/** * Copyright (C) 2018-present MongoDB, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the Server Side Public License, version 1, * as published by MongoDB, Inc. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * Server Side Public License for more details. * * You should have received a copy of the Server Side Public License * along with this program. If not, see * . * * As a special exception, the copyright holders give permission to link the * code of portions of this program with the OpenSSL library under certain * conditions as described in each individual source file and distribute * linked combinations including the program with the OpenSSL library. You * must comply with the Server Side Public License in all respects for * all of the code used other than as permitted herein. If you modify file(s) * with this exception, you may extend this exception to your version of the * file(s), but you are not obligated to do so. If you do not wish to do so, * delete this exception statement from your version. If you delete this * exception statement from all source files in the program, then also delete * it in the license file. */ #pragma once #include "mongo/platform/basic.h" #include #include #include #include #include #include #include #include #include "mongo/base/init.h" #include "mongo/db/commands/test_commands_enabled.h" #include "mongo/db/exec/document_value/document.h" #include "mongo/db/exec/document_value/value.h" #include "mongo/db/pipeline/dependencies.h" #include "mongo/db/pipeline/expression_context.h" #include "mongo/db/pipeline/expression_visitor.h" #include "mongo/db/pipeline/field_path.h" #include "mongo/db/pipeline/variables.h" #include "mongo/db/query/datetime/date_time_support.h" #include "mongo/db/server_options.h" #include "mongo/util/intrusive_counter.h" #include "mongo/util/str.h" namespace mongo { class BSONArrayBuilder; class BSONElement; class BSONObjBuilder; class DocumentSource; /** * Registers a Parser so it can be called from parseExpression and friends. * * As an example, if your expression looks like {"$foo": [1,2,3]} you would add this line: * REGISTER_EXPRESSION(foo, ExpressionFoo::parse); * * An expression registered this way can be used in any featureCompatibilityVersion. */ #define REGISTER_EXPRESSION(key, parser) \ MONGO_INITIALIZER_GENERAL(addToExpressionParserMap_##key, (), ("expressionParserMap")) \ (InitializerContext*) { \ Expression::registerExpression("$" #key, (parser), boost::none); \ } /** * Registers a Parser so it can be called from parseExpression and friends. Use this version if your * expression can only be persisted to a catalog data structure in a feature compatibility version * >= X. * * As an example, if your expression looks like {"$foo": [1,2,3]}, and can only be used in a feature * compatibility version >= X, you would add this line: * REGISTER_EXPRESSION_WITH_MIN_VERSION(foo, ExpressionFoo::parse, X); */ #define REGISTER_EXPRESSION_WITH_MIN_VERSION(key, parser, minVersion) \ MONGO_INITIALIZER_GENERAL(addToExpressionParserMap_##key, (), ("expressionParserMap")) \ (InitializerContext*) { \ Expression::registerExpression("$" #key, (parser), (minVersion)); \ } /** * Registers a Parser only if test commands are enabled. Use this if your expression is only used * for testing purposes. */ #define REGISTER_TEST_EXPRESSION(key, parser) \ MONGO_INITIALIZER_GENERAL( \ addToExpressionParserMap_##key, ("EndStartupOptionHandling"), ("expressionParserMap")) \ (InitializerContext*) { \ if (getTestCommandsEnabled()) { \ Expression::registerExpression("$" #key, (parser), boost::none); \ } \ } class Expression : public RefCountable { public: using Parser = std::function( ExpressionContext* const, BSONElement, const VariablesParseState&)>; /** * Represents new paths computed by an expression. Computed paths are partitioned into renames * and non-renames. See the comments for Expression::getComputedPaths() for more information. */ struct ComputedPaths { // Non-rename computed paths. std::set paths; // Mappings from the old name of a path before applying this expression, to the new one // after applying this expression. StringMap renames; }; virtual ~Expression(){}; /** * Optimize the Expression. * * This provides an opportunity to do constant folding, or to collapse nested operators that * have the same precedence, such as $add, $and, or $or. * * The Expression will be replaced with the return value, which may or may not be the same * object. In the case of constant folding, a computed expression may be replaced by a constant. * * Returns the optimized Expression. */ virtual boost::intrusive_ptr optimize() { return this; } /** * Add the fields and variables used in this expression to 'deps'. References to variables which * are local to a particular expression will be filtered out of the tracker upon return. */ void addDependencies(DepsTracker* deps) const { _doAddDependencies(deps); // Filter out references to any local variables. if (_boundaryVariableId) { deps->vars.erase(deps->vars.upper_bound(*_boundaryVariableId), deps->vars.end()); } } /** * Convenience wrapper around addDependencies. */ DepsTracker getDependencies() const { DepsTracker deps; addDependencies(&deps); return deps; } /** * Serialize the Expression tree recursively. * * If 'explain' is false, the returned Value must result in the same Expression when parsed by * parseOperand(). */ virtual Value serialize(bool explain) const = 0; /** * Evaluate the expression with respect to the Document given by 'root' and the Variables given * by 'variables'. It is an error to supply a Variables argument whose built-in variables (like * $$NOW) are not set. This method is thread-safe, so long as the 'variables' passed in here is * not shared between threads. */ virtual Value evaluate(const Document& root, Variables* variables) const = 0; /** * Returns information about the paths computed by this expression. This only needs to be * overridden by expressions that have renaming semantics, where optimization code could take * advantage of knowledge of these renames. * * Partitions paths involved in this expression into the set of computed paths and the set of * ("new" => "old") rename mappings. Here "new" refers to the name of the path after applying * this expression, whereas "old" refers to the name of the path before applying this * expression. * * The 'exprFieldPath' is the field path at which the result of this expression will be stored. * This is used to determine the value of the "new" path created by the rename. * * The 'renamingVar' is needed for checking whether a field path is a rename. For example, at * the top level only field paths that begin with the ROOT variable, as in "$$ROOT.path", are * renames. A field path such as "$$var.path" is not a rename. * * Now consider the example of a rename expressed via a $map: * * {$map: {input: "$array", as: "iter", in: {...}}} * * In this case, only field paths inside the "in" clause beginning with "iter", such as * "$$iter.path", are renames. */ virtual ComputedPaths getComputedPaths(const std::string& exprFieldPath, Variables::Id renamingVar = Variables::kRootId) const { return {{exprFieldPath}, {}}; } /** * This allows an arbitrary class to implement logic which gets dispatched to at runtime * depending on the type of the Expression. */ virtual void acceptVisitor(ExpressionVisitor* visitor) = 0; /** * Parses a BSON Object that could represent an object literal or a functional expression like * $add. * * Calls parseExpression() on any sub-document (including possibly the entire document) which * consists of a single field name starting with a '$'. */ static boost::intrusive_ptr parseObject(ExpressionContext* const expCtx, BSONObj obj, const VariablesParseState& vps); /** * Parses a BSONObj which has already been determined to be a functional expression. * * Throws an error if 'obj' does not contain exactly one field, or if that field's name does not * match a registered expression name. */ static boost::intrusive_ptr parseExpression(ExpressionContext* const expCtx, BSONObj obj, const VariablesParseState& vps); /** * Parses a BSONElement which is an argument to an Expression. * * An argument is allowed to be another expression, or a literal value, so this can call * parseObject(), ExpressionFieldPath::parse(), ExpressionArray::parse(), or * ExpressionConstant::parse() as necessary. */ static boost::intrusive_ptr parseOperand(ExpressionContext* const expCtx, BSONElement exprElement, const VariablesParseState& vps); /** * Return whether 'name' refers to an expression in the language. */ static bool isExpressionName(StringData name); /* Produce a field path std::string with the field prefix removed. Throws an error if the field prefix is not present. @param prefixedField the prefixed field @returns the field path with the prefix removed */ static std::string removeFieldPrefix(const std::string& prefixedField); /** * Registers an Parser so it can be called from parseExpression. * * DO NOT call this method directly. Instead, use the REGISTER_EXPRESSION macro defined in this * file. */ static void registerExpression( std::string key, Parser parser, boost::optional requiredMinVersion); const auto& getChildren() const { return _children; } auto& getChildren() { return _children; } auto getExpressionContext() const { return _expCtx; } protected: using ExpressionVector = std::vector>; Expression(ExpressionContext* const expCtx) : Expression(expCtx, {}) {} Expression(ExpressionContext* const expCtx, ExpressionVector&& children) : _children(std::move(children)), _expCtx(expCtx) { auto varIds = _expCtx->variablesParseState.getDefinedVariableIDs(); if (!varIds.empty()) { _boundaryVariableId = *std::prev(varIds.end()); } } virtual void _doAddDependencies(DepsTracker* deps) const = 0; /** * Owning container for all sub-Expressions. * * Some derived classes contain named fields since they originate from user syntax containing * field names. These classes contain alternate data structures or object members for accessing * children. These structures or object members are expected to reference this data structure. * In addition this structure should not be modified by named-field derived classes to avoid * invalidating references. */ ExpressionVector _children; private: boost::optional _boundaryVariableId; ExpressionContext* const _expCtx; }; /** * Inherit from ExpressionVariadic or ExpressionFixedArity instead of directly from this class. */ class ExpressionNary : public Expression { public: boost::intrusive_ptr optimize() override; Value serialize(bool explain) const override; /* Add an operand to the n-ary expression. @param pExpression the expression to add */ virtual void addOperand(const boost::intrusive_ptr& pExpression); virtual bool isAssociative() const { return false; } virtual bool isCommutative() const { return false; } virtual const char* getOpName() const = 0; virtual void validateArguments(const ExpressionVector& args) const {} static ExpressionVector parseArguments(ExpressionContext* const expCtx, BSONElement bsonExpr, const VariablesParseState& vps); const ExpressionVector& getOperandList() const { return _children; } protected: explicit ExpressionNary(ExpressionContext* const expCtx) : Expression(expCtx) {} ExpressionNary(ExpressionContext* const expCtx, ExpressionVector&& children) : Expression(expCtx, std::move(children)) {} void _doAddDependencies(DepsTracker* deps) const override; }; /// Inherit from ExpressionVariadic or ExpressionFixedArity instead of directly from this class. template class ExpressionNaryBase : public ExpressionNary { public: static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement bsonExpr, const VariablesParseState& vps) { auto expr = make_intrusive(expCtx); ExpressionVector args = parseArguments(expCtx, bsonExpr, vps); expr->validateArguments(args); expr->_children = std::move(args); return expr; } protected: explicit ExpressionNaryBase(ExpressionContext* const expCtx) : ExpressionNary(expCtx) {} ExpressionNaryBase(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionNary(expCtx, std::move(children)) {} }; /// Inherit from this class if your expression takes a variable number of arguments. template class ExpressionVariadic : public ExpressionNaryBase { public: explicit ExpressionVariadic(ExpressionContext* const expCtx) : ExpressionNaryBase(expCtx) {} ExpressionVariadic(ExpressionContext* const expCtx, Expression::ExpressionVector&& children) : ExpressionNaryBase(expCtx, std::move(children)) {} }; /** * Inherit from this class if your expression can take a range of arguments, e.g. if it has some * optional arguments. */ template class ExpressionRangedArity : public ExpressionNaryBase { public: explicit ExpressionRangedArity(ExpressionContext* const expCtx) : ExpressionNaryBase(expCtx) {} ExpressionRangedArity(ExpressionContext* const expCtx, Expression::ExpressionVector&& children) : ExpressionNaryBase(expCtx, std::move(children)) {} void validateArguments(const Expression::ExpressionVector& args) const override { uassert(28667, str::stream() << "Expression " << this->getOpName() << " takes at least " << MinArgs << " arguments, and at most " << MaxArgs << ", but " << args.size() << " were passed in.", MinArgs <= args.size() && args.size() <= MaxArgs); } }; /// Inherit from this class if your expression takes a fixed number of arguments. template class ExpressionFixedArity : public ExpressionNaryBase { public: explicit ExpressionFixedArity(ExpressionContext* const expCtx) : ExpressionNaryBase(expCtx) {} ExpressionFixedArity(ExpressionContext* const expCtx, Expression::ExpressionVector&& children) : ExpressionNaryBase(expCtx, std::move(children)) {} void validateArguments(const Expression::ExpressionVector& args) const override { uassert(16020, str::stream() << "Expression " << this->getOpName() << " takes exactly " << NArgs << " arguments. " << args.size() << " were passed in.", args.size() == NArgs); } }; /** * Used to make Accumulators available as Expressions, e.g., to make $sum available as an Expression * use "REGISTER_EXPRESSION(sum, ExpressionAccumulator::parse);". */ template class ExpressionFromAccumulator : public ExpressionVariadic> { public: explicit ExpressionFromAccumulator(ExpressionContext* const expCtx) : ExpressionVariadic>(expCtx) {} Value evaluate(const Document& root, Variables* variables) const final { AccumulatorState accum(this->getExpressionContext()); const auto n = this->_children.size(); // If a single array arg is given, loop through it passing each member to the accumulator. // If a single, non-array arg is given, pass it directly to the accumulator. if (n == 1) { Value singleVal = this->_children[0]->evaluate(root, variables); if (singleVal.getType() == Array) { for (const Value& val : singleVal.getArray()) { accum.process(val, false); } } else { accum.process(singleVal, false); } } else { // If multiple arguments are given, pass all arguments to the accumulator. for (auto&& argument : this->_children) { accum.process(argument->evaluate(root, variables), false); } } return accum.getValue(false); } bool isAssociative() const final { // Return false if a single argument is given to avoid a single array argument being treated // as an array instead of as a list of arguments. if (this->_children.size() == 1) { return false; } return AccumulatorState(this->getExpressionContext()).isAssociative(); } bool isCommutative() const final { return AccumulatorState(this->getExpressionContext()).isCommutative(); } const char* getOpName() const final { return AccumulatorState(this->getExpressionContext()).getOpName(); } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; /** * Inherit from this class if your expression takes exactly one numeric argument. */ template class ExpressionSingleNumericArg : public ExpressionFixedArity { public: explicit ExpressionSingleNumericArg(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} explicit ExpressionSingleNumericArg(ExpressionContext* const expCtx, Expression::ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} virtual ~ExpressionSingleNumericArg() = default; Value evaluate(const Document& root, Variables* variables) const final { Value arg = this->_children[0]->evaluate(root, variables); if (arg.nullish()) return Value(BSONNULL); uassert(28765, str::stream() << this->getOpName() << " only supports numeric types, not " << typeName(arg.getType()), arg.numeric()); return evaluateNumericArg(arg); } virtual Value evaluateNumericArg(const Value& numericArg) const = 0; }; /** * Inherit from this class if your expression takes exactly two numeric arguments. */ template class ExpressionTwoNumericArgs : public ExpressionFixedArity { public: explicit ExpressionTwoNumericArgs(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionTwoNumericArgs(ExpressionContext* const expCtx, Expression::ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} virtual ~ExpressionTwoNumericArgs() = default; /** * Evaluate performs the type checking necessary to make sure that both arguments are numeric, * then calls the evaluateNumericArgs on the two numeric args: * 1. If either input is nullish, it returns null. * 2. If either input is not numeric, it throws an error. * 3. Call evaluateNumericArgs on the two numeric args. */ Value evaluate(const Document& root, Variables* variables) const final { Value arg1 = this->_children[0]->evaluate(root, variables); if (arg1.nullish()) return Value(BSONNULL); uassert(51044, str::stream() << this->getOpName() << " only supports numeric types, not " << typeName(arg1.getType()), arg1.numeric()); Value arg2 = this->_children[1]->evaluate(root, variables); if (arg2.nullish()) return Value(BSONNULL); uassert(51045, str::stream() << this->getOpName() << " only supports numeric types, not " << typeName(arg2.getType()), arg2.numeric()); return evaluateNumericArgs(arg1, arg2); } /** * Evaluate the expression on exactly two numeric arguments. */ virtual Value evaluateNumericArgs(const Value& numericArg1, const Value& numericArg2) const = 0; }; /** * A constant expression. Repeated calls to evaluate() will always return the same thing. */ class ExpressionConstant final : public Expression { public: ExpressionConstant(ExpressionContext* const expCtx, const Value& value); boost::intrusive_ptr optimize() final; Value evaluate(const Document& root, Variables* variables) const final; Value serialize(bool explain) const final; const char* getOpName() const; /** * Creates a new ExpressionConstant with value 'value'. */ static boost::intrusive_ptr create(ExpressionContext* const expCtx, const Value& value); static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement bsonExpr, const VariablesParseState& vps); /** * Returns true if 'expression' is nullptr or if 'expression' is an instance of an * ExpressionConstant. */ static bool isNullOrConstant(boost::intrusive_ptr expression) { return !expression || dynamic_cast(expression.get()); } /** * Returns true if every expression in 'expressions' is either a nullptr or an instance of an * ExpressionConstant. */ static bool allNullOrConstant( const std::initializer_list>& expressions) { return std::all_of(expressions.begin(), expressions.end(), [](auto exp) { return ExpressionConstant::isNullOrConstant(exp); }); } /** * Returns the constant value represented by this Expression. */ Value getValue() const { return _value; } void setValue(const Value& value) { _value = value; }; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const override; private: Value _value; }; /** * Inherit from this class if your expression works with date types, and accepts either a single * argument which is a date, or an object {date: , timezone: }. */ template class DateExpressionAcceptingTimeZone : public Expression { public: virtual ~DateExpressionAcceptingTimeZone() {} Value evaluate(const Document& root, Variables* variables) const final { auto dateVal = _date->evaluate(root, variables); if (dateVal.nullish()) { return Value(BSONNULL); } auto date = dateVal.coerceToDate(); if (!_timeZone) { return evaluateDate(date, TimeZoneDatabase::utcZone()); } auto timeZoneId = _timeZone->evaluate(root, variables); if (timeZoneId.nullish()) { return Value(BSONNULL); } uassert(40533, str::stream() << _opName << " requires a string for the timezone argument, but was given a " << typeName(timeZoneId.getType()) << " (" << timeZoneId.toString() << ")", timeZoneId.getType() == BSONType::String); invariant(getExpressionContext()->timeZoneDatabase); auto timeZone = getExpressionContext()->timeZoneDatabase->getTimeZone(timeZoneId.getString()); return evaluateDate(date, timeZone); } /** * Always serializes to the full {date: , timezone: } format, leaving * off the timezone if not specified. */ Value serialize(bool explain) const final { auto timezone = _timeZone ? _timeZone->serialize(explain) : Value(); return Value(Document{ {_opName, Document{{"date", _date->serialize(explain)}, {"timezone", std::move(timezone)}}}}); } boost::intrusive_ptr optimize() final { _date = _date->optimize(); if (_timeZone) { _timeZone = _timeZone->optimize(); } if (ExpressionConstant::allNullOrConstant({_date, _timeZone})) { // Everything is a constant, so we can turn into a constant. return ExpressionConstant::create( getExpressionContext(), evaluate(Document{}, &(getExpressionContext()->variables))); } return this; } static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement operatorElem, const VariablesParseState& variablesParseState) { if (operatorElem.type() == BSONType::Object) { if (operatorElem.embeddedObject().firstElementFieldName()[0] == '$') { // Assume this is an expression specification representing the date argument // like {$add: [, 1000]}. return new SubClass(expCtx, Expression::parseObject(expCtx, operatorElem.embeddedObject(), variablesParseState)); } else { // It's an object specifying the date and timezone options like {date: , // timezone: }. auto opName = operatorElem.fieldNameStringData(); boost::intrusive_ptr date; boost::intrusive_ptr timeZone; for (const auto& subElem : operatorElem.embeddedObject()) { auto argName = subElem.fieldNameStringData(); if (argName == "date"_sd) { date = Expression::parseOperand(expCtx, subElem, variablesParseState); } else if (argName == "timezone"_sd) { timeZone = Expression::parseOperand(expCtx, subElem, variablesParseState); } else { uasserted(40535, str::stream() << "unrecognized option to " << opName << ": \"" << argName << "\""); } } uassert(40539, str::stream() << "missing 'date' argument to " << opName << ", provided: " << operatorElem, date); return new SubClass(expCtx, std::move(date), std::move(timeZone)); } } else if (operatorElem.type() == BSONType::Array) { auto elems = operatorElem.Array(); uassert( 40536, str::stream() << operatorElem.fieldNameStringData() << " accepts exactly one argument if given an array, but was given " << elems.size(), elems.size() == 1); // We accept an argument wrapped in a single array. For example, either {$week: } // or {$week: []} are valid, but not {$week: [{date: }]}. return new SubClass(expCtx, Expression::parseOperand(expCtx, elems[0], variablesParseState)); } // Exhausting the other possibilities, we are left with a literal value which should be // treated as the date argument. return new SubClass(expCtx, Expression::parseOperand(expCtx, operatorElem, variablesParseState)); } protected: explicit DateExpressionAcceptingTimeZone(ExpressionContext* const expCtx, const StringData opName, boost::intrusive_ptr date, boost::intrusive_ptr timeZone) : Expression(expCtx, {date, timeZone}), _opName(opName), _date(_children[0]), _timeZone(_children[1]) {} void _doAddDependencies(DepsTracker* deps) const final { _date->addDependencies(deps); if (_timeZone) { _timeZone->addDependencies(deps); } } /** * Subclasses should implement this to do their actual date-related logic. Uses 'timezone' to * evaluate the expression against 'data'. If the user did not specify a time zone, 'timezone' * will represent the UTC zone. */ virtual Value evaluateDate(Date_t date, const TimeZone& timezone) const = 0; private: // The name of this expression, e.g. $week or $month. StringData _opName; // The expression representing the date argument. boost::intrusive_ptr& _date; // The expression representing the timezone argument. boost::intrusive_ptr& _timeZone; }; class ExpressionAbs final : public ExpressionSingleNumericArg { public: explicit ExpressionAbs(ExpressionContext* const expCtx) : ExpressionSingleNumericArg(expCtx) {} explicit ExpressionAbs(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionSingleNumericArg(expCtx, std::move(children)) {} Value evaluateNumericArg(const Value& numericArg) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionAdd final : public ExpressionVariadic { public: explicit ExpressionAdd(ExpressionContext* const expCtx) : ExpressionVariadic(expCtx) {} ExpressionAdd(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionVariadic(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; bool isAssociative() const final { return true; } bool isCommutative() const final { return true; } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionAllElementsTrue final : public ExpressionFixedArity { public: explicit ExpressionAllElementsTrue(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionAllElementsTrue(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionAnd final : public ExpressionVariadic { public: explicit ExpressionAnd(ExpressionContext* const expCtx) : ExpressionVariadic(expCtx) {} ExpressionAnd(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionVariadic(expCtx, std::move(children)) {} boost::intrusive_ptr optimize() final; Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; bool isAssociative() const final { return true; } bool isCommutative() const final { return true; } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionAnyElementTrue final : public ExpressionFixedArity { public: explicit ExpressionAnyElementTrue(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionAnyElementTrue(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionArray final : public ExpressionVariadic { public: explicit ExpressionArray(ExpressionContext* const expCtx) : ExpressionVariadic(expCtx) {} ExpressionArray(ExpressionContext* const expCtx, std::vector>&& children) : ExpressionVariadic(expCtx) { _children = std::move(children); } Value evaluate(const Document& root, Variables* variables) const final; Value serialize(bool explain) const final; static boost::intrusive_ptr create( ExpressionContext* const expCtx, std::vector>&& children) { return make_intrusive(expCtx, std::move(children)); } boost::intrusive_ptr optimize() final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionArrayElemAt final : public ExpressionFixedArity { public: explicit ExpressionArrayElemAt(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionArrayElemAt(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionFirst final : public ExpressionFixedArity { public: explicit ExpressionFirst(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionFirst(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionLast final : public ExpressionFixedArity { public: explicit ExpressionLast(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionObjectToArray final : public ExpressionFixedArity { public: explicit ExpressionObjectToArray(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionArrayToObject final : public ExpressionFixedArity { public: explicit ExpressionArrayToObject(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionArrayToObject(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionBsonSize final : public ExpressionFixedArity { public: explicit ExpressionBsonSize(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final { return "$bsonSize"; } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionCeil final : public ExpressionSingleNumericArg { public: explicit ExpressionCeil(ExpressionContext* const expCtx) : ExpressionSingleNumericArg(expCtx) {} explicit ExpressionCeil(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionSingleNumericArg(expCtx, std::move(children)) {} Value evaluateNumericArg(const Value& numericArg) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionCoerceToBool final : public Expression { public: boost::intrusive_ptr optimize() final; Value evaluate(const Document& root, Variables* variables) const final; Value serialize(bool explain) const final; static boost::intrusive_ptr create( ExpressionContext* const expCtx, boost::intrusive_ptr pExpression); void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final; private: ExpressionCoerceToBool(ExpressionContext* const expCtx, boost::intrusive_ptr pExpression); boost::intrusive_ptr& pExpression; }; class ExpressionCompare final : public ExpressionFixedArity { public: /** * Enumeration of comparison operators. Any changes to these values require adjustment of * the lookup table in the implementation. */ enum CmpOp { EQ = 0, // return true for a == b, false otherwise NE = 1, // return true for a != b, false otherwise GT = 2, // return true for a > b, false otherwise GTE = 3, // return true for a >= b, false otherwise LT = 4, // return true for a < b, false otherwise LTE = 5, // return true for a <= b, false otherwise CMP = 6, // return -1, 0, 1 for a < b, a == b, a > b }; ExpressionCompare(ExpressionContext* const expCtx, CmpOp cmpOp) : ExpressionFixedArity(expCtx), cmpOp(cmpOp) {} ExpressionCompare(ExpressionContext* const expCtx, CmpOp cmpOp, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)), cmpOp(cmpOp) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; CmpOp getOp() const { return cmpOp; } static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement bsonExpr, const VariablesParseState& vps, CmpOp cmpOp); static boost::intrusive_ptr create( ExpressionContext* const expCtx, CmpOp cmpOp, const boost::intrusive_ptr& exprLeft, const boost::intrusive_ptr& exprRight); void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } private: CmpOp cmpOp; }; class ExpressionConcat final : public ExpressionVariadic { public: explicit ExpressionConcat(ExpressionContext* const expCtx) : ExpressionVariadic(expCtx) {} ExpressionConcat(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionVariadic(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; bool isAssociative() const final { return true; } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionConcatArrays final : public ExpressionVariadic { public: explicit ExpressionConcatArrays(ExpressionContext* const expCtx) : ExpressionVariadic(expCtx) {} ExpressionConcatArrays(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionVariadic(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; bool isAssociative() const final { return true; } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionCond final : public ExpressionFixedArity { public: explicit ExpressionCond(ExpressionContext* const expCtx) : Base(expCtx) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vps); void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } private: typedef ExpressionFixedArity Base; }; class ExpressionDateFromString final : public Expression { public: ExpressionDateFromString(ExpressionContext* const expCtx, boost::intrusive_ptr dateString, boost::intrusive_ptr timeZone, boost::intrusive_ptr format, boost::intrusive_ptr onNull, boost::intrusive_ptr onError); boost::intrusive_ptr optimize() final; Value serialize(bool explain) const final; Value evaluate(const Document& root, Variables* variables) const final; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vps); void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final; private: boost::intrusive_ptr& _dateString; boost::intrusive_ptr& _timeZone; boost::intrusive_ptr& _format; boost::intrusive_ptr& _onNull; boost::intrusive_ptr& _onError; }; class ExpressionDateFromParts final : public Expression { public: ExpressionDateFromParts(ExpressionContext* const expCtx, boost::intrusive_ptr year, boost::intrusive_ptr month, boost::intrusive_ptr day, boost::intrusive_ptr hour, boost::intrusive_ptr minute, boost::intrusive_ptr second, boost::intrusive_ptr millisecond, boost::intrusive_ptr isoWeekYear, boost::intrusive_ptr isoWeek, boost::intrusive_ptr isoDayOfWeek, boost::intrusive_ptr timeZone); boost::intrusive_ptr optimize() final; Value serialize(bool explain) const final; Value evaluate(const Document& root, Variables* variables) const final; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vps); void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final; private: /** * This function checks whether a field is a number. * * If 'field' is null, the default value is returned trough the 'returnValue' out * parameter and the function returns true. * * If 'field' is not null: * - if the value is "nullish", the function returns false. * - if the value can not be coerced to an integral value, a UserException is thrown. * - otherwise, the coerced integral value is returned through the 'returnValue' * out parameter, and the function returns true. */ bool evaluateNumberWithDefault(const Document& root, const Expression* field, StringData fieldName, long long defaultValue, long long* returnValue, Variables* variables) const; /** * This function has the same behavior as evaluteNumberWithDefault(), except that it uasserts if * the resulting value is not in the range defined by kMaxValueForDatePart and * kMinValueForDatePart. */ bool evaluateNumberWithDefaultAndBounds(const Document& root, const Expression* field, StringData fieldName, long long defaultValue, long long* returnValue, Variables* variables) const; boost::intrusive_ptr& _year; boost::intrusive_ptr& _month; boost::intrusive_ptr& _day; boost::intrusive_ptr& _hour; boost::intrusive_ptr& _minute; boost::intrusive_ptr& _second; boost::intrusive_ptr& _millisecond; boost::intrusive_ptr& _isoWeekYear; boost::intrusive_ptr& _isoWeek; boost::intrusive_ptr& _isoDayOfWeek; boost::intrusive_ptr& _timeZone; // Some date conversions spend a long time iterating through date tables when dealing with large // input numbers, so we place a reasonable limit on the magnitude of any argument to // $dateFromParts: inputs that fit within a 16-bit int are permitted. static constexpr long long kMaxValueForDatePart = std::numeric_limits::max(); static constexpr long long kMinValueForDatePart = std::numeric_limits::lowest(); }; class ExpressionDateToParts final : public Expression { public: /** * The iso8601 argument controls whether to output ISO8601 elements or natural calendar. */ ExpressionDateToParts(ExpressionContext* const expCtx, boost::intrusive_ptr date, boost::intrusive_ptr timeZone, boost::intrusive_ptr iso8601); boost::intrusive_ptr optimize() final; Value serialize(bool explain) const final; Value evaluate(const Document& root, Variables* variables) const final; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vps); void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final; private: boost::optional evaluateIso8601Flag(const Document& root, Variables* variables) const; boost::intrusive_ptr& _date; boost::intrusive_ptr& _timeZone; boost::intrusive_ptr& _iso8601; }; class ExpressionDateToString final : public Expression { public: ExpressionDateToString(ExpressionContext* const expCtx, boost::intrusive_ptr format, boost::intrusive_ptr date, boost::intrusive_ptr timeZone, boost::intrusive_ptr onNull); boost::intrusive_ptr optimize() final; Value serialize(bool explain) const final; Value evaluate(const Document& root, Variables* variables) const final; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vps); void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final; private: boost::intrusive_ptr& _format; boost::intrusive_ptr& _date; boost::intrusive_ptr& _timeZone; boost::intrusive_ptr& _onNull; }; class ExpressionDayOfMonth final : public DateExpressionAcceptingTimeZone { public: explicit ExpressionDayOfMonth(ExpressionContext* const expCtx, boost::intrusive_ptr date, boost::intrusive_ptr timeZone = nullptr) : DateExpressionAcceptingTimeZone( expCtx, "$dayOfMonth", std::move(date), std::move(timeZone)) {} Value evaluateDate(Date_t date, const TimeZone& timeZone) const final { return Value(timeZone.dateParts(date).dayOfMonth); } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionDayOfWeek final : public DateExpressionAcceptingTimeZone { public: explicit ExpressionDayOfWeek(ExpressionContext* const expCtx, boost::intrusive_ptr date, boost::intrusive_ptr timeZone = nullptr) : DateExpressionAcceptingTimeZone( expCtx, "$dayOfWeek", std::move(date), std::move(timeZone)) {} Value evaluateDate(Date_t date, const TimeZone& timeZone) const final { return Value(timeZone.dayOfWeek(date)); } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionDayOfYear final : public DateExpressionAcceptingTimeZone { public: explicit ExpressionDayOfYear(ExpressionContext* const expCtx, boost::intrusive_ptr date, boost::intrusive_ptr timeZone = nullptr) : DateExpressionAcceptingTimeZone( expCtx, "$dayOfYear", std::move(date), std::move(timeZone)) {} Value evaluateDate(Date_t date, const TimeZone& timeZone) const final { return Value(timeZone.dayOfYear(date)); } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; /** * $dateDiff expression that determines a difference between two time instants. */ class ExpressionDateDiff final : public Expression { public: /** * startDate - an expression that resolves to a Value that is coercible to date. * endDate - an expression that resolves to a Value that is coercible to date. * unit - expression defining a length of time interval to measure the difference in that * resolves to a string Value. * timezone - expression defining a timezone to perform the operation in that resolves to a * string Value. Can be nullptr. */ ExpressionDateDiff(ExpressionContext* const expCtx, boost::intrusive_ptr startDate, boost::intrusive_ptr endDate, boost::intrusive_ptr unit, boost::intrusive_ptr timezone); boost::intrusive_ptr optimize() final; Value serialize(bool explain) const final; Value evaluate(const Document& root, Variables* variables) const final; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vps); void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final; private: /** * Converts 'value' to Date_t type for $dateDiff expression for parameter 'parameterName'. */ static Date_t convertToDate(const Value& value, StringData parameterName); /** * Converts 'value' to TimeUnit for $dateDiff expression parameter 'unit'. */ static TimeUnit convertToTimeUnit(const Value& value); // Starting time instant expression. Accepted types: Date_t, Timestamp, OID. boost::intrusive_ptr& _startDate; // Ending time instant expression. Accepted types the same as for '_startDate'. boost::intrusive_ptr& _endDate; // Length of time interval to measure the difference. Accepted type: std::string. Accepted // values: enumerators from TimeUnit enumeration. boost::intrusive_ptr& _unit; // Timezone to use for the difference calculation. Accepted type: std::string. If not specified, // UTC is used. boost::intrusive_ptr& _timeZone; }; class ExpressionDivide final : public ExpressionFixedArity { public: explicit ExpressionDivide(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} explicit ExpressionDivide(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionExp final : public ExpressionSingleNumericArg { public: explicit ExpressionExp(ExpressionContext* const expCtx) : ExpressionSingleNumericArg(expCtx) {} explicit ExpressionExp(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionSingleNumericArg(expCtx, std::move(children)) {} Value evaluateNumericArg(const Value& numericArg) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionFieldPath final : public Expression { public: bool isRootFieldPath() const { return _variable == Variables::kRootId; } boost::intrusive_ptr optimize() final; Value evaluate(const Document& root, Variables* variables) const final; Value serialize(bool explain) const final; /* Create a field path expression using old semantics (rooted off of CURRENT). // NOTE: this method is deprecated and only used by tests // TODO remove this method in favor of parse() Evaluation will extract the value associated with the given field path from the source document. @param fieldPath the field path string, without any leading document indicator @returns the newly created field path expression */ static boost::intrusive_ptr deprecatedCreate( ExpressionContext* const expCtx, const std::string& fieldPath); // Parse from the raw std::string from the user with the "$" prefixes. static boost::intrusive_ptr parse(ExpressionContext* const expCtx, const std::string& raw, const VariablesParseState& vps); // Create from a non-prefixed string. Assumes path not variable. static boost::intrusive_ptr createPathFromString( ExpressionContext* const expCtx, const std::string& raw, const VariablesParseState& vps); // Create from a non-prefixed string. Assumes variable not path. static boost::intrusive_ptr createVarFromString( ExpressionContext* const expCtx, const std::string& raw, const VariablesParseState& vps); /** * Returns true if this expression logically represents the path 'dottedPath'. For example, if * 'dottedPath' is 'a.b' and this FieldPath is '$$CURRENT.a.b', returns true. */ bool representsPath(const std::string& dottedPath) const; const FieldPath& getFieldPath() const { return _fieldPath; } Variables::Id getVariableId() const { return _variable; } auto getFieldPathWithoutCurrentPrefix() const { return _fieldPath.tail(); } ComputedPaths getComputedPaths(const std::string& exprFieldPath, Variables::Id renamingVar) const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final; private: ExpressionFieldPath(ExpressionContext* const expCtx, const std::string& fieldPath, Variables::Id variable); /* Internal implementation of evaluate(), used recursively. The internal implementation doesn't just use a loop because of the possibility that we need to skip over an array. If the path is "a.b.c", and a is an array, then we fan out from there, and traverse "b.c" for each element of a:[...]. This requires that a be an array of objects in order to navigate more deeply. @param index current path field index to extract @param input current document traversed to (not the top-level one) @returns the field found; could be an array */ Value evaluatePath(size_t index, const Document& input) const; // Helper for evaluatePath to handle Array case Value evaluatePathArray(size_t index, const Value& input) const; const FieldPath _fieldPath; const Variables::Id _variable; }; class ExpressionFilter final : public Expression { public: boost::intrusive_ptr optimize() final; Value serialize(bool explain) const final; Value evaluate(const Document& root, Variables* variables) const final; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vps); ExpressionFilter(ExpressionContext* const expCtx, std::string varName, Variables::Id varId, boost::intrusive_ptr input, boost::intrusive_ptr filter); void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } Variables::Id getVariableId() const { return _varId; } protected: void _doAddDependencies(DepsTracker* deps) const final; private: // The name of the variable to set to each element in the array. std::string _varName; // The id of the variable to set. Variables::Id _varId; // The array to iterate over. boost::intrusive_ptr& _input; // The expression determining whether each element should be present in the result array. boost::intrusive_ptr& _filter; }; class ExpressionFloor final : public ExpressionSingleNumericArg { public: explicit ExpressionFloor(ExpressionContext* const expCtx) : ExpressionSingleNumericArg(expCtx) {} explicit ExpressionFloor(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionSingleNumericArg(expCtx, std::move(children)) {} Value evaluateNumericArg(const Value& numericArg) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionHour final : public DateExpressionAcceptingTimeZone { public: explicit ExpressionHour(ExpressionContext* const expCtx, boost::intrusive_ptr date, boost::intrusive_ptr timeZone = nullptr) : DateExpressionAcceptingTimeZone( expCtx, "$hour", std::move(date), std::move(timeZone)) {} Value evaluateDate(Date_t date, const TimeZone& timeZone) const final { return Value(timeZone.dateParts(date).hour); } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionIfNull final : public ExpressionVariadic { public: explicit ExpressionIfNull(ExpressionContext* const expCtx) : ExpressionVariadic(expCtx) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void validateArguments(const ExpressionVector& args) const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionIn final : public ExpressionFixedArity { public: explicit ExpressionIn(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionIn(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionIndexOfArray : public ExpressionRangedArity { public: explicit ExpressionIndexOfArray(ExpressionContext* const expCtx) : ExpressionRangedArity(expCtx) {} ExpressionIndexOfArray(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionRangedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const; boost::intrusive_ptr optimize() final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: struct Arguments { Arguments(Value targetOfSearch, int startIndex, int endIndex) : targetOfSearch(targetOfSearch), startIndex(startIndex), endIndex(endIndex) {} Value targetOfSearch; int startIndex; int endIndex; }; /** * When given 'operands' which correspond to the arguments to $indexOfArray, evaluates and * validates the target value, starting index, and ending index arguments and returns their * values as a Arguments struct. The starting index and ending index are optional, so as default * 'startIndex' will be 0 and 'endIndex' will be the length of the input array. Throws a * UserException if the values are found to be invalid in some way, e.g. if the indexes are not * numbers. */ Arguments evaluateAndValidateArguments(const Document& root, const ExpressionVector& operands, size_t arrayLength, Variables* variables) const; private: class Optimized; }; class ExpressionIndexOfBytes final : public ExpressionRangedArity { public: explicit ExpressionIndexOfBytes(ExpressionContext* const expCtx) : ExpressionRangedArity(expCtx) {} ExpressionIndexOfBytes(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionRangedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; /** * Implements indexOf behavior for strings with UTF-8 encoding. */ class ExpressionIndexOfCP final : public ExpressionRangedArity { public: explicit ExpressionIndexOfCP(ExpressionContext* const expCtx) : ExpressionRangedArity(expCtx) {} ExpressionIndexOfCP(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionRangedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionLet final : public Expression { public: boost::intrusive_ptr optimize() final; Value serialize(bool explain) const final; Value evaluate(const Document& root, Variables* variables) const final; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vps); struct NameAndExpression { std::string name; boost::intrusive_ptr& expression; }; typedef std::map VariableMap; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } auto& getOrderedVariableIds() const { return _orderedVariableIds; } auto& getVariableMap() const { return _variables; } protected: void _doAddDependencies(DepsTracker* deps) const final; private: ExpressionLet(ExpressionContext* const expCtx, VariableMap&& vars, std::vector> children, std::vector orderedVariableIds); VariableMap _variables; // These ids are ordered to match their corresponding _children expressions. std::vector _orderedVariableIds; // Reference to the last element in the '_children' list. boost::intrusive_ptr& _subExpression; }; class ExpressionLn final : public ExpressionSingleNumericArg { public: explicit ExpressionLn(ExpressionContext* const expCtx) : ExpressionSingleNumericArg(expCtx) {} ExpressionLn(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionSingleNumericArg(expCtx, std::move(children)) {} Value evaluateNumericArg(const Value& numericArg) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionLog final : public ExpressionFixedArity { public: explicit ExpressionLog(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionLog(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionLog10 final : public ExpressionSingleNumericArg { public: explicit ExpressionLog10(ExpressionContext* const expCtx) : ExpressionSingleNumericArg(expCtx) {} ExpressionLog10(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionSingleNumericArg(expCtx, std::move(children)) {} Value evaluateNumericArg(const Value& numericArg) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionMap final : public Expression { public: boost::intrusive_ptr optimize() final; Value serialize(bool explain) const final; Value evaluate(const Document& root, Variables* variables) const final; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vps); ComputedPaths getComputedPaths(const std::string& exprFieldPath, Variables::Id renamingVar) const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final; private: ExpressionMap( ExpressionContext* const expCtx, const std::string& varName, // name of variable to set Variables::Id varId, // id of variable to set boost::intrusive_ptr input, // yields array to iterate boost::intrusive_ptr each); // yields results to be added to output array std::string _varName; Variables::Id _varId; boost::intrusive_ptr& _input; boost::intrusive_ptr& _each; }; class ExpressionMeta final : public Expression { public: ExpressionMeta(ExpressionContext* const expCtx, DocumentMetadataFields::MetaType metaType); Value serialize(bool explain) const final; Value evaluate(const Document& root, Variables* variables) const final; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vps); void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } DocumentMetadataFields::MetaType getMetaType() const { return _metaType; } protected: void _doAddDependencies(DepsTracker* deps) const final; private: DocumentMetadataFields::MetaType _metaType; }; class ExpressionMillisecond final : public DateExpressionAcceptingTimeZone { public: explicit ExpressionMillisecond(ExpressionContext* const expCtx, boost::intrusive_ptr date, boost::intrusive_ptr timeZone = nullptr) : DateExpressionAcceptingTimeZone( expCtx, "$millisecond", std::move(date), std::move(timeZone)) {} Value evaluateDate(Date_t date, const TimeZone& timeZone) const final { return Value(timeZone.dateParts(date).millisecond); } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionMinute final : public DateExpressionAcceptingTimeZone { public: explicit ExpressionMinute(ExpressionContext* const expCtx, boost::intrusive_ptr date, boost::intrusive_ptr timeZone = nullptr) : DateExpressionAcceptingTimeZone( expCtx, "$minute", std::move(date), std::move(timeZone)) {} Value evaluateDate(Date_t date, const TimeZone& timeZone) const final { return Value(timeZone.dateParts(date).minute); } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionMod final : public ExpressionFixedArity { public: explicit ExpressionMod(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionMod(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionMultiply final : public ExpressionVariadic { public: explicit ExpressionMultiply(ExpressionContext* const expCtx) : ExpressionVariadic(expCtx) {} ExpressionMultiply(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionVariadic(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; bool isAssociative() const final { return true; } bool isCommutative() const final { return true; } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionMonth final : public DateExpressionAcceptingTimeZone { public: explicit ExpressionMonth(ExpressionContext* const expCtx, boost::intrusive_ptr date, boost::intrusive_ptr timeZone = nullptr) : DateExpressionAcceptingTimeZone( expCtx, "$month", std::move(date), std::move(timeZone)) {} Value evaluateDate(Date_t date, const TimeZone& timeZone) const final { return Value(timeZone.dateParts(date).month); } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionNot final : public ExpressionFixedArity { public: explicit ExpressionNot(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionNot(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; /** * This class is used to represent expressions that create object literals, such as the value of * '_id' in this group stage: * {$group: { * _id: {b: "$a", c: {$add: [4, "$c"]}} <- This is represented as an ExpressionObject. * ... * }} */ class ExpressionObject final : public Expression { public: boost::intrusive_ptr optimize() final; Value evaluate(const Document& root, Variables* variables) const final; Value serialize(bool explain) const final; static boost::intrusive_ptr create( ExpressionContext* const expCtx, std::vector>>&& expressionsWithChildrenInPlace); /** * Parses and constructs an ExpressionObject from 'obj'. */ static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONObj obj, const VariablesParseState& vps); /** * This ExpressionObject must outlive the returned vector. */ const auto& getChildExpressions() const { return _expressions; } ComputedPaths getComputedPaths(const std::string& exprFieldPath, Variables::Id renamingVar) const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final; private: ExpressionObject( ExpressionContext* const expCtx, std::vector> children, std::vector&>>&& expressions); // The mapping from field name to expression within this object. This needs to respect the order // in which the fields were specified in the input BSON. std::vector&>> _expressions; }; class ExpressionOr final : public ExpressionVariadic { public: explicit ExpressionOr(ExpressionContext* const expCtx) : ExpressionVariadic(expCtx) {} ExpressionOr(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionVariadic(expCtx, std::move(children)) {} boost::intrusive_ptr optimize() final; Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; bool isAssociative() const final { return true; } bool isCommutative() const final { return true; } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionPow final : public ExpressionFixedArity { public: explicit ExpressionPow(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionPow(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} static boost::intrusive_ptr create(ExpressionContext* const expCtx, Value base, Value exp); void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } private: Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; }; class ExpressionRange final : public ExpressionRangedArity { public: explicit ExpressionRange(ExpressionContext* const expCtx) : ExpressionRangedArity(expCtx) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionReduce final : public Expression { public: ExpressionReduce(ExpressionContext* const expCtx, boost::intrusive_ptr input, boost::intrusive_ptr initial, boost::intrusive_ptr in, Variables::Id thisVar, Variables::Id valueVar) : Expression(expCtx, {std::move(input), std::move(initial), std::move(in)}), _input(_children[0]), _initial(_children[1]), _in(_children[2]), _thisVar(thisVar), _valueVar(valueVar) {} Value evaluate(const Document& root, Variables* variables) const final; boost::intrusive_ptr optimize() final; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vps); Value serialize(bool explain) const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final; private: boost::intrusive_ptr& _input; boost::intrusive_ptr& _initial; boost::intrusive_ptr& _in; Variables::Id _thisVar; Variables::Id _valueVar; }; class ExpressionReplaceBase : public Expression { public: ExpressionReplaceBase(ExpressionContext* const expCtx, boost::intrusive_ptr input, boost::intrusive_ptr find, boost::intrusive_ptr replacement) : Expression(expCtx, {std::move(input), std::move(find), std::move(replacement)}), _input(_children[0]), _find(_children[1]), _replacement(_children[2]) {} virtual const char* getOpName() const = 0; Value evaluate(const Document& root, Variables* variables) const final; boost::intrusive_ptr optimize() final; Value serialize(bool explain) const final; protected: void _doAddDependencies(DepsTracker* deps) const final; virtual Value _doEval(StringData input, StringData find, StringData replacement) const = 0; // These are owned by this->Expression::_children. They are references to intrusive_ptr instead // of direct references to Expression because we need to be able to replace each child in // optimize() without invalidating the references. boost::intrusive_ptr& _input; boost::intrusive_ptr& _find; boost::intrusive_ptr& _replacement; }; class ExpressionReplaceOne final : public ExpressionReplaceBase { public: using ExpressionReplaceBase::ExpressionReplaceBase; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vps); static constexpr const char* const opName = "$replaceOne"; const char* getOpName() const final { return opName; } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: Value _doEval(StringData input, StringData find, StringData replacement) const final; }; class ExpressionReplaceAll final : public ExpressionReplaceBase { public: using ExpressionReplaceBase::ExpressionReplaceBase; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vps); static constexpr const char* const opName = "$replaceAll"; const char* getOpName() const final { return opName; } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: Value _doEval(StringData input, StringData find, StringData replacement) const final; }; class ExpressionSecond final : public DateExpressionAcceptingTimeZone { public: ExpressionSecond(ExpressionContext* const expCtx, boost::intrusive_ptr date, boost::intrusive_ptr timeZone = nullptr) : DateExpressionAcceptingTimeZone( expCtx, "$second", std::move(date), std::move(timeZone)) {} Value evaluateDate(Date_t date, const TimeZone& timeZone) const final { return Value(timeZone.dateParts(date).second); } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionSetDifference final : public ExpressionFixedArity { public: explicit ExpressionSetDifference(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionSetDifference(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionSetEquals final : public ExpressionVariadic { public: explicit ExpressionSetEquals(ExpressionContext* const expCtx) : ExpressionVariadic(expCtx) {} ExpressionSetEquals(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionVariadic(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void validateArguments(const ExpressionVector& args) const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionSetIntersection final : public ExpressionVariadic { public: explicit ExpressionSetIntersection(ExpressionContext* const expCtx) : ExpressionVariadic(expCtx) {} ExpressionSetIntersection(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionVariadic(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; bool isAssociative() const final { return true; } bool isCommutative() const final { return true; } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; // Not final, inherited from for optimizations. class ExpressionSetIsSubset : public ExpressionFixedArity { public: explicit ExpressionSetIsSubset(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionSetIsSubset(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} boost::intrusive_ptr optimize() override; Value evaluate(const Document& root, Variables* variables) const override; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } private: class Optimized; }; class ExpressionSetUnion final : public ExpressionVariadic { public: explicit ExpressionSetUnion(ExpressionContext* const expCtx) : ExpressionVariadic(expCtx) {} ExpressionSetUnion(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionVariadic(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; bool isAssociative() const final { return true; } bool isCommutative() const final { return true; } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionSize final : public ExpressionFixedArity { public: explicit ExpressionSize(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionReverseArray final : public ExpressionFixedArity { public: explicit ExpressionReverseArray(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionSlice final : public ExpressionRangedArity { public: explicit ExpressionSlice(ExpressionContext* const expCtx) : ExpressionRangedArity(expCtx) {} ExpressionSlice(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionRangedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionIsArray final : public ExpressionFixedArity { public: explicit ExpressionIsArray(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionIsArray(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionRound final : public ExpressionRangedArity { public: explicit ExpressionRound(ExpressionContext* const expCtx) : ExpressionRangedArity(expCtx) {} ExpressionRound(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionRangedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionSplit final : public ExpressionFixedArity { public: explicit ExpressionSplit(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionSplit(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionSqrt final : public ExpressionSingleNumericArg { public: explicit ExpressionSqrt(ExpressionContext* const expCtx) : ExpressionSingleNumericArg(expCtx) {} ExpressionSqrt(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionSingleNumericArg(expCtx, std::move(children)) {} Value evaluateNumericArg(const Value& numericArg) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionStrcasecmp final : public ExpressionFixedArity { public: explicit ExpressionStrcasecmp(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionStrcasecmp(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionSubstrBytes final : public ExpressionFixedArity { public: explicit ExpressionSubstrBytes(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionSubstrBytes(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionSubstrCP final : public ExpressionFixedArity { public: explicit ExpressionSubstrCP(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionSubstrCP(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionStrLenBytes final : public ExpressionFixedArity { public: explicit ExpressionStrLenBytes(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionStrLenBytes(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionBinarySize final : public ExpressionFixedArity { public: ExpressionBinarySize(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionStrLenCP final : public ExpressionFixedArity { public: explicit ExpressionStrLenCP(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionStrLenCP(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionSubtract final : public ExpressionFixedArity { public: explicit ExpressionSubtract(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionSubtract(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionSwitch final : public Expression { public: using ExpressionPair = std::pair&, boost::intrusive_ptr&>; ExpressionSwitch(ExpressionContext* const expCtx, std::vector> children, std::vector branches) : Expression(expCtx, std::move(children)), _default(_children.back()), _branches(std::move(branches)) {} Value evaluate(const Document& root, Variables* variables) const final; boost::intrusive_ptr optimize() final; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vpsIn); Value serialize(bool explain) const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final; private: boost::intrusive_ptr& _default; std::vector _branches; }; class ExpressionToLower final : public ExpressionFixedArity { public: explicit ExpressionToLower(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionToLower(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionToUpper final : public ExpressionFixedArity { public: explicit ExpressionToUpper(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionToUpper(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; /** * This class is used to implement all three trim expressions: $trim, $ltrim, and $rtrim. */ class ExpressionTrim final : public Expression { public: enum class TrimType { kBoth, kLeft, kRight, }; ExpressionTrim(ExpressionContext* const expCtx, TrimType trimType, StringData name, boost::intrusive_ptr input, boost::intrusive_ptr charactersToTrim) : Expression(expCtx, {std::move(input), std::move(charactersToTrim)}), _trimType(trimType), _name(name.toString()), _input(_children[0]), _characters(_children[1]) {} Value evaluate(const Document& root, Variables* variables) const final; boost::intrusive_ptr optimize() final; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vpsIn); Value serialize(bool explain) const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final; private: /** * Returns true if the unicode character found at index 'indexIntoInput' of 'input' is equal to * 'testCP'. */ static bool codePointMatchesAtIndex(const StringData& input, std::size_t indexIntoInput, const StringData& testCP); /** * Given the input string and the code points to trim from that string, returns a substring of * 'input' with any code point from 'trimCPs' trimmed from the left. */ static StringData trimFromLeft(StringData input, const std::vector& trimCPs); /** * Given the input string and the code points to trim from that string, returns a substring of * 'input' with any code point from 'trimCPs' trimmed from the right. */ static StringData trimFromRight(StringData input, const std::vector& trimCPs); /** * Returns the trimmed version of 'input', with all code points in 'trimCPs' removed from the * front, back, or both - depending on _trimType. */ StringData doTrim(StringData input, const std::vector& trimCPs) const; TrimType _trimType; std::string _name; // "$trim", "$ltrim", or "$rtrim". boost::intrusive_ptr& _input; boost::intrusive_ptr& _characters; // Optional, null if not specified. }; class ExpressionTrunc final : public ExpressionRangedArity { public: explicit ExpressionTrunc(ExpressionContext* const expCtx) : ExpressionRangedArity(expCtx) {} ExpressionTrunc(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionRangedArity(expCtx, std::move(children)) {} static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement elem, const VariablesParseState& vps); Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionType final : public ExpressionFixedArity { public: explicit ExpressionType(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} ExpressionType(ExpressionContext* const expCtx, ExpressionVector&& children) : ExpressionFixedArity(expCtx, std::move(children)) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionIsNumber final : public ExpressionFixedArity { public: explicit ExpressionIsNumber(ExpressionContext* const expCtx) : ExpressionFixedArity(expCtx) {} Value evaluate(const Document& root, Variables* variables) const final; const char* getOpName() const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionWeek final : public DateExpressionAcceptingTimeZone { public: ExpressionWeek(ExpressionContext* const expCtx, boost::intrusive_ptr date, boost::intrusive_ptr timeZone = nullptr) : DateExpressionAcceptingTimeZone( expCtx, "$week", std::move(date), std::move(timeZone)) {} Value evaluateDate(Date_t date, const TimeZone& timeZone) const final { return Value(timeZone.week(date)); } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionIsoWeekYear final : public DateExpressionAcceptingTimeZone { public: ExpressionIsoWeekYear(ExpressionContext* const expCtx, boost::intrusive_ptr date, boost::intrusive_ptr timeZone = nullptr) : DateExpressionAcceptingTimeZone( expCtx, "$isoWeekYear", std::move(date), std::move(timeZone)) {} Value evaluateDate(Date_t date, const TimeZone& timeZone) const final { return Value(timeZone.isoYear(date)); } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionIsoDayOfWeek final : public DateExpressionAcceptingTimeZone { public: ExpressionIsoDayOfWeek(ExpressionContext* const expCtx, boost::intrusive_ptr date, boost::intrusive_ptr timeZone = nullptr) : DateExpressionAcceptingTimeZone( expCtx, "$isoDayOfWeek", std::move(date), std::move(timeZone)) {} Value evaluateDate(Date_t date, const TimeZone& timeZone) const final { return Value(timeZone.isoDayOfWeek(date)); } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionIsoWeek final : public DateExpressionAcceptingTimeZone { public: ExpressionIsoWeek(ExpressionContext* const expCtx, boost::intrusive_ptr date, boost::intrusive_ptr timeZone = nullptr) : DateExpressionAcceptingTimeZone( expCtx, "$isoWeek", std::move(date), std::move(timeZone)) {} Value evaluateDate(Date_t date, const TimeZone& timeZone) const final { return Value(timeZone.isoWeek(date)); } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionYear final : public DateExpressionAcceptingTimeZone { public: ExpressionYear(ExpressionContext* const expCtx, boost::intrusive_ptr date, boost::intrusive_ptr timeZone = nullptr) : DateExpressionAcceptingTimeZone( expCtx, "$year", std::move(date), std::move(timeZone)) {} Value evaluateDate(Date_t date, const TimeZone& timeZone) const final { return Value(timeZone.dateParts(date).year); } void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } }; class ExpressionZip final : public Expression { public: ExpressionZip(ExpressionContext* const expCtx, bool useLongestLength, std::vector> children, std::vector>> inputs, std::vector>> defaults) : Expression(expCtx, std::move(children)), _useLongestLength(useLongestLength), _inputs(std::move(inputs)), _defaults(std::move(defaults)) {} Value evaluate(const Document& root, Variables* variables) const final; boost::intrusive_ptr optimize() final; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vpsIn); Value serialize(bool explain) const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final; private: bool _useLongestLength; std::vector>> _inputs; std::vector>> _defaults; }; class ExpressionConvert final : public Expression { public: ExpressionConvert(ExpressionContext* const expCtx, boost::intrusive_ptr input, boost::intrusive_ptr to, boost::intrusive_ptr onError, boost::intrusive_ptr onNull); /** * Creates a $convert expression converting from 'input' to the type given by 'toType'. Leaves * 'onNull' and 'onError' unspecified. */ static boost::intrusive_ptr create(ExpressionContext* const, boost::intrusive_ptr input, BSONType toType); static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vpsIn); Value evaluate(const Document& root, Variables* variables) const final; boost::intrusive_ptr optimize() final; Value serialize(bool explain) const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final; private: BSONType computeTargetType(Value typeName) const; Value performConversion(BSONType targetType, Value inputValue) const; boost::intrusive_ptr& _input; boost::intrusive_ptr& _to; boost::intrusive_ptr& _onError; boost::intrusive_ptr& _onNull; }; class ExpressionRegex : public Expression { public: /** * Object to hold data that is required when calling 'execute()' or 'nextMatch()'. */ struct RegexExecutionState { /** * The regex pattern, options, and captures buffer for the current execution context. */ boost::optional pattern; boost::optional options; std::vector capturesBuffer; int numCaptures = 0; /** * If 'regex' is constant, 'pcrePtr' will be shared between the active RegexExecutionState * and '_initialExecStateForConstantRegex'. If not, then the active RegexExecutionState is * the sole owner. */ std::shared_ptr pcrePtr; /** * The input text and starting position for the current execution context. */ boost::optional input; int startCodePointPos = 0; int startBytePos = 0; /** * If either the text input or regex pattern is nullish, then we consider the operation as a * whole nullish. */ bool nullish() { return !input || !pattern; } }; /** * Validates the structure of input passed in 'inputExpr'. If valid, generates an initial * execution state. This returned object can later be used for calling execute() or nextMatch(). */ RegexExecutionState buildInitialState(const Document& root, Variables* variables) const; /** * Checks if there is a match for the given input and pattern that are part of 'executionState'. * The method will return a positive number if there is a match and '-1' if there is no match. * Throws 'uassert()' for any errors. */ int execute(RegexExecutionState* executionState) const; /** * Finds the next possible match for the given input and pattern that are part of * 'executionState'. If there is a match, the function will return a 'Value' object * encapsulating the matched string, the code point index of the matched string and a vector * representing all the captured substrings. The function will also update the parameters * 'startBytePos' and 'startCodePointPos' to the corresponding new indices. If there is no * match, the function will return null 'Value' object. */ Value nextMatch(RegexExecutionState* executionState) const; /** * Optimizes '$regex*' expressions. If the expression has constant 'regex' and 'options' fields, * then it can be optimized. Stores the optimized regex in '_initialExecStateForConstantRegex' * so that it can be reused during expression evaluation. */ boost::intrusive_ptr optimize(); bool hasConstantRegex() const { return _initialExecStateForConstantRegex.has_value(); } bool hasOptions() const { return (_options.get() != nullptr); } /** * Return regex pattern and options in case they are constants. Return pattern boost::none in * case the pattern or options are not constants, or if the pattern is null. */ std::pair, std::string> getConstantPatternAndOptions() const; Value serialize(bool explain) const; const std::string& getOpName() const { return _opName; } ExpressionRegex(ExpressionContext* const expCtx, boost::intrusive_ptr input, boost::intrusive_ptr regex, boost::intrusive_ptr options, const StringData opName) : Expression(expCtx, {std::move(input), std::move(regex), std::move(options)}), _input(_children[0]), _regex(_children[1]), _options(_children[2]), _opName(opName) {} private: void _extractInputField(RegexExecutionState* executionState, const Value& textInput) const; void _extractRegexAndOptions(RegexExecutionState* executionState, const Value& regexPattern, const Value& regexOptions) const; void _compile(RegexExecutionState* executionState) const; void _doAddDependencies(DepsTracker* deps) const final; /** * Expressions which, when evaluated for a given document, produce the the regex pattern, the * regex option flags, and the input text to which the regex should be applied. */ boost::intrusive_ptr& _input; boost::intrusive_ptr& _regex; boost::intrusive_ptr& _options; /** * This variable will be set when the $regex* expressions have constant values for their 'regex' * and 'options' fields, allowing us to pre-compile the regex and re-use it across the * Expression's lifetime. */ boost::optional _initialExecStateForConstantRegex; /** * Name of the regex expression. */ std::string _opName; }; class ExpressionRegexFind final : public ExpressionRegex { public: static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vpsIn); Value evaluate(const Document& root, Variables* variables) const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } using ExpressionRegex::ExpressionRegex; }; class ExpressionRegexFindAll final : public ExpressionRegex { public: static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vpsIn); Value evaluate(const Document& root, Variables* variables) const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } using ExpressionRegex::ExpressionRegex; }; class ExpressionRegexMatch final : public ExpressionRegex { public: static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vpsIn); Value evaluate(const Document& root, Variables* variables) const final; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } using ExpressionRegex::ExpressionRegex; }; /** * Returns a double-valued random number from 0.0 to 1.0. */ class ExpressionRandom final : public Expression { static constexpr double kMinValue = 0.0; static constexpr double kMaxValue = 1.0; public: static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement exprElement, const VariablesParseState& vps); Value serialize(const bool explain) const final; Value evaluate(const Document& root, Variables* variables) const final; boost::intrusive_ptr optimize() final; const char* getOpName() const; void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } protected: void _doAddDependencies(DepsTracker* deps) const final override; private: explicit ExpressionRandom(ExpressionContext* const expCtx); double getRandomValue() const; }; class ExpressionToHashedIndexKey : public Expression { public: ExpressionToHashedIndexKey(ExpressionContext* const expCtx, boost::intrusive_ptr inputExpression) : Expression(expCtx, {inputExpression}){}; static boost::intrusive_ptr parse(ExpressionContext* const expCtx, BSONElement expr, const VariablesParseState& vps); void acceptVisitor(ExpressionVisitor* visitor) final { return visitor->visit(this); } Value evaluate(const Document& root, Variables* variables) const; Value serialize(bool explain) const final; protected: void _doAddDependencies(DepsTracker* deps) const final; }; } // namespace mongo