/** * Copyright (C) 2013 10gen Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License, version 3, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . * * As a special exception, the copyright holders give permission to link the * code of portions of this program with the OpenSSL library under certain * conditions as described in each individual source file and distribute * linked combinations including the program with the OpenSSL library. You * must comply with the GNU Affero General Public License in all respects for * all of the code used other than as permitted herein. If you modify file(s) * with this exception, you may extend this exception to your version of the * file(s), but you are not obligated to do so. If you do not wish to do so, * delete this exception statement from your version. If you delete this * exception statement from all source files in the program, then also delete * it in the license file. */ #define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kQuery #include "mongo/platform/basic.h" #include "mongo/db/query/canonical_query.h" #include "mongo/db/jsobj.h" #include "mongo/db/namespace_string.h" #include "mongo/db/query/query_planner_common.h" #include "mongo/util/log.h" namespace mongo { namespace { /** * Comparator for MatchExpression nodes. Returns an integer less than, equal to, or greater * than zero if 'lhs' is less than, equal to, or greater than 'rhs', respectively. * * Sorts by: * 1) operator type (MatchExpression::MatchType) * 2) path name (MatchExpression::path()) * 3) sort order of children * 4) number of children (MatchExpression::numChildren()) * * The third item is needed to ensure that match expression trees which should have the same * cache key always sort the same way. If you're wondering when the tuple (operator type, path * name) could ever be equal, consider this query: * * {$and:[{$or:[{a:1},{a:2}]},{$or:[{a:1},{b:2}]}]} * * The two OR nodes would compare as equal in this case were it not for tuple item #3 (sort * order of children). */ int matchExpressionComparator(const MatchExpression* lhs, const MatchExpression* rhs) { MatchExpression::MatchType lhsMatchType = lhs->matchType(); MatchExpression::MatchType rhsMatchType = rhs->matchType(); if (lhsMatchType != rhsMatchType) { return lhsMatchType < rhsMatchType ? -1 : 1; } StringData lhsPath = lhs->path(); StringData rhsPath = rhs->path(); int pathsCompare = lhsPath.compare(rhsPath); if (pathsCompare != 0) { return pathsCompare; } const size_t numChildren = std::min(lhs->numChildren(), rhs->numChildren()); for (size_t childIdx = 0; childIdx < numChildren; ++childIdx) { int childCompare = matchExpressionComparator(lhs->getChild(childIdx), rhs->getChild(childIdx)); if (childCompare != 0) { return childCompare; } } if (lhs->numChildren() != rhs->numChildren()) { return lhs->numChildren() < rhs->numChildren() ? -1 : 1; } // They're equal! return 0; } bool matchExpressionLessThan(const MatchExpression* lhs, const MatchExpression* rhs) { return matchExpressionComparator(lhs, rhs) < 0; } } // namespace // // These all punt to the many-argumented canonicalize below. // // static StatusWith> CanonicalQuery::canonicalize( const std::string& ns, const BSONObj& query, const MatchExpressionParser::WhereCallback& whereCallback) { const BSONObj emptyObj; return CanonicalQuery::canonicalize(ns, query, emptyObj, emptyObj, 0, 0, whereCallback); } // static StatusWith> CanonicalQuery::canonicalize( const std::string& ns, const BSONObj& query, bool explain, const MatchExpressionParser::WhereCallback& whereCallback) { const BSONObj emptyObj; return CanonicalQuery::canonicalize(ns, query, emptyObj, // sort emptyObj, // projection 0, // skip 0, // limit emptyObj, // hint emptyObj, // min emptyObj, // max false, // snapshot explain, whereCallback); } // static StatusWith> CanonicalQuery::canonicalize( const std::string& ns, const BSONObj& query, long long skip, long long limit, const MatchExpressionParser::WhereCallback& whereCallback) { const BSONObj emptyObj; return CanonicalQuery::canonicalize(ns, query, emptyObj, emptyObj, skip, limit, whereCallback); } // static StatusWith> CanonicalQuery::canonicalize( const std::string& ns, const BSONObj& query, const BSONObj& sort, const BSONObj& proj, const MatchExpressionParser::WhereCallback& whereCallback) { return CanonicalQuery::canonicalize(ns, query, sort, proj, 0, 0, whereCallback); } // static StatusWith> CanonicalQuery::canonicalize( const std::string& ns, const BSONObj& query, const BSONObj& sort, const BSONObj& proj, long long skip, long long limit, const MatchExpressionParser::WhereCallback& whereCallback) { const BSONObj emptyObj; return CanonicalQuery::canonicalize( ns, query, sort, proj, skip, limit, emptyObj, whereCallback); } // static StatusWith> CanonicalQuery::canonicalize( const std::string& ns, const BSONObj& query, const BSONObj& sort, const BSONObj& proj, long long skip, long long limit, const BSONObj& hint, const MatchExpressionParser::WhereCallback& whereCallback) { const BSONObj emptyObj; return CanonicalQuery::canonicalize(ns, query, sort, proj, skip, limit, hint, emptyObj, emptyObj, false, // snapshot false, // explain whereCallback); } // // These actually call init() on the CQ. // // static StatusWith> CanonicalQuery::canonicalize( const QueryMessage& qm, const MatchExpressionParser::WhereCallback& whereCallback) { // Make LiteParsedQuery. auto lpqStatus = LiteParsedQuery::fromLegacyQueryMessage(qm); if (!lpqStatus.isOK()) { return lpqStatus.getStatus(); } return CanonicalQuery::canonicalize(lpqStatus.getValue().release(), whereCallback); } // static StatusWith> CanonicalQuery::canonicalize( LiteParsedQuery* lpq, const MatchExpressionParser::WhereCallback& whereCallback) { std::unique_ptr autoLpq(lpq); // Make MatchExpression. StatusWithMatchExpression swme = MatchExpressionParser::parse(autoLpq->getFilter(), whereCallback); if (!swme.isOK()) { return swme.getStatus(); } // Make the CQ we'll hopefully return. std::unique_ptr cq(new CanonicalQuery()); // Takes ownership of lpq and the MatchExpression* in swme. Status initStatus = cq->init(autoLpq.release(), whereCallback, swme.getValue()); if (!initStatus.isOK()) { return initStatus; } return std::move(cq); } // static StatusWith> CanonicalQuery::canonicalize( const CanonicalQuery& baseQuery, MatchExpression* root, const MatchExpressionParser::WhereCallback& whereCallback) { // Pass empty sort and projection. BSONObj emptyObj; // 0, 0, 0 is 'ntoskip', 'ntoreturn', and 'queryoptions' // false, false is 'snapshot' and 'explain' auto lpqStatus = LiteParsedQuery::makeAsOpQuery(baseQuery.nss(), 0, 0, 0, baseQuery.getParsed().getFilter(), baseQuery.getParsed().getProj(), baseQuery.getParsed().getSort(), emptyObj, emptyObj, emptyObj, false, false); if (!lpqStatus.isOK()) { return lpqStatus.getStatus(); } // Make the CQ we'll hopefully return. std::unique_ptr cq(new CanonicalQuery()); Status initStatus = cq->init(lpqStatus.getValue().release(), whereCallback, root->shallowClone().release()); if (!initStatus.isOK()) { return initStatus; } return std::move(cq); } // static StatusWith> CanonicalQuery::canonicalize( const std::string& ns, const BSONObj& query, const BSONObj& sort, const BSONObj& proj, long long skip, long long limit, const BSONObj& hint, const BSONObj& minObj, const BSONObj& maxObj, bool snapshot, bool explain, const MatchExpressionParser::WhereCallback& whereCallback) { // Pass empty sort and projection. BSONObj emptyObj; auto lpqStatus = LiteParsedQuery::makeAsOpQuery(NamespaceString(ns), skip, limit, 0, query, proj, sort, hint, minObj, maxObj, snapshot, explain); if (!lpqStatus.isOK()) { return lpqStatus.getStatus(); } auto& lpq = lpqStatus.getValue(); // Build a parse tree from the BSONObj in the parsed query. StatusWithMatchExpression swme = MatchExpressionParser::parse(lpq->getFilter(), whereCallback); if (!swme.isOK()) { return swme.getStatus(); } // Make the CQ we'll hopefully return. std::unique_ptr cq(new CanonicalQuery()); // Takes ownership of lpq and the MatchExpression* in swme. Status initStatus = cq->init(lpq.release(), whereCallback, swme.getValue()); if (!initStatus.isOK()) { return initStatus; } return std::move(cq); } Status CanonicalQuery::init(LiteParsedQuery* lpq, const MatchExpressionParser::WhereCallback& whereCallback, MatchExpression* root) { _pq.reset(lpq); // Normalize, sort and validate tree. root = normalizeTree(root); sortTree(root); _root.reset(root); Status validStatus = isValid(root, *_pq); if (!validStatus.isOK()) { return validStatus; } // Validate the projection if there is one. if (!_pq->getProj().isEmpty()) { ParsedProjection* pp; Status projStatus = ParsedProjection::make(_pq->getProj(), _root.get(), &pp, whereCallback); if (!projStatus.isOK()) { return projStatus; } _proj.reset(pp); } return Status::OK(); } // static bool CanonicalQuery::isSimpleIdQuery(const BSONObj& query) { bool hasID = false; BSONObjIterator it(query); while (it.more()) { BSONElement elt = it.next(); if (str::equals("_id", elt.fieldName())) { // Verify that the query on _id is a simple equality. hasID = true; if (elt.type() == Object) { // If the value is an object, it can't have a query operator // (must be a literal object match). if (elt.Obj().firstElementFieldName()[0] == '$') { return false; } } else if (!elt.isSimpleType() && BinData != elt.type()) { // The _id fild cannot be something like { _id : { $gt : ... // But it can be BinData. return false; } } else if (elt.fieldName()[0] == '$' && (str::equals("$isolated", elt.fieldName()) || str::equals("$atomic", elt.fieldName()))) { // ok, passthrough } else { // If the field is not _id, it must be $isolated/$atomic. return false; } } return hasID; } // static MatchExpression* CanonicalQuery::normalizeTree(MatchExpression* root) { // root->isLogical() is true now. We care about AND, OR, and NOT. NOR currently scares us. if (MatchExpression::AND == root->matchType() || MatchExpression::OR == root->matchType()) { // We could have AND of AND of AND. Make sure we clean up our children before merging // them. // UNITTEST 11738048 for (size_t i = 0; i < root->getChildVector()->size(); ++i) { (*root->getChildVector())[i] = normalizeTree(root->getChild(i)); } // If any of our children are of the same logical operator that we are, we remove the // child's children and append them to ourselves after we examine all children. std::vector absorbedChildren; for (size_t i = 0; i < root->numChildren();) { MatchExpression* child = root->getChild(i); if (child->matchType() == root->matchType()) { // AND of an AND or OR of an OR. Absorb child's children into ourself. for (size_t j = 0; j < child->numChildren(); ++j) { absorbedChildren.push_back(child->getChild(j)); } // TODO(opt): this is possibly n^2-ish root->getChildVector()->erase(root->getChildVector()->begin() + i); child->getChildVector()->clear(); // Note that this only works because we cleared the child's children delete child; // Don't increment 'i' as the current child 'i' used to be child 'i+1' } else { ++i; } } root->getChildVector()->insert( root->getChildVector()->end(), absorbedChildren.begin(), absorbedChildren.end()); // AND of 1 thing is the thing, OR of 1 thing is the thing. if (1 == root->numChildren()) { MatchExpression* ret = root->getChild(0); root->getChildVector()->clear(); delete root; return ret; } } else if (MatchExpression::NOT == root->matchType()) { // Normalize the rest of the tree hanging off this NOT node. NotMatchExpression* nme = static_cast(root); MatchExpression* child = nme->releaseChild(); // normalizeTree(...) takes ownership of 'child', and then // transfers ownership of its return value to 'nme'. nme->resetChild(normalizeTree(child)); } else if (MatchExpression::ELEM_MATCH_VALUE == root->matchType()) { // Just normalize our children. for (size_t i = 0; i < root->getChildVector()->size(); ++i) { (*root->getChildVector())[i] = normalizeTree(root->getChild(i)); } } return root; } // static void CanonicalQuery::sortTree(MatchExpression* tree) { for (size_t i = 0; i < tree->numChildren(); ++i) { sortTree(tree->getChild(i)); } std::vector* children = tree->getChildVector(); if (NULL != children) { std::sort(children->begin(), children->end(), matchExpressionLessThan); } } // static size_t CanonicalQuery::countNodes(const MatchExpression* root, MatchExpression::MatchType type) { size_t sum = 0; if (type == root->matchType()) { sum = 1; } for (size_t i = 0; i < root->numChildren(); ++i) { sum += countNodes(root->getChild(i), type); } return sum; } /** * Does 'root' have a subtree of type 'subtreeType' with a node of type 'childType' inside? */ bool hasNodeInSubtree(MatchExpression* root, MatchExpression::MatchType childType, MatchExpression::MatchType subtreeType) { if (subtreeType == root->matchType()) { return QueryPlannerCommon::hasNode(root, childType); } for (size_t i = 0; i < root->numChildren(); ++i) { if (hasNodeInSubtree(root->getChild(i), childType, subtreeType)) { return true; } } return false; } // static Status CanonicalQuery::isValid(MatchExpression* root, const LiteParsedQuery& parsed) { // Analysis below should be done after squashing the tree to make it clearer. // There can only be one TEXT. If there is a TEXT, it cannot appear inside a NOR. // // Note that the query grammar (as enforced by the MatchExpression parser) forbids TEXT // inside of value-expression clauses like NOT, so we don't check those here. size_t numText = countNodes(root, MatchExpression::TEXT); if (numText > 1) { return Status(ErrorCodes::BadValue, "Too many text expressions"); } else if (1 == numText) { if (hasNodeInSubtree(root, MatchExpression::TEXT, MatchExpression::NOR)) { return Status(ErrorCodes::BadValue, "text expression not allowed in nor"); } } // There can only be one NEAR. If there is a NEAR, it must be either the root or the root // must be an AND and its child must be a NEAR. size_t numGeoNear = countNodes(root, MatchExpression::GEO_NEAR); if (numGeoNear > 1) { return Status(ErrorCodes::BadValue, "Too many geoNear expressions"); } else if (1 == numGeoNear) { bool topLevel = false; if (MatchExpression::GEO_NEAR == root->matchType()) { topLevel = true; } else if (MatchExpression::AND == root->matchType()) { for (size_t i = 0; i < root->numChildren(); ++i) { if (MatchExpression::GEO_NEAR == root->getChild(i)->matchType()) { topLevel = true; break; } } } if (!topLevel) { return Status(ErrorCodes::BadValue, "geoNear must be top-level expr"); } } // NEAR cannot have a $natural sort or $natural hint. if (numGeoNear > 0) { BSONObj sortObj = parsed.getSort(); if (!sortObj["$natural"].eoo()) { return Status(ErrorCodes::BadValue, "geoNear expression not allowed with $natural sort order"); } BSONObj hintObj = parsed.getHint(); if (!hintObj["$natural"].eoo()) { return Status(ErrorCodes::BadValue, "geoNear expression not allowed with $natural hint"); } } // TEXT and NEAR cannot both be in the query. if (numText > 0 && numGeoNear > 0) { return Status(ErrorCodes::BadValue, "text and geoNear not allowed in same query"); } // TEXT and {$natural: ...} sort order cannot both be in the query. if (numText > 0) { const BSONObj& sortObj = parsed.getSort(); BSONObjIterator it(sortObj); while (it.more()) { BSONElement elt = it.next(); if (str::equals("$natural", elt.fieldName())) { return Status(ErrorCodes::BadValue, "text expression not allowed with $natural sort order"); } } } // TEXT and hint cannot both be in the query. if (numText > 0 && !parsed.getHint().isEmpty()) { return Status(ErrorCodes::BadValue, "text and hint not allowed in same query"); } // TEXT and snapshot cannot both be in the query. if (numText > 0 && parsed.isSnapshot()) { return Status(ErrorCodes::BadValue, "text and snapshot not allowed in same query"); } return Status::OK(); } // static // XXX TODO: This does not belong here at all. MatchExpression* CanonicalQuery::logicalRewrite(MatchExpression* tree) { // Only thing we do is pull an OR up at the root. if (MatchExpression::AND != tree->matchType()) { return tree; } // We want to bail out ASAP if we have nothing to do here. size_t numOrs = 0; for (size_t i = 0; i < tree->numChildren(); ++i) { if (MatchExpression::OR == tree->getChild(i)->matchType()) { ++numOrs; } } // Only do this for one OR right now. if (1 != numOrs) { return tree; } // Detach the OR from the root. invariant(NULL != tree->getChildVector()); std::vector& rootChildren = *tree->getChildVector(); MatchExpression* orChild = NULL; for (size_t i = 0; i < rootChildren.size(); ++i) { if (MatchExpression::OR == rootChildren[i]->matchType()) { orChild = rootChildren[i]; rootChildren.erase(rootChildren.begin() + i); break; } } // AND the existing root with each or child. invariant(NULL != orChild); invariant(NULL != orChild->getChildVector()); std::vector& orChildren = *orChild->getChildVector(); for (size_t i = 0; i < orChildren.size(); ++i) { AndMatchExpression* ama = new AndMatchExpression(); ama->add(orChildren[i]); ama->add(tree->shallowClone().release()); orChildren[i] = ama; } delete tree; // Clean up any consequences from this tomfoolery. return normalizeTree(orChild); } std::string CanonicalQuery::toString() const { str::stream ss; ss << "ns=" << _pq->ns(); if (_pq->getBatchSize()) { ss << " batchSize=" << *_pq->getBatchSize(); } if (_pq->getLimit()) { ss << " limit=" << *_pq->getLimit(); } ss << " skip=" << _pq->getSkip() << "\n"; // The expression tree puts an endl on for us. ss << "Tree: " << _root->toString(); ss << "Sort: " << _pq->getSort().toString() << '\n'; ss << "Proj: " << _pq->getProj().toString() << '\n'; return ss; } std::string CanonicalQuery::toStringShort() const { str::stream ss; ss << "query: " << _pq->getFilter().toString() << " sort: " << _pq->getSort().toString() << " projection: " << _pq->getProj().toString() << " skip: " << _pq->getSkip(); if (_pq->getBatchSize()) { ss << " batchSize: " << *_pq->getBatchSize(); } if (_pq->getLimit()) { ss << " limit: " << *_pq->getLimit(); } return ss; } } // namespace mongo