, newDoc );
if( diff > 0 ) _found += diff;
else _found -= -diff;
}
virtual void getPointsFor( const BSONObj& key, const BSONObj& obj, vector< BSONObj >& locsForNode, bool allPoints = false ){
// Find all the location objects from the keys
vector< BSONObj > locs;
_g->getKeys( obj, allPoints ? locsForNode : locs );
_pointsLoaded++;
if( allPoints ) return;
if( locs.size() == 1 ){
locsForNode.push_back( locs[0] );
return;
}
// Find the particular location we want
GeoHash keyHash( key.firstElement(), _g->_bits );
// log() << "Hash: " << node.key << " and " << keyHash.getHash() << " unique " << _uniqueDocs << endl;
for( vector< BSONObj >::iterator i = locs.begin(); i != locs.end(); ++i ) {
// Ignore all locations not hashed to the key's hash, since we may see
// those later
if( _g->_hash( *i ) != keyHash ) continue;
locsForNode.push_back( *i );
}
}
virtual int addSpecific( const GeoKeyNode& node, const Point& p , bool inBounds, double d, bool newDoc ) = 0;
virtual KeyResult approxKeyCheck( const Point& p , double& keyD ) = 0;
virtual bool exactDocCheck( const Point& p , double& d ) = 0;
virtual bool expensiveExactCheck(){ return false; }
long long found() const {
return _found;
}
const Geo2dType * _g;
map _matched;
shared_ptr _matcher;
long long _keysChecked;
long long _lookedAt;
long long _matchesPerfd;
long long _objectsLoaded;
long long _pointsLoaded;
long long _found;
bool _uniqueDocs;
bool _needDistance;
};
struct BtreeLocation {
BtreeLocation() : ii(0) { }
IndexInterface *ii;
int pos;
bool found;
DiskLoc bucket;
BSONObj key() {
if ( bucket.isNull() )
return BSONObj();
return ii->keyAt(bucket, pos);
//return bucket.btree()->keyNode( pos ).key.toBson();
}
bool hasPrefix( const GeoHash& hash ) {
BSONObj k = key();
BSONElement e = k.firstElement();
if ( e.eoo() )
return false;
return GeoHash( e ).hasPrefix( hash );
}
bool advance( int direction , int& totalFound , GeoAccumulator* all ) {
if ( bucket.isNull() )
return false;
bucket = ii->advance( bucket , pos , direction , "btreelocation" );
if ( all )
return checkCur( totalFound , all );
return ! bucket.isNull();
}
bool checkCur( int& totalFound , GeoAccumulator* all ) {
if ( bucket.isNull() )
return false;
if ( ii->isUsed(bucket, pos) ) {
totalFound++;
if( !all->seen(bucket, pos) ) {
BSONObj o;
DiskLoc recLoc;
ii->keyAt(bucket, pos, o, recLoc);
GeoKeyNode n(recLoc, o);
all->add(n);
}
}
else {
GEODEBUG( "\t\t\t\t not used: " << key() );
}
return true;
}
string toString() {
stringstream ss;
ss << "bucket: " << bucket.toString() << " pos: " << pos << " found: " << found;
return ss.str();
}
// Returns the min and max keys which bound a particular location.
// The only time these may be equal is when we actually equal the location
// itself, otherwise our expanding algorithm will fail.
static bool initial( const IndexDetails& id , const Geo2dType * spec ,
BtreeLocation& min , BtreeLocation& max ,
GeoHash start ,
int & found , GeoAccumulator * hopper ) {
Ordering ordering = Ordering::make(spec->_order);
IndexInterface *ii = &id.idxInterface();
min.ii = ii;
max.ii = ii;
min.bucket = ii->locate( id , id.head , start.wrap() ,
ordering , min.pos , min.found , minDiskLoc, -1 );
if (hopper) min.checkCur( found , hopper );
// TODO: Might be able to avoid doing a full lookup in some cases here,
// but would add complexity and we're hitting pretty much the exact same data.
// Cannot set this = min in general, however.
max.bucket = ii->locate( id , id.head , start.wrap() ,
ordering , max.pos , max.found , minDiskLoc, 1 );
if (hopper) max.checkCur( found , hopper );
return ! min.bucket.isNull() || ! max.bucket.isNull();
}
};
class GeoCursorBase : public Cursor {
public:
static const shared_ptr< CoveredIndexMatcher > emptyMatcher;
GeoCursorBase( const Geo2dType * spec )
: _spec( spec ), _id( _spec->getDetails() ) {
}
virtual DiskLoc refLoc() { return DiskLoc(); }
virtual BSONObj indexKeyPattern() {
return _spec->keyPattern();
}
virtual void noteLocation() {
// no-op since these are meant to be safe
}
/* called before query getmore block is iterated */
virtual void checkLocation() {
// no-op since these are meant to be safe
}
virtual bool supportGetMore() { return false; }
virtual bool supportYields() { return false; }
virtual bool getsetdup(DiskLoc loc) { return false; }
virtual bool modifiedKeys() const { return true; }
virtual bool isMultiKey() const { return false; }
const Geo2dType * _spec;
const IndexDetails * _id;
};
const shared_ptr< CoveredIndexMatcher > GeoCursorBase::emptyMatcher( new CoveredIndexMatcher( BSONObj(), BSONObj(), false ) );
// TODO: Pull out the cursor bit from the browse, have GeoBrowse as field of cursor to clean up
// this hierarchy a bit. Also probably useful to look at whether GeoAccumulator can be a member instead
// of a superclass.
class GeoBrowse : public GeoCursorBase , public GeoAccumulator {
public:
// The max points which should be added to an expanding box
static const int maxPointsHeuristic = 300;
// Expand states
enum State {
START ,
DOING_EXPAND ,
DONE_NEIGHBOR ,
DONE
} _state;
GeoBrowse( const Geo2dType * g , string type , BSONObj filter = BSONObj(), bool uniqueDocs = true, bool needDistance = false )
: GeoCursorBase( g ), GeoAccumulator( g , filter, uniqueDocs, needDistance ) ,
_type( type ) , _filter( filter ) , _firstCall(true), _nscanned(), _centerPrefix(0, 0, 0) {
// Set up the initial expand state
_state = START;
_neighbor = -1;
_foundInExp = 0;
}
virtual string toString() {
return (string)"GeoBrowse-" + _type;
}
virtual bool ok() {
bool first = _firstCall;
if ( _firstCall ) {
fillStack( maxPointsHeuristic );
_firstCall = false;
}
if ( ! _cur.isEmpty() || _stack.size() ) {
if ( first ) {
++_nscanned;
}
return true;
}
while ( moreToDo() ) {
fillStack( maxPointsHeuristic );
if ( ! _cur.isEmpty() ) {
if ( first ) {
++_nscanned;
}
return true;
}
}
return false;
}
virtual bool advance() {
_cur._o = BSONObj();
if ( _stack.size() ) {
_cur = _stack.front();
_stack.pop_front();
++_nscanned;
return true;
}
if ( ! moreToDo() )
return false;
while ( _cur.isEmpty() && moreToDo() )
fillStack( maxPointsHeuristic );
return ! _cur.isEmpty() && ++_nscanned;
}
virtual Record* _current() { assert(ok()); return _cur._loc.rec(); }
virtual BSONObj current() { assert(ok()); return _cur._o; }
virtual DiskLoc currLoc() { assert(ok()); return _cur._loc; }
virtual BSONObj currKey() const { return _cur._key; }
virtual CoveredIndexMatcher* matcher() const {
if( _matcher.get() ) return _matcher.get();
else return GeoCursorBase::emptyMatcher.get();
}
virtual shared_ptr< CoveredIndexMatcher > matcherPtr() const {
if( _matcher.get() ) return _matcher;
else return GeoCursorBase::emptyMatcher;
}
// Are we finished getting points?
virtual bool moreToDo() {
return _state != DONE;
}
virtual bool supportGetMore() { return true; }
// Fills the stack, but only checks a maximum number of maxToCheck points at a time.
// Further calls to this function will continue the expand/check neighbors algorithm.
virtual void fillStack( int maxToCheck, int maxToAdd = -1, bool onlyExpand = false ) {
#ifdef GEODEBUGGING
log() << "Filling stack with maximum of " << maxToCheck << ", state : " << (int) _state << endl;
#endif
if( maxToAdd < 0 ) maxToAdd = maxToCheck;
int maxFound = _foundInExp + maxToCheck;
assert( maxToCheck > 0 );
assert( maxFound > 0 );
assert( _found <= 0x7fffffff ); // conversion to int
int maxAdded = static_cast(_found) + maxToAdd;
assert( maxAdded >= 0 ); // overflow check
bool isNeighbor = _centerPrefix.constrains();
// Starting a box expansion
if ( _state == START ) {
// Get the very first hash point, if required
if( ! isNeighbor )
_prefix = expandStartHash();
GEODEBUG( "initializing btree" );
#ifdef GEODEBUGGING
log() << "Initializing from b-tree with hash of " << _prefix << " @ " << Box( _g, _prefix ) << endl;
#endif
if ( ! BtreeLocation::initial( *_id , _spec , _min , _max , _prefix , _foundInExp , this ) )
_state = isNeighbor ? DONE_NEIGHBOR : DONE;
else {
_state = DOING_EXPAND;
_lastPrefix.reset();
}
GEODEBUG( (_state == DONE_NEIGHBOR || _state == DONE ? "not initialized" : "initializedFig") );
}
// Doing the actual box expansion
if ( _state == DOING_EXPAND ) {
while ( true ) {
GEODEBUG( "box prefix [" << _prefix << "]" );
#ifdef GEODEBUGGING
if( _prefix.constrains() ) {
log() << "current expand box : " << Box( _g, _prefix ).toString() << endl;
}
else {
log() << "max expand box." << endl;
}
#endif
GEODEBUG( "expanding box points... ");
// Record the prefix we're actively exploring...
_expPrefix.reset( new GeoHash( _prefix ) );
// Find points inside this prefix
while ( _min.hasPrefix( _prefix ) && _min.advance( -1 , _foundInExp , this ) && _foundInExp < maxFound && _found < maxAdded );
while ( _max.hasPrefix( _prefix ) && _max.advance( 1 , _foundInExp , this ) && _foundInExp < maxFound && _found < maxAdded );
#ifdef GEODEBUGGING
log() << "finished expand, checked : " << ( maxToCheck - ( maxFound - _foundInExp ) )
<< " found : " << ( maxToAdd - ( maxAdded - _found ) )
<< " max : " << maxToCheck << " / " << maxToAdd << endl;
#endif
GEODEBUG( "finished expand, found : " << ( maxToAdd - ( maxAdded - _found ) ) );
if( _foundInExp >= maxFound || _found >= maxAdded ) return;
// We've searched this prefix fully, remember
_lastPrefix.reset( new GeoHash( _prefix ));
// If we've searched the entire space, we're finished.
if ( ! _prefix.constrains() ) {
GEODEBUG( "box exhausted" );
_state = DONE;
notePrefix();
return;
}
// If we won't fit in the box, and we're not doing a sub-scan, increase the size
if ( ! fitsInBox( _g->sizeEdge( _prefix ) ) && _fringe.size() <= 1 ) {
// If we're still not expanded bigger than the box size, expand again
// TODO: Is there an advantage to scanning prior to expanding?
_prefix = _prefix.up();
continue;
}
// We're done and our size is large enough
_state = DONE_NEIGHBOR;
// Go to the next sub-box, if applicable
if( _fringe.size() > 0 ) _fringe.pop_back();
// Go to the next neighbor if this was the last sub-search
if( _fringe.size() == 0 ) _neighbor++;
break;
}
notePrefix();
}
// If we doeighbors
if( onlyExpand ) return;
// If we're done expanding the current box...
if( _state == DONE_NEIGHBOR ) {
// Iterate to the next neighbor
// Loop is useful for cases where we want to skip over boxes entirely,
// otherwise recursion increments the neighbors.
for ( ; _neighbor < 9; _neighbor++ ) {
// If we have no fringe for the neighbor, make sure we have the default fringe
if( _fringe.size() == 0 ) _fringe.push_back( "" );
if( ! isNeighbor ) {
_centerPrefix = _prefix;
_centerBox = Box( _g, _centerPrefix );
isNeighbor = true;
}
int i = (_neighbor / 3) - 1;
int j = (_neighbor % 3) - 1;
if ( ( i == 0 && j == 0 ) ||
( i < 0 && _centerBox._min._x <= _g->_min ) ||
( j < 0 && _centerBox._min._y <= _g->_min ) ||
( i > 0 && _centerBox._max._x >= _g->_max ) ||
( j > 0 && _centerBox._max._y >= _g->_max ) ) {
continue; // main box or wrapped edge
// TODO: We may want to enable wrapping in future, probably best as layer on top of
// this search.
}
// Make sure we've got a reasonable center
assert( _centerPrefix.constrains() );
GeoHash _neighborPrefix = _centerPrefix;
_neighborPrefix.move( i, j );
GEODEBUG( "moving to " << i << " , " << j << " fringe : " << _fringe.size() );
PREFIXDEBUG( _centerPrefix, _g );
PREFIXDEBUG( _neighborPrefix , _g );
while( _fringe.size() > 0 ) {
_prefix = _neighborPrefix + _fringe.back();
Box cur( _g , _prefix );
PREFIXDEBUG( _prefix, _g );
double intAmt = intersectsBox( cur );
// No intersection
if( intAmt <= 0 ) {
GEODEBUG( "skipping box" << cur.toString() );
_fringe.pop_back();
continue;
}
// Large intersection, refine search
else if( intAmt > 0.5 && _prefix.canRefine() && _fringe.back().size() < 4 /* two bits */ ) {
GEODEBUG( "Adding to fringe: " << _fringe.back() << " curr prefix : " << _prefix << " bits : " << _prefix.getBits() );
// log() << "Diving to level : " << ( _fringe.back().size() / 2 + 1 ) << endl;
string lastSuffix = _fringe.back();
_fringe.pop_back();
_fringe.push_back( lastSuffix + "00" );
_fringe.push_back( lastSuffix + "01" );
_fringe.push_back( lastSuffix + "11" );
_fringe.push_back( lastSuffix + "10" );
continue;
}
// Restart our search from a diff box.
_state = START;
assert( ! onlyExpand );
assert( _found <= 0x7fffffff );
fillStack( maxFound - _foundInExp, maxAdded - static_cast(_found) );
// When we return from the recursive fillStack call, we'll either have checked enough points or
// be entirely done. Max recurse depth is < 8 * 16.
// If we're maxed out on points, return
if( _foundInExp >= maxFound || _found >= maxAdded ) {
// Make sure we'll come back to add more points
assert( _state == DOING_EXPAND );
return;
}
// Otherwise we must be finished to return
assert( _state == DONE );
return;
}
}
// Finished with neighbors
_state = DONE;
}
}
// The initial geo hash box for our first expansion
virtual GeoHash expandStartHash() = 0;
// Whether the current box width is big enough for our search area
virtual bool fitsInBox( double width ) = 0;
// The amount the current box overlaps our search area
virtual double intersectsBox( Box& cur ) = 0;
virtual int addSpecific( const GeoKeyNode& node , const Point& keyP , bool onBounds , double keyD , bool newDoc ) {
int found = 0;
// We need to handle every possible point in this method, even those not in the key value, to
// avoid us tracking which hashes we've already seen.
if( ! newDoc ){
// log() << "Already handled doc!" << endl;
return 0;
}
if( _uniqueDocs && ! onBounds ) {
// log() << "Added ind to " << _type << endl;
_stack.push_front( GeoPoint( node ) );
found++;
}
else {
// We now handle every possible point in the document, even those not in the key value,
// since we're iterating through them anyway - prevents us from having to save the hashes
// we've seen per-doc
// If we're filtering by hash, get the original
bool expensiveExact = expensiveExactCheck();
vector< BSONObj > locs;
getPointsFor( node._key, node.recordLoc.obj(), locs, true );
for( vector< BSONObj >::iterator i = locs.begin(); i != locs.end(); ++i ){
double d = -1;
Point p( *i );
// We can avoid exact document checks by redoing approx checks,
// if the exact checks are more expensive.
bool needExact = true;
if( expensiveExact ){
assert( false );
KeyResult result = approxKeyCheck( p, d );
if( result == BAD ) continue;
else if( result == GOOD ) needExact = false;
}
if( ! needExact || exactDocCheck( p, d ) ){
// log() << "Added mult to " << _type << endl;
_stack.push_front( GeoPoint( node ) );
found++;
// If returning unique, just exit after first point is added
if( _uniqueDocs ) break;
}
}
}
if ( _cur.isEmpty() && _stack.size() > 0 ){
_cur = _stack.front();
_stack.pop_front();
}
return found;
}
virtual long long nscanned() {
if ( _firstCall ) {
ok();
}
return _nscanned;
}
virtual void explainDetails( BSONObjBuilder& b ){
b << "keysChecked" << _keysChecked;
b << "lookedAt" << _lookedAt;
b << "matchesPerfd" << _matchesPerfd;
b << "objectsLoaded" << _objectsLoaded;
b << "pointsLoaded" << _pointsLoaded;
}
virtual BSONObj prettyIndexBounds() const {
vector::const_iterator i = _expPrefixes.end();
if( _expPrefixes.size() > 0 && *(--i) != *( _expPrefix.get() ) )
_expPrefixes.push_back( *( _expPrefix.get() ) );
BSONObjBuilder bob;
BSONArrayBuilder bab;
for( i = _expPrefixes.begin(); i != _expPrefixes.end(); ++i ){
bab << Box( _g, *i ).toBSON();
}
bob << _g->_geo << bab.arr();
return bob.obj();
}
void notePrefix() {
_expPrefixes.push_back( _prefix );
}
string _type;
BSONObj _filter;
list _stack;
GeoPoint _cur;
bool _firstCall;
long long _nscanned;
// The current box we're expanding (-1 is first/center box)
int _neighbor;
// The points we've found so far
// TODO: Long long?
int _foundInExp;
// The current hash prefix we're expanding and the center-box hash prefix
GeoHash _prefix;
shared_ptr _lastPrefix;
GeoHash _centerPrefix;
list _fringe;
int recurseDepth;
Box _centerBox;
// Start and end of our search range in the current box
BtreeLocation _min;
BtreeLocation _max;
shared_ptr _expPrefix;
mutable vector _expPrefixes;
};
class GeoHopper : public GeoBrowse {
public:
typedef multiset Holder;
GeoHopper( const Geo2dType * g , unsigned max , const Point& n , const BSONObj& filter = BSONObj() , double maxDistance = numeric_limits::max() , GeoDistType type=GEO_PLAIN, bool uniqueDocs = false, bool needDistance = true )
: GeoBrowse( g, "search", filter, uniqueDocs, needDistance ), _max( max ) , _near( n ), _maxDistance( maxDistance ), _type( type ), _distError( type == GEO_PLAIN ? g->_error : g->_errorSphere ), _farthest(0)
{}
virtual KeyResult approxKeyCheck( const Point& p, double& d ) {
// Always check approximate distance, since it lets us avoid doing
// checks of the rest of the object if it succeeds
switch (_type) {
case GEO_PLAIN:
d = _near.distance( p );
break;
case GEO_SPHERE:
checkEarthBounds( p );
d = spheredist_deg( _near, p );
break;
default: assert( false );
}
assert( d >= 0 );
GEODEBUG( "\t\t\t\t\t\t\t checkDistance " << _near.toString()
<< "\t" << p.toString() << "\t" << d
<< " farthest: " << farthest() );
// If we need more points
double borderDist = ( _points.size() < _max ? _maxDistance : farthest() );
if( d >= borderDist - 2 * _distError && d <= borderDist + 2 * _distError ) return BORDER;
else return d < borderDist ? GOOD : BAD;
}
virtual bool exactDocCheck( const Point& p, double& d ){
bool within = false;
// Get the appropriate distance for the type
switch ( _type ) {
case GEO_PLAIN:
d = _near.distance( p );
within = _near.distanceWithin( p, _maxDistance );
break;
case GEO_SPHERE:
checkEarthBounds( p );
d = spheredist_deg( _near, p );
within = ( d <= _maxDistance );
break;
default: assert( false );
}
return within;
}
// Always in distance units, whether radians or normal
double farthest() const {
return _farthest;
}
virtual int addSpecific( const GeoKeyNode& node, const Point& keyP, bool onBounds, double keyD, bool newDoc ) {
// Unique documents
GeoPoint newPoint( node, keyD, false );
int prevSize = _points.size();
// STEP 1 : Remove old duplicate points from the set if needed
if( _uniqueDocs ){
// Lookup old point with same doc
map< DiskLoc , Holder::iterator >::iterator oldPointIt = _seenPts.find( newPoint.loc() );
if( oldPointIt != _seenPts.end() ){
const GeoPoint& oldPoint = *(oldPointIt->second);
// We don't need to care if we've already seen this same approx pt or better,
// or we've already gone to disk once for the point
if( oldPoint < newPoint ){
GEODEBUG( "\t\tOld point closer than new point" );
return 0;
}
GEODEBUG( "\t\tErasing old point " << oldPointIt->first.obj() );
_points.erase( oldPointIt->second );
}
}
Holder::iterator newIt = _points.insert( newPoint );
if( _uniqueDocs ) _seenPts[ newPoint.loc() ] = newIt;
GEODEBUG( "\t\tInserted new point " << newPoint.toString() << " approx : " << keyD );
assert( _max > 0 );
Holder::iterator lastPtIt = _points.end();
lastPtIt--;
_farthest = lastPtIt->distance() + 2 * _distError;
return _points.size() - prevSize;
}
// Removes extra points from end of _points set.
// Check can be a bit costly if we have lots of exact points near borders,
// so we'll do this every once and awhile.
void processExtraPoints(){
if( _points.size() == 0 ) return;
int prevSize = _points.size();
// Erase all points from the set with a position >= _max *and*
// whose distance isn't close to the _max - 1 position distance
int numToErase = _points.size() - _max;
if( numToErase < 0 ) numToErase = 0;
// Get the first point definitely in the _points array
Holder::iterator startErase = _points.end();
for( int i = 0; i < numToErase + 1; i++ ) startErase--;
_farthest = startErase->distance() + 2 * _distError;
GEODEBUG( "\t\tPotentially erasing " << numToErase << " points, " << " size : " << _points.size() << " max : " << _max << " dist : " << startErase->distance() << " farthest dist : " << _farthest << " from error : " << _distError );
startErase++;
while( numToErase > 0 && startErase->distance() <= _farthest ){
GEODEBUG( "\t\tNot erasing point " << startErase->toString() );
numToErase--;
startErase++;
assert( startErase != _points.end() || numToErase == 0 );
}
if( _uniqueDocs ){
for( Holder::iterator i = startErase; i != _points.end(); ++i )
_seenPts.erase( i->loc() );
}
_points.erase( startErase, _points.end() );
int diff = _points.size() - prevSize;
if( diff > 0 ) _found += diff;
else _found -= -diff;
}
unsigned _max;
Point _near;
Holder _points;
double _maxDistance;
GeoDistType _type;
double _distError;
double _farthest;
map< DiskLoc , Holder::iterator > _seenPts;
};
class GeoSearch : public GeoHopper {
public:
GeoSearch( const Geo2dType * g , const Point& startPt , int numWanted=100 , BSONObj filter=BSONObj() , double maxDistance = numeric_limits::max() , GeoDistType type=GEO_PLAIN, bool uniqueDocs = false, bool needDistance = false )
: GeoHopper( g , numWanted , startPt , filter , maxDistance, type, uniqueDocs, needDistance ),
_start( g->hash( startPt._x, startPt._y ) ),
// TODO: Remove numWanted...
_numWanted( numWanted ),
_type(type)
{
assert( g->getDetails() );
_nscanned = 0;
_found = 0;
if( _maxDistance < 0 ){
_scanDistance = numeric_limits::max();
}
else if (type == GEO_PLAIN) {
_scanDistance = maxDistance + _spec->_error;
}
else if (type == GEO_SPHERE) {
checkEarthBounds( startPt );
// TODO: consider splitting into x and y scan distances
_scanDistance = computeXScanDistance( startPt._y, rad2deg( _maxDistance ) + _spec->_error );
}
assert( _scanDistance > 0 );
}
void exec() {
if( _numWanted == 0 ) return;
/*
* Search algorithm
* 1) use geohash prefix to find X items
* 2) compute max distance from want to an item
* 3) find optimal set of boxes that complete circle
* 4) use regular btree cursors to scan those boxes
*/
#ifdef GEODEBUGGING
log() << "start near search for " << _numWanted << " points near " << _near << " (max dist " << _maxDistance << ")" << endl;
#endif
// Part 1
{
do {
long long f = found();
assert( f <= 0x7fffffff );
fillStack( maxPointsHeuristic, _numWanted - static_cast(f) , true );
processExtraPoints();
} while( _state != DONE && _state != DONE_NEIGHBOR &&
found() < _numWanted &&
(! _prefix.constrains() || _g->sizeEdge( _prefix ) <= _scanDistance ) );
// If we couldn't scan or scanned everything, we're done
if( _state == DONE ){
expandEndPoints();
return;
}
}
#ifdef GEODEBUGGING
log() << "part 1 of near search completed, found " << found() << " points (out of " << _foundInExp << " scanned)"
<< " in expanded region " << _prefix << " @ " << Box( _g, _prefix )
<< " with furthest distance " << farthest() << endl;
#endif
// Part 2
{
// Find farthest distance for completion scan
double farDist = farthest();
if( found() < _numWanted ) {
// Not enough found in Phase 1
farDist = _scanDistance;
}
else if ( _type == GEO_PLAIN ) {
// Enough found, but need to search neighbor boxes
farDist += _spec->_error;
}
else if ( _type == GEO_SPHERE ) {
// Enough found, but need to search neighbor boxes
farDist = std::min( _scanDistance, computeXScanDistance( _near._y, rad2deg( farDist ) ) + 2 * _spec->_error );
}
assert( farDist >= 0 );
GEODEBUGPRINT( farDist );
// Find the box that includes all the points we need to return
_want = Box( _near._x - farDist , _near._y - farDist , farDist * 2 );
GEODEBUGPRINT( _want.toString() );
// log() << "Found : " << found() << " wanted : " << _numWanted << " Far distance : " << farDist << " box : " << _want << endl;
// Remember the far distance for further scans
_scanDistance = farDist;
// Reset the search, our distances have probably changed
if( _state == DONE_NEIGHBOR ){
_state = DOING_EXPAND;
_neighbor = -1;
}
#ifdef GEODEBUGGING
log() << "resetting search with start at " << _start << " (edge length " << _g->sizeEdge( _start ) << ")" << endl;
#endif
// Do regular search in the full region
do {
fillStack( maxPointsHeuristic );
processExtraPoints();
}
while( _state != DONE );
}
GEODEBUG( "done near search with " << _points.size() << " points " );
expandEndPoints();
}
void addExactPoints( const GeoPoint& pt, Holder& points, bool force ){
int before, after;
addExactPoints( pt, points, before, after, force );
}
void addExactPoints( const GeoPoint& pt, Holder& points, int& before, int& after, bool force ){
before = 0;
after = 0;
GEODEBUG( "Adding exact points for " << pt.toString() );
if( pt.isExact() ){
if( force ) points.insert( pt );
return;
}
vector locs;
getPointsFor( pt.key(), pt.obj(), locs, _uniqueDocs );
GeoPoint nearestPt( pt, -1, true );
for( vector::iterator i = locs.begin(); i != locs.end(); i++ ){
Point loc( *i );
double d;
if( ! exactDocCheck( loc, d ) ) continue;
if( _uniqueDocs && ( nearestPt.distance() < 0 || d < nearestPt.distance() ) ){
nearestPt._distance = d;
continue;
}
else if( ! _uniqueDocs ){
GeoPoint exactPt( pt, d, true );
GEODEBUG( "Inserting exact pt " << exactPt.toString() << " for " << pt.toString() << " exact : " << d << " is less? " << ( exactPt < pt ) << " bits : " << _g->_bits );
points.insert( exactPt );
exactPt < pt ? before++ : after++;
}
}
if( _uniqueDocs && nearestPt.distance() >= 0 ){
GEODEBUG( "Inserting unique exact pt " << nearestPt.toString() << " for " << pt.toString() << " exact : " << nearestPt.distance() << " is less? " << ( nearestPt < pt ) << " bits : " << _g->_bits );
points.insert( nearestPt );
if( nearestPt < pt ) before++;
else after++;
}
}
// TODO: Refactor this back into holder class, allow to run periodically when we are seeing a lot of pts
void expandEndPoints( bool finish = true ){
processExtraPoints();
// All points in array *could* be in maxDistance
// Step 1 : Trim points to max size
if( _max >= 0 ){
int numToErase = _points.size() - _max;
if( numToErase > 0 ){
Holder tested;
// Work backward through all points we're not sure belong in the set
Holder::iterator maybePointIt = _points.end();
maybePointIt--;
double approxMin = maybePointIt->distance() - 2 * _distError;
GEODEBUG( "\t\tNeed to erase " << numToErase << " max : " << _max << " min dist " << approxMin << " error : " << _distError << " starting from : " << (*maybePointIt).toString() );
// Insert all
int erased = 0;
while( _points.size() > 0 && ( maybePointIt->distance() >= approxMin || erased < numToErase ) ){
Holder::iterator current = maybePointIt--;
addExactPoints( *current, tested, true );
_points.erase( current );
erased++;
approxMin = tested.begin()->distance() - 2 * _distError;
if( _points.size() == 0 ) break;
}
GEODEBUG( "\t\tEnding search at point " << ( _points.size() == 0 ? "(beginning)" : maybePointIt->toString() ) );
int numToAddBack = erased - numToErase;
assert( numToAddBack >= 0 );
GEODEBUG( "\t\tNum tested valid : " << tested.size() << " erased : " << erased << " added back : " << numToAddBack );
#ifdef GEODEBUGGING
for( Holder::iterator it = tested.begin(); it != tested.end(); it++ ){
log() << "Tested Point: " << *it << endl;
}
#endif
Holder::iterator testedIt = tested.begin();
for( int i = 0; i < numToAddBack && testedIt != tested.end(); i++ ){
_points.insert( *testedIt );
testedIt++;
}
}
}
#ifdef GEODEBUGGING
for( Holder::iterator it = _points.begin(); it != _points.end(); it++ ){
log() << "Point: " << *it << endl;
}
#endif
// We've now trimmed first set of unneeded points
GEODEBUG( "\t\t Start expanding, num points : " << _points.size() << " max : " << _max );
// Step 2: iterate through all points and add as needed
unsigned expandedPoints = 0;
Holder::iterator it = _points.begin();
double expandWindowEnd = -1;
while( it != _points.end() ){
const GeoPoint& currPt = *it;
// TODO: If one point is exact, maybe not 2 * _distError
// See if we're in an expand window
bool inWindow = currPt.distance() <= expandWindowEnd;
// If we're not, and we're done with points, break
if( ! inWindow && expandedPoints >= _max ) break;
bool expandApprox = ! currPt.isExact() && ( ! _uniqueDocs || ( finish && _needDistance ) || inWindow );
if( expandApprox ){
// Add new point(s)
// These will only be added in a radius of 2 * _distError around the current point,
// so should not affect previously valid points.
int before, after;
addExactPoints( currPt, _points, before, after, false );
expandedPoints += before;
if( _max >= 0 && expandedPoints < _max )
expandWindowEnd = currPt.distance() + 2 * _distError;
// Iterate to the next point
Holder::iterator current = it++;
// Erase the current point
_points.erase( current );
}
else{
expandedPoints++;
it++;
}
}
GEODEBUG( "\t\tFinished expanding, num points : " << _points.size() << " max : " << _max );
// Finish
// TODO: Don't really need to trim?
for( ; expandedPoints > _max; expandedPoints-- ) it--;
_points.erase( it, _points.end() );
#ifdef GEODEBUGGING
for( Holder::iterator it = _points.begin(); it != _points.end(); it++ ){
log() << "Point: " << *it << endl;
}
#endif
}
virtual GeoHash expandStartHash(){
return _start;
}
// Whether the current box width is big enough for our search area
virtual bool fitsInBox( double width ){
return width >= _scanDistance;
}
// Whether the current box overlaps our search area
virtual double intersectsBox( Box& cur ){
return cur.intersects( _want );
}
GeoHash _start;
int _numWanted;
double _scanDistance;
long long _nscanned;
int _found;
GeoDistType _type;
Box _want;
};
class GeoSearchCursor : public GeoCursorBase {
public:
GeoSearchCursor( shared_ptr s )
: GeoCursorBase( s->_spec ) ,
_s( s ) , _cur( s->_points.begin() ) , _end( s->_points.end() ), _nscanned() {
if ( _cur != _end ) {
++_nscanned;
}
}
virtual ~GeoSearchCursor() {}
virtual bool ok() {
return _cur != _end;
}
virtual Record* _current() { assert(ok()); return _cur->_loc.rec(); }
virtual BSONObj current() { assert(ok()); return _cur->_o; }
virtual DiskLoc currLoc() { assert(ok()); return _cur->_loc; }
virtual bool advance() {
if( ok() ){
_cur++;
incNscanned();
return ok();
}
return false;
}
virtual BSONObj currKey() const { return _cur->_key; }
virtual string toString() {
return "GeoSearchCursor";
}
virtual BSONObj prettyStartKey() const {
return BSON( _s->_g->_geo << _s->_prefix.toString() );
}
virtual BSONObj prettyEndKey() const {
GeoHash temp = _s->_prefix;
temp.move( 1 , 1 );
return BSON( _s->_g->_geo << temp.toString() );
}
virtual long long nscanned() { return _nscanned; }
virtual CoveredIndexMatcher* matcher() const {
if( _s->_matcher.get() ) return _s->_matcher.get();
else return emptyMatcher.get();
}
virtual shared_ptr< CoveredIndexMatcher > matcherPtr() const {
if( _s->_matcher.get() ) return _s->_matcher;
else return emptyMatcher;
}
shared_ptr _s;
GeoHopper::Holder::iterator _cur;
GeoHopper::Holder::iterator _end;
void incNscanned() { if ( ok() ) { ++_nscanned; } }
long long _nscanned;
};
class GeoCircleBrowse : public GeoBrowse {
public:
GeoCircleBrowse( const Geo2dType * g , const BSONObj& circle , BSONObj filter = BSONObj() , const string& type="$center", bool uniqueDocs = true )
: GeoBrowse( g , "circle" , filter, uniqueDocs ) {
uassert( 13060 , "$center needs 2 fields (middle,max distance)" , circle.nFields() == 2 );
BSONObjIterator i(circle);
BSONElement center = i.next();
uassert( 13656 , "the first field of $center object must be a location object" , center.isABSONObj() );
// Get geohash and exact center point
// TODO: For wrapping search, may be useful to allow center points outside-of-bounds here.
// Calculating the nearest point as a hash start inside the region would then be required.
_start = g->_tohash(center);
_startPt = Point(center);
_maxDistance = i.next().numberDouble();
uassert( 13061 , "need a max distance >= 0 " , _maxDistance >= 0 );
if (type == "$center") {
// Look in box with bounds of maxDistance in either direction
_type = GEO_PLAIN;
_xScanDistance = _maxDistance + _g->_error;
_yScanDistance = _maxDistance + _g->_error;
}
else if (type == "$centerSphere") {
// Same, but compute maxDistance using spherical transform
uassert(13461, "Spherical MaxDistance > PI. Are you sure you are using radians?", _maxDistance < M_PI);
checkEarthBounds( _startPt );
_type = GEO_SPHERE;
_yScanDistance = rad2deg( _maxDistance ) + _g->_error;
_xScanDistance = computeXScanDistance(_startPt._y, _yScanDistance);
uassert(13462, "Spherical distance would require wrapping, which isn't implemented yet",
(_startPt._x + _xScanDistance < 180) && (_startPt._x - _xScanDistance > -180) &&
(_startPt._y + _yScanDistance < 90) && (_startPt._y - _yScanDistance > -90));
}
else {
uassert(13460, "invalid $center query type: " + type, false);
}
// Bounding box includes fudge factor.
// TODO: Is this correct, since fudge factor may be spherically transformed?
_bBox._min = Point( _startPt._x - _xScanDistance, _startPt._y - _yScanDistance );
_bBox._max = Point( _startPt._x + _xScanDistance, _startPt._y + _yScanDistance );
GEODEBUG( "Bounding box for circle query : " << _bBox.toString() << " (max distance : " << _maxDistance << ")" << " starting from " << _startPt.toString() );
ok();
}
virtual GeoHash expandStartHash() {
return _start;
}
virtual bool fitsInBox( double width ) {
return width >= std::max(_xScanDistance, _yScanDistance);
}
virtual double intersectsBox( Box& cur ) {
return cur.intersects( _bBox );
}
virtual KeyResult approxKeyCheck( const Point& p, double& d ) {
// Inexact hash distance checks.
double error = 0;
switch (_type) {
case GEO_PLAIN:
d = _startPt.distance( p );
error = _g->_error;
break;
case GEO_SPHERE: {
checkEarthBounds( p );
d = spheredist_deg( _startPt, p );
error = _g->_errorSphere;
break;
}
default: assert( false );
}
// If our distance is in the error bounds...
if( d >= _maxDistance - error && d <= _maxDistance + error ) return BORDER;
return d > _maxDistance ? BAD : GOOD;
}
virtual bool exactDocCheck( const Point& p, double& d ){
switch (_type) {
case GEO_PLAIN: {
if( _startPt.distanceWithin( p, _maxDistance ) ) return true;
break;
}
case GEO_SPHERE:
checkEarthBounds( p );
if( spheredist_deg( _startPt , p ) <= _maxDistance ) return true;
break;
default: assert( false );
}
return false;
}
GeoDistType _type;
GeoHash _start;
Point _startPt;
double _maxDistance; // user input
double _xScanDistance; // effected by GeoDistType
double _yScanDistance; // effected by GeoDistType
Box _bBox;
};
class GeoBoxBrowse : public GeoBrowse {
public:
GeoBoxBrowse( const Geo2dType * g , const BSONObj& box , BSONObj filter = BSONObj(), bool uniqueDocs = true )
: GeoBrowse( g , "box" , filter, uniqueDocs ) {
uassert( 13063 , "$box needs 2 fields (bottomLeft,topRight)" , box.nFields() == 2 );
// Initialize an *exact* box from the given obj.
BSONObjIterator i(box);
_want._min = Point( i.next() );
_want._max = Point( i.next() );
fixBox( g, _want );
uassert( 13064 , "need an area > 0 " , _want.area() > 0 );
Point center = _want.center();
_start = _g->hash( center._x , center._y );
GEODEBUG( "center : " << center.toString() << "\t" << _prefix );
_fudge = _g->_error;
_wantLen = _fudge +
std::max( ( _want._max._x - _want._min._x ) ,
( _want._max._y - _want._min._y ) ) / 2;
ok();
}
void fixBox( const Geo2dType* g, Box& box ) {
if( _want._min._x > _want._max._x )
swap( _want._min._x, _want._max._x );
if( _want._min._y > _want._max._y )
swap( _want._min._y, _want._max._y );
double gMin = g->_min;
double gMax = g->_max;
if( _want._min._x < gMin ) _want._min._x = gMin;
if( _want._min._y < gMin ) _want._min._y = gMin;
if( _want._max._x > gMax) _want._max._x = gMax;
if( _want._max._y > gMax ) _want._max._y = gMax;
}
void swap( double& a, double& b ) {
double swap = a;
a = b;
b = swap;
}
virtual GeoHash expandStartHash() {
return _start;
}
virtual bool fitsInBox( double width ) {
return width >= _wantLen;
}
virtual double intersectsBox( Box& cur ) {
return cur.intersects( _want );
}
virtual KeyResult approxKeyCheck( const Point& p, double& d ) {
if( _want.onBoundary( p, _fudge ) ) return BORDER;
else return _want.inside( p, _fudge ) ? GOOD : BAD;
}
virtual bool exactDocCheck( const Point& p, double& d ){
return _want.inside( p );
}
Box _want;
double _wantLen;
double _fudge;
GeoHash _start;
};
class GeoPolygonBrowse : public GeoBrowse {
public:
GeoPolygonBrowse( const Geo2dType* g , const BSONObj& polyPoints ,
BSONObj filter = BSONObj(), bool uniqueDocs = true ) : GeoBrowse( g , "polygon" , filter, uniqueDocs ) {
GEODEBUG( "In Polygon" )
BSONObjIterator i( polyPoints );
BSONElement first = i.next();
_poly.add( Point( first ) );
while ( i.more() ) {
_poly.add( Point( i.next() ) );
}
uassert( 14030, "polygon must be defined by three points or more", _poly.size() >= 3 );
_bounds = _poly.bounds();
_maxDim = _bounds.maxDim() / 2;
ok();
}
// The initial geo hash box for our first expansion
virtual GeoHash expandStartHash() {
return _g->hash( _poly.centroid() );
}
// Whether the current box width is big enough for our search area
virtual bool fitsInBox( double width ) {
return _maxDim <= width;
}
// Whether the current box overlaps our search area
virtual double intersectsBox( Box& cur ) {
return cur.intersects( _bounds );
}
virtual KeyResult approxKeyCheck( const Point& p, double& d ) {
int in = _poly.contains( p, _g->_error );
if( in == 0 ) return BORDER;
else return in > 0 ? GOOD : BAD;
}
virtual bool exactDocCheck( const Point& p, double& d ){
return _poly.contains( p );
}
private:
Polygon _poly;
Box _bounds;
double _maxDim;
GeoHash _start;
};
shared_ptr Geo2dType::newCursor( const BSONObj& query , const BSONObj& order , int numWanted ) const {
if ( numWanted < 0 )
numWanted = numWanted * -1;
else if ( numWanted == 0 )
numWanted = 100;
BSONObjIterator i(query);
while ( i.more() ) {
BSONElement e = i.next();
if ( _geo != e.fieldName() )
continue;
if ( e.type() == Array ) {
// If we get an array query, assume it is a location, and do a $within { $center : [[x, y], 0] } search
shared_ptr c( new GeoCircleBrowse( this , BSON( "0" << e.embeddedObjectUserCheck() << "1" << 0 ), query.filterFieldsUndotted( BSON( _geo << "" ), false ), "$center", true ) );
return c;
}
else if ( e.type() == Object ) {
// TODO: Filter out _geo : { $special... } field so it doesn't get matched accidentally,
// if matcher changes
switch ( e.embeddedObject().firstElement().getGtLtOp() ) {
case BSONObj::opNEAR: {
BSONObj n = e.embeddedObject();
e = n.firstElement();
const char* suffix = e.fieldName() + 5; // strlen("$near") == 5;
GeoDistType type;
if (suffix[0] == '\0') {
type = GEO_PLAIN;
}
else if (strcmp(suffix, "Sphere") == 0) {
type = GEO_SPHERE;
}
else {
uassert(13464, string("invalid $near search type: ") + e.fieldName(), false);
type = GEO_PLAIN; // prevents uninitialized warning
}
double maxDistance = numeric_limits::max();
if ( e.isABSONObj() && e.embeddedObject().nFields() > 2 ) {
BSONObjIterator i(e.embeddedObject());
i.next();
i.next();
BSONElement e = i.next();
if ( e.isNumber() )
maxDistance = e.numberDouble();
}
{
BSONElement e = n["$maxDistance"];
if ( e.isNumber() )
maxDistance = e.numberDouble();
}
bool uniqueDocs = false;
if( ! n["$uniqueDocs"].eoo() ) uniqueDocs = n["$uniqueDocs"].trueValue();
shared_ptr s( new GeoSearch( this , Point( e ) , numWanted , query , maxDistance, type, uniqueDocs ) );
s->exec();
shared_ptr c;
c.reset( new GeoSearchCursor( s ) );
return c;
}
case BSONObj::opWITHIN: {
e = e.embeddedObject().firstElement();
uassert( 13057 , "$within has to take an object or array" , e.isABSONObj() );
BSONObj context = e.embeddedObject();
e = e.embeddedObject().firstElement();
string type = e.fieldName();
bool uniqueDocs = true;
if( ! context["$uniqueDocs"].eoo() ) uniqueDocs = context["$uniqueDocs"].trueValue();
if ( startsWith(type, "$center") ) {
uassert( 13059 , "$center has to take an object or array" , e.isABSONObj() );
shared_ptr c( new GeoCircleBrowse( this , e.embeddedObjectUserCheck() , query , type, uniqueDocs ) );
return c;
}
else if ( type == "$box" ) {
uassert( 13065 , "$box has to take an object or array" , e.isABSONObj() );
shared_ptr c( new GeoBoxBrowse( this , e.embeddedObjectUserCheck() , query, uniqueDocs ) );
return c;
}
else if ( startsWith( type, "$poly" ) ) {
uassert( 14029 , "$polygon has to take an object or array" , e.isABSONObj() );
shared_ptr c( new GeoPolygonBrowse( this , e.embeddedObjectUserCheck() , query, uniqueDocs ) );
return c;
}
throw UserException( 13058 , (string)"unknown $within type: " + type );
}
default:
// Otherwise... assume the object defines a point, and we want to do a zero-radius $within $center
shared_ptr c( new GeoCircleBrowse( this , BSON( "0" << e.embeddedObjectUserCheck() << "1" << 0 ), query.filterFieldsUndotted( BSON( _geo << "" ), false ) ) );
return c;
}
}
}
throw UserException( 13042 , (string)"missing geo field (" + _geo + ") in : " + query.toString() );
}
// ------
// commands
// ------
class Geo2dFindNearCmd : public Command {
public:
Geo2dFindNearCmd() : Command( "geoNear" ) {}
virtual LockType locktype() const { return READ; }
bool slaveOk() const { return true; }
void help(stringstream& h) const { h << "http://www.mongodb.org/display/DOCS/Geospatial+Indexing#GeospatialIndexing-geoNearCommand"; }
bool slaveOverrideOk() { return true; }
bool run(const string& dbname, BSONObj& cmdObj, string& errmsg, BSONObjBuilder& result, bool fromRepl) {
string ns = dbname + "." + cmdObj.firstElement().valuestr();
NamespaceDetails * d = nsdetails( ns.c_str() );
if ( ! d ) {
errmsg = "can't find ns";
return false;
}
vector idxs;
d->findIndexByType( GEO2DNAME , idxs );
if ( idxs.size() > 1 ) {
errmsg = "more than 1 geo indexes :(";
return false;
}
if ( idxs.size() == 0 ) {
errmsg = "no geo index :(";
return false;
}
int geoIdx = idxs[0];
result.append( "ns" , ns );
IndexDetails& id = d->idx( geoIdx );
Geo2dType * g = (Geo2dType*)id.getSpec().getType();
assert( &id == g->getDetails() );
int numWanted = 100;
if ( cmdObj["num"].isNumber() ) {
numWanted = cmdObj["num"].numberInt();
assert( numWanted >= 0 );
}
bool uniqueDocs = false;
if( ! cmdObj["uniqueDocs"].eoo() ) uniqueDocs = cmdObj["uniqueDocs"].trueValue();
uassert(13046, "'near' param missing/invalid", !cmdObj["near"].eoo());
const Point n( cmdObj["near"] );
result.append( "near" , g->_tohash( cmdObj["near"] ).toString() );
BSONObj filter;
if ( cmdObj["query"].type() == Object )
filter = cmdObj["query"].embeddedObject();
double maxDistance = numeric_limits::max();
if ( cmdObj["maxDistance"].isNumber() )
maxDistance = cmdObj["maxDistance"].number();
GeoDistType type = GEO_PLAIN;
if ( cmdObj["spherical"].trueValue() )
type = GEO_SPHERE;
GeoSearch gs( g , n , numWanted , filter , maxDistance , type, uniqueDocs, true );
if ( cmdObj["start"].type() == String) {
GeoHash start ((string) cmdObj["start"].valuestr());
gs._start = start;
}
gs.exec();
double distanceMultiplier = 1;
if ( cmdObj["distanceMultiplier"].isNumber() )
distanceMultiplier = cmdObj["distanceMultiplier"].number();
double totalDistance = 0;
BSONObjBuilder arr( result.subarrayStart( "results" ) );
int x = 0;
for ( GeoHopper::Holder::iterator i=gs._points.begin(); i!=gs._points.end(); i++ ) {
const GeoPoint& p = *i;
double dis = distanceMultiplier * p.distance();
totalDistance += dis;
BSONObjBuilder bb( arr.subobjStart( BSONObjBuilder::numStr( x++ ) ) );
bb.append( "dis" , dis );
bb.append( "obj" , p._o );
bb.done();
}
arr.done();
BSONObjBuilder stats( result.subobjStart( "stats" ) );
stats.append( "time" , cc().curop()->elapsedMillis() );
stats.appendNumber( "btreelocs" , gs._nscanned );
stats.appendNumber( "nscanned" , gs._lookedAt );
stats.appendNumber( "objectsLoaded" , gs._objectsLoaded );
stats.append( "avgDistance" , totalDistance / x );
stats.append( "maxDistance" , gs.farthest() );
stats.done();
return true;
}
} geo2dFindNearCmd;
class GeoWalkCmd : public Command {
public:
GeoWalkCmd() : Command( "geoWalk" ) {}
virtual LockType locktype() const { return READ; }
bool slaveOk() const { return true; }
bool slaveOverrideOk() { return true; }
bool run(const string& dbname, BSONObj& cmdObj, string& errmsg, BSONObjBuilder& result, bool fromRepl) {
string ns = dbname + "." + cmdObj.firstElement().valuestr();
NamespaceDetails * d = nsdetails( ns.c_str() );
if ( ! d ) {
errmsg = "can't find ns";
return false;
}
int geoIdx = -1;
{
NamespaceDetails::IndexIterator ii = d->ii();
while ( ii.more() ) {
IndexDetails& id = ii.next();
if ( id.getSpec().getTypeName() == GEO2DNAME ) {
if ( geoIdx >= 0 ) {
errmsg = "2 geo indexes :(";
return false;
}
geoIdx = ii.pos() - 1;
}
}
}
if ( geoIdx < 0 ) {
errmsg = "no geo index :(";
return false;
}
IndexDetails& id = d->idx( geoIdx );
Geo2dType * g = (Geo2dType*)id.getSpec().getType();
assert( &id == g->getDetails() );
int max = 100000;
auto_ptr bc( BtreeCursor::make( d , geoIdx , id , BSONObj() , BSONObj() , true , 1 ) );
BtreeCursor &c = *bc;
while ( c.ok() && max-- ) {
GeoHash h( c.currKey().firstElement() );
int len;
cout << "\t" << h.toString()
<< "\t" << c.current()[g->_geo]
<< "\t" << hex << h.getHash()
<< "\t" << hex << ((long long*)c.currKey().firstElement().binData(len))[0]
<< "\t" << c.current()["_id"]
<< endl;
c.advance();
}
return true;
}
} geoWalkCmd;
struct GeoUnitTest : public UnitTest {
int round( double d ) {
return (int)(.5+(d*1000));
}
#define GEOHEQ(a,b) if ( a.toString() != b ){ cout << "[" << a.toString() << "] != [" << b << "]" << endl; assert( a == GeoHash(b) ); }
void run() {
assert( ! GeoHash::isBitSet( 0 , 0 ) );
assert( ! GeoHash::isBitSet( 0 , 31 ) );
assert( GeoHash::isBitSet( 1 , 31 ) );
IndexSpec i( BSON( "loc" << "2d" ) );
Geo2dType g( &geo2dplugin , &i );
{
double x = 73.01212;
double y = 41.352964;
BSONObj in = BSON( "x" << x << "y" << y );
GeoHash h = g._hash( in );
BSONObj out = g._unhash( h );
assert( round(x) == round( out["x"].number() ) );
assert( round(y) == round( out["y"].number() ) );
assert( round( in["x"].number() ) == round( out["x"].number() ) );
assert( round( in["y"].number() ) == round( out["y"].number() ) );
}
{
double x = -73.01212;
double y = 41.352964;
BSONObj in = BSON( "x" << x << "y" << y );
GeoHash h = g._hash( in );
BSONObj out = g._unhash( h );
assert( round(x) == round( out["x"].number() ) );
assert( round(y) == round( out["y"].number() ) );
assert( round( in["x"].number() ) == round( out["x"].number() ) );
assert( round( in["y"].number() ) == round( out["y"].number() ) );
}
{
GeoHash h( "0000" );
h.move( 0 , 1 );
GEOHEQ( h , "0001" );
h.move( 0 , -1 );
GEOHEQ( h , "0000" );
h.init( "0001" );
h.move( 0 , 1 );
GEOHEQ( h , "0100" );
h.move( 0 , -1 );
GEOHEQ( h , "0001" );
h.init( "0000" );
h.move( 1 , 0 );
GEOHEQ( h , "0010" );
}
{
Box b( 5 , 5 , 2 );
assert( "(5,5) -->> (7,7)" == b.toString() );
}
{
GeoHash a = g.hash( 1 , 1 );
GeoHash b = g.hash( 4 , 5 );
assert( 5 == (int)(g.distance( a , b ) ) );
a = g.hash( 50 , 50 );
b = g.hash( 42 , 44 );
assert( round(10) == round(g.distance( a , b )) );
}
{
GeoHash x("0000");
assert( 0 == x.getHash() );
x.init( 0 , 1 , 32 );
GEOHEQ( x , "0000000000000000000000000000000000000000000000000000000000000001" )
assert( GeoHash( "1100").hasPrefix( GeoHash( "11" ) ) );
assert( ! GeoHash( "1000").hasPrefix( GeoHash( "11" ) ) );
}
{
GeoHash x("1010");
GEOHEQ( x , "1010" );
GeoHash y = x + "01";
GEOHEQ( y , "101001" );
}
{
GeoHash a = g.hash( 5 , 5 );
GeoHash b = g.hash( 5 , 7 );
GeoHash c = g.hash( 100 , 100 );
/*
cout << "a: " << a << endl;
cout << "b: " << b << endl;
cout << "c: " << c << endl;
cout << "a: " << a.toStringHex1() << endl;
cout << "b: " << b.toStringHex1() << endl;
cout << "c: " << c.toStringHex1() << endl;
*/
BSONObj oa = a.wrap();
BSONObj ob = b.wrap();
BSONObj oc = c.wrap();
/*
cout << "a: " << oa.hexDump() << endl;
cout << "b: " << ob.hexDump() << endl;
cout << "c: " << oc.hexDump() << endl;
*/
assert( oa.woCompare( ob ) < 0 );
assert( oa.woCompare( oc ) < 0 );
}
{
GeoHash x( "000000" );
x.move( -1 , 0 );
GEOHEQ( x , "101010" );
x.move( 1 , -1 );
GEOHEQ( x , "010101" );
x.move( 0 , 1 );
GEOHEQ( x , "000000" );
}
{
GeoHash prefix( "110011000000" );
GeoHash entry( "1100110000011100000111000001110000011100000111000001000000000000" );
assert( ! entry.hasPrefix( prefix ) );
entry = GeoHash("1100110000001100000111000001110000011100000111000001000000000000");
assert( entry.toString().find( prefix.toString() ) == 0 );
assert( entry.hasPrefix( GeoHash( "1100" ) ) );
assert( entry.hasPrefix( prefix ) );
}
{
GeoHash a = g.hash( 50 , 50 );
GeoHash b = g.hash( 48 , 54 );
assert( round( 4.47214 ) == round( g.distance( a , b ) ) );
}
{
Box b( Point( 29.762283 , -95.364271 ) , Point( 29.764283000000002 , -95.36227099999999 ) );
assert( b.inside( 29.763 , -95.363 ) );
assert( ! b.inside( 32.9570255 , -96.1082497 ) );
assert( ! b.inside( 32.9570255 , -96.1082497 , .01 ) );
}
{
GeoHash a( "11001111" );
assert( GeoHash( "11" ) == a.commonPrefix( GeoHash("11") ) );
assert( GeoHash( "11" ) == a.commonPrefix( GeoHash("11110000") ) );
}
{
int N = 10000;
{
Timer t;
for ( int i=0; i 2469 && dist < 2470 );
}
{
Point BNA (-86.67, 36.12);
Point LAX (-118.40, 33.94);
Point JFK (-73.77694444, 40.63861111 );
assert( spheredist_deg(BNA, BNA) < 1e-6);
assert( spheredist_deg(LAX, LAX) < 1e-6);
assert( spheredist_deg(JFK, JFK) < 1e-6);
Point zero (0, 0);
Point antizero (0,-180);
// these were known to cause NaN
assert( spheredist_deg(zero, zero) < 1e-6);
assert( fabs(M_PI-spheredist_deg(zero, antizero)) < 1e-6);
assert( fabs(M_PI-spheredist_deg(antizero, zero)) < 1e-6);
}
}
}
} geoUnitTest;
}