/** * Copyright (C) 2013-2014 MongoDB Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License, version 3, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . * * As a special exception, the copyright holders give permission to link the * code of portions of this program with the OpenSSL library under certain * conditions as described in each individual source file and distribute * linked combinations including the program with the OpenSSL library. You * must comply with the GNU Affero General Public License in all respects for * all of the code used other than as permitted herein. If you modify file(s) * with this exception, you may extend this exception to your version of the * file(s), but you are not obligated to do so. If you do not wish to do so, * delete this exception statement from your version. If you delete this * exception statement from all source files in the program, then also delete * it in the license file. */ #include "mongo/platform/basic.h" #include "mongo/db/query/explain.h" #include "mongo/base/owned_pointer_vector.h" #include "mongo/bson/util/builder.h" #include "mongo/db/exec/cached_plan.h" #include "mongo/db/exec/count_scan.h" #include "mongo/db/exec/distinct_scan.h" #include "mongo/db/exec/idhack.h" #include "mongo/db/exec/index_scan.h" #include "mongo/db/exec/multi_plan.h" #include "mongo/db/exec/near.h" #include "mongo/db/exec/pipeline_proxy.h" #include "mongo/db/exec/text.h" #include "mongo/db/exec/working_set_common.h" #include "mongo/db/keypattern.h" #include "mongo/db/query/get_executor.h" #include "mongo/db/query/plan_executor.h" #include "mongo/db/query/plan_summary_stats.h" #include "mongo/db/query/query_planner.h" #include "mongo/db/query/query_settings.h" #include "mongo/db/query/stage_builder.h" #include "mongo/db/server_options.h" #include "mongo/db/server_parameters.h" #include "mongo/util/mongoutils/str.h" #include "mongo/util/version.h" namespace { using namespace mongo; using std::string; using std::unique_ptr; using std::vector; /** * Traverse the tree rooted at 'root', and add all tree nodes into the list 'flattened'. */ void flattenStatsTree(const PlanStageStats* root, vector* flattened) { invariant(root->stageType != STAGE_MULTI_PLAN); flattened->push_back(root); for (auto&& child : root->children) { flattenStatsTree(child.get(), flattened); } } /** * Traverse the tree rooted at 'root', and add all nodes into the list 'flattened'. If a * MultiPlanStage is encountered, only add the best plan and its children to 'flattened'. */ void flattenExecTree(const PlanStage* root, vector* flattened) { flattened->push_back(root); if (root->stageType() == STAGE_MULTI_PLAN) { // Only add the winning plan from a MultiPlanStage. auto mps = static_cast(root); const PlanStage* winningStage = mps->getChildren()[mps->bestPlanIdx()].get(); return flattenExecTree(winningStage, flattened); } const auto& children = root->getChildren(); for (size_t i = 0; i < children.size(); ++i) { flattenExecTree(children[i].get(), flattened); } } /** * Get a pointer to the MultiPlanStage inside the stage tree rooted at 'root'. * Returns NULL if there is no MPS. */ MultiPlanStage* getMultiPlanStage(PlanStage* root) { if (root->stageType() == STAGE_MULTI_PLAN) { MultiPlanStage* mps = static_cast(root); return mps; } const auto& children = root->getChildren(); for (size_t i = 0; i < children.size(); i++) { MultiPlanStage* mps = getMultiPlanStage(children[i].get()); if (mps != NULL) { return mps; } } return NULL; } /** * Given the SpecificStats object for a stage and the type of the stage, returns the * number of index keys examined by the stage. * * This is used for getting the total number of keys examined by a plan. We need * to collect a 'totalKeysExamined' metric for a regular explain (in which case this * gets called from Explain::generateExecStats()) or for the slow query log / profiler * (in which case this gets called from Explain::getSummaryStats()). */ size_t getKeysExamined(StageType type, const SpecificStats* specific) { if (STAGE_IXSCAN == type) { const IndexScanStats* spec = static_cast(specific); return spec->keysExamined; } else if (STAGE_IDHACK == type) { const IDHackStats* spec = static_cast(specific); return spec->keysExamined; } else if (STAGE_COUNT_SCAN == type) { const CountScanStats* spec = static_cast(specific); return spec->keysExamined; } else if (STAGE_DISTINCT_SCAN == type) { const DistinctScanStats* spec = static_cast(specific); return spec->keysExamined; } return 0; } /** * Given the SpecificStats object for a stage and the type of the stage, returns the * number of documents examined by the stage. * * This is used for getting the total number of documents examined by a plan. We need * to collect a 'totalDocsExamined' metric for a regular explain (in which case this * gets called from Explain::generateExecStats()) or for the slow query log / profiler * (in which case this gets called from Explain::getSummaryStats()). */ size_t getDocsExamined(StageType type, const SpecificStats* specific) { if (STAGE_COLLSCAN == type) { const CollectionScanStats* spec = static_cast(specific); return spec->docsTested; } else if (STAGE_FETCH == type) { const FetchStats* spec = static_cast(specific); return spec->docsExamined; } else if (STAGE_IDHACK == type) { const IDHackStats* spec = static_cast(specific); return spec->docsExamined; } else if (STAGE_TEXT_OR == type) { const TextOrStats* spec = static_cast(specific); return spec->fetches; } return 0; } /** * Adds to the plan summary string being built by 'sb' for the execution stage 'stage'. */ void addStageSummaryStr(const PlanStage* stage, StringBuilder& sb) { // First add the stage type string. const CommonStats* common = stage->getCommonStats(); sb << common->stageTypeStr; // Some leaf nodes also provide info about the index they used. const SpecificStats* specific = stage->getSpecificStats(); if (STAGE_COUNT_SCAN == stage->stageType()) { const CountScanStats* spec = static_cast(specific); const KeyPattern keyPattern{spec->keyPattern}; sb << " " << keyPattern; } else if (STAGE_DISTINCT_SCAN == stage->stageType()) { const DistinctScanStats* spec = static_cast(specific); const KeyPattern keyPattern{spec->keyPattern}; sb << " " << keyPattern; } else if (STAGE_GEO_NEAR_2D == stage->stageType()) { const NearStats* spec = static_cast(specific); const KeyPattern keyPattern{spec->keyPattern}; sb << " " << keyPattern; } else if (STAGE_GEO_NEAR_2DSPHERE == stage->stageType()) { const NearStats* spec = static_cast(specific); const KeyPattern keyPattern{spec->keyPattern}; sb << " " << keyPattern; } else if (STAGE_IXSCAN == stage->stageType()) { const IndexScanStats* spec = static_cast(specific); const KeyPattern keyPattern{spec->keyPattern}; sb << " " << keyPattern; } else if (STAGE_TEXT == stage->stageType()) { const TextStats* spec = static_cast(specific); const KeyPattern keyPattern{spec->indexPrefix}; sb << " " << keyPattern; } } /** * Adds the path-level multikey information to the explain output in a field called "multiKeyPaths". * The value associated with the "multiKeyPaths" field is an object with keys equal to those in the * index key pattern and values equal to an array of strings corresponding to paths that cause the * index to be multikey. * * For example, with the index {'a.b': 1, 'a.c': 1} where the paths "a" and "a.b" cause the * index to be multikey, we'd have {'multiKeyPaths': {'a.b': ['a', 'a.b'], 'a.c': ['a']}}. * * This function should only be called if the associated index supports path-level multikey * tracking. */ void appendMultikeyPaths(const BSONObj& keyPattern, const MultikeyPaths& multikeyPaths, BSONObjBuilder* bob) { BSONObjBuilder subMultikeyPaths(bob->subobjStart("multiKeyPaths")); size_t i = 0; for (const auto keyElem : keyPattern) { const FieldRef path{keyElem.fieldNameStringData()}; BSONArrayBuilder arrMultikeyComponents( subMultikeyPaths.subarrayStart(keyElem.fieldNameStringData())); for (const auto multikeyComponent : multikeyPaths[i]) { arrMultikeyComponents.append(path.dottedSubstring(0, multikeyComponent + 1)); } arrMultikeyComponents.doneFast(); ++i; } subMultikeyPaths.doneFast(); } } // namespace namespace mongo { using mongoutils::str::stream; // static void Explain::statsToBSON(const PlanStageStats& stats, ExplainCommon::Verbosity verbosity, BSONObjBuilder* bob, BSONObjBuilder* topLevelBob) { invariant(bob); invariant(topLevelBob); // Stop as soon as the BSON object we're building exceeds 10 MB. static const int kMaxStatsBSONSize = 10 * 1024 * 1024; if (topLevelBob->len() > kMaxStatsBSONSize) { bob->append("warning", "stats tree exceeded 10 MB"); return; } // Stage name. bob->append("stage", stats.common.stageTypeStr); // Display the BSON representation of the filter, if there is one. if (!stats.common.filter.isEmpty()) { bob->append("filter", stats.common.filter); } // Some top-level exec stats get pulled out of the root stage. if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("nReturned", stats.common.advanced); bob->appendNumber("executionTimeMillisEstimate", stats.common.executionTimeMillis); bob->appendNumber("works", stats.common.works); bob->appendNumber("advanced", stats.common.advanced); bob->appendNumber("needTime", stats.common.needTime); bob->appendNumber("needYield", stats.common.needYield); bob->appendNumber("saveState", stats.common.yields); bob->appendNumber("restoreState", stats.common.unyields); bob->appendNumber("isEOF", stats.common.isEOF); bob->appendNumber("invalidates", stats.common.invalidates); } // Stage-specific stats if (STAGE_AND_HASH == stats.stageType) { AndHashStats* spec = static_cast(stats.specific.get()); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("memUsage", spec->memUsage); bob->appendNumber("memLimit", spec->memLimit); bob->appendNumber("flaggedButPassed", spec->flaggedButPassed); bob->appendNumber("flaggedInProgress", spec->flaggedInProgress); for (size_t i = 0; i < spec->mapAfterChild.size(); ++i) { bob->appendNumber(string(stream() << "mapAfterChild_" << i), spec->mapAfterChild[i]); } } } else if (STAGE_AND_SORTED == stats.stageType) { AndSortedStats* spec = static_cast(stats.specific.get()); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("flagged", spec->flagged); for (size_t i = 0; i < spec->failedAnd.size(); ++i) { bob->appendNumber(string(stream() << "failedAnd_" << i), spec->failedAnd[i]); } } } else if (STAGE_COLLSCAN == stats.stageType) { CollectionScanStats* spec = static_cast(stats.specific.get()); bob->append("direction", spec->direction > 0 ? "forward" : "backward"); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("docsExamined", spec->docsTested); } } else if (STAGE_COUNT == stats.stageType) { CountStats* spec = static_cast(stats.specific.get()); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("nCounted", spec->nCounted); bob->appendNumber("nSkipped", spec->nSkipped); } } else if (STAGE_COUNT_SCAN == stats.stageType) { CountScanStats* spec = static_cast(stats.specific.get()); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("keysExamined", spec->keysExamined); } bob->append("keyPattern", spec->keyPattern); bob->append("indexName", spec->indexName); if (!spec->collation.isEmpty()) { bob->append("collation", spec->collation); } bob->appendBool("isMultiKey", spec->isMultiKey); if (!spec->multiKeyPaths.empty()) { appendMultikeyPaths(spec->keyPattern, spec->multiKeyPaths, bob); } bob->appendBool("isUnique", spec->isUnique); bob->appendBool("isSparse", spec->isSparse); bob->appendBool("isPartial", spec->isPartial); bob->append("indexVersion", spec->indexVersion); BSONObjBuilder indexBoundsBob; indexBoundsBob.append("startKey", spec->startKey); indexBoundsBob.append("startKeyInclusive", spec->startKeyInclusive); indexBoundsBob.append("endKey", spec->endKey); indexBoundsBob.append("endKeyInclusive", spec->endKeyInclusive); bob->append("indexBounds", indexBoundsBob.obj()); } else if (STAGE_DELETE == stats.stageType) { DeleteStats* spec = static_cast(stats.specific.get()); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("nWouldDelete", spec->docsDeleted); bob->appendNumber("nInvalidateSkips", spec->nInvalidateSkips); } } else if (STAGE_DISTINCT_SCAN == stats.stageType) { DistinctScanStats* spec = static_cast(stats.specific.get()); bob->append("keyPattern", spec->keyPattern); bob->append("indexName", spec->indexName); if (!spec->collation.isEmpty()) { bob->append("collation", spec->collation); } bob->appendBool("isMultiKey", spec->isMultiKey); if (!spec->multiKeyPaths.empty()) { appendMultikeyPaths(spec->keyPattern, spec->multiKeyPaths, bob); } bob->appendBool("isUnique", spec->isUnique); bob->appendBool("isSparse", spec->isSparse); bob->appendBool("isPartial", spec->isPartial); bob->append("indexVersion", spec->indexVersion); bob->append("direction", spec->direction > 0 ? "forward" : "backward"); if ((topLevelBob->len() + spec->indexBounds.objsize()) > kMaxStatsBSONSize) { bob->append("warning", "index bounds omitted due to BSON size limit"); } else { bob->append("indexBounds", spec->indexBounds); } if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("keysExamined", spec->keysExamined); } } else if (STAGE_ENSURE_SORTED == stats.stageType) { EnsureSortedStats* spec = static_cast(stats.specific.get()); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("nDropped", spec->nDropped); } } else if (STAGE_FETCH == stats.stageType) { FetchStats* spec = static_cast(stats.specific.get()); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("docsExamined", spec->docsExamined); bob->appendNumber("alreadyHasObj", spec->alreadyHasObj); } } else if (STAGE_GEO_NEAR_2D == stats.stageType || STAGE_GEO_NEAR_2DSPHERE == stats.stageType) { NearStats* spec = static_cast(stats.specific.get()); bob->append("keyPattern", spec->keyPattern); bob->append("indexName", spec->indexName); bob->append("indexVersion", spec->indexVersion); if (verbosity >= ExplainCommon::EXEC_STATS) { BSONArrayBuilder intervalsBob(bob->subarrayStart("searchIntervals")); for (vector::const_iterator it = spec->intervalStats.begin(); it != spec->intervalStats.end(); ++it) { BSONObjBuilder intervalBob(intervalsBob.subobjStart()); intervalBob.append("minDistance", it->minDistanceAllowed); intervalBob.append("maxDistance", it->maxDistanceAllowed); intervalBob.append("maxInclusive", it->inclusiveMaxDistanceAllowed); intervalBob.appendNumber("nBuffered", it->numResultsBuffered); intervalBob.appendNumber("nReturned", it->numResultsReturned); } intervalsBob.doneFast(); } } else if (STAGE_GROUP == stats.stageType) { GroupStats* spec = static_cast(stats.specific.get()); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("nGroups", spec->nGroups); } } else if (STAGE_IDHACK == stats.stageType) { IDHackStats* spec = static_cast(stats.specific.get()); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("keysExamined", spec->keysExamined); bob->appendNumber("docsExamined", spec->docsExamined); } } else if (STAGE_IXSCAN == stats.stageType) { IndexScanStats* spec = static_cast(stats.specific.get()); bob->append("keyPattern", spec->keyPattern); bob->append("indexName", spec->indexName); if (!spec->collation.isEmpty()) { bob->append("collation", spec->collation); } bob->appendBool("isMultiKey", spec->isMultiKey); if (!spec->multiKeyPaths.empty()) { appendMultikeyPaths(spec->keyPattern, spec->multiKeyPaths, bob); } bob->appendBool("isUnique", spec->isUnique); bob->appendBool("isSparse", spec->isSparse); bob->appendBool("isPartial", spec->isPartial); bob->append("indexVersion", spec->indexVersion); bob->append("direction", spec->direction > 0 ? "forward" : "backward"); if ((topLevelBob->len() + spec->indexBounds.objsize()) > kMaxStatsBSONSize) { bob->append("warning", "index bounds omitted due to BSON size limit"); } else { bob->append("indexBounds", spec->indexBounds); } if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("keysExamined", spec->keysExamined); bob->appendNumber("seeks", spec->seeks); bob->appendNumber("dupsTested", spec->dupsTested); bob->appendNumber("dupsDropped", spec->dupsDropped); bob->appendNumber("seenInvalidated", spec->seenInvalidated); } } else if (STAGE_OR == stats.stageType) { OrStats* spec = static_cast(stats.specific.get()); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("dupsTested", spec->dupsTested); bob->appendNumber("dupsDropped", spec->dupsDropped); bob->appendNumber("recordIdsForgotten", spec->recordIdsForgotten); } } else if (STAGE_LIMIT == stats.stageType) { LimitStats* spec = static_cast(stats.specific.get()); bob->appendNumber("limitAmount", spec->limit); } else if (STAGE_PROJECTION == stats.stageType) { ProjectionStats* spec = static_cast(stats.specific.get()); bob->append("transformBy", spec->projObj); } else if (STAGE_SHARDING_FILTER == stats.stageType) { ShardingFilterStats* spec = static_cast(stats.specific.get()); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("chunkSkips", spec->chunkSkips); } } else if (STAGE_SKIP == stats.stageType) { SkipStats* spec = static_cast(stats.specific.get()); bob->appendNumber("skipAmount", spec->skip); } else if (STAGE_SORT == stats.stageType) { SortStats* spec = static_cast(stats.specific.get()); bob->append("sortPattern", spec->sortPattern); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("memUsage", spec->memUsage); bob->appendNumber("memLimit", spec->memLimit); } if (spec->limit > 0) { bob->appendNumber("limitAmount", spec->limit); } } else if (STAGE_SORT_MERGE == stats.stageType) { MergeSortStats* spec = static_cast(stats.specific.get()); bob->append("sortPattern", spec->sortPattern); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("dupsTested", spec->dupsTested); bob->appendNumber("dupsDropped", spec->dupsDropped); } } else if (STAGE_TEXT == stats.stageType) { TextStats* spec = static_cast(stats.specific.get()); bob->append("indexPrefix", spec->indexPrefix); bob->append("indexName", spec->indexName); bob->append("parsedTextQuery", spec->parsedTextQuery); bob->append("textIndexVersion", spec->textIndexVersion); } else if (STAGE_TEXT_MATCH == stats.stageType) { TextMatchStats* spec = static_cast(stats.specific.get()); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("docsRejected", spec->docsRejected); } } else if (STAGE_TEXT_OR == stats.stageType) { TextOrStats* spec = static_cast(stats.specific.get()); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("docsExamined", spec->fetches); } } else if (STAGE_UPDATE == stats.stageType) { UpdateStats* spec = static_cast(stats.specific.get()); if (verbosity >= ExplainCommon::EXEC_STATS) { bob->appendNumber("nMatched", spec->nMatched); bob->appendNumber("nWouldModify", spec->nModified); bob->appendNumber("nInvalidateSkips", spec->nInvalidateSkips); bob->appendBool("wouldInsert", spec->inserted); bob->appendBool("fastmodinsert", spec->fastmodinsert); } } // We're done if there are no children. if (stats.children.empty()) { return; } // If there's just one child (a common scenario), avoid making an array. This makes // the output more readable by saving a level of nesting. Name the field 'inputStage' // rather than 'inputStages'. if (1 == stats.children.size()) { BSONObjBuilder childBob; statsToBSON(*stats.children[0], verbosity, &childBob, topLevelBob); bob->append("inputStage", childBob.obj()); return; } // There is more than one child. Recursively call statsToBSON(...) on each // of them and add them to the 'inputStages' array. BSONArrayBuilder childrenBob(bob->subarrayStart("inputStages")); for (size_t i = 0; i < stats.children.size(); ++i) { BSONObjBuilder childBob(childrenBob.subobjStart()); statsToBSON(*stats.children[i], verbosity, &childBob, topLevelBob); } childrenBob.doneFast(); } // static BSONObj Explain::statsToBSON(const PlanStageStats& stats, ExplainCommon::Verbosity verbosity) { BSONObjBuilder bob; statsToBSON(stats, &bob, verbosity); return bob.obj(); } // static void Explain::statsToBSON(const PlanStageStats& stats, BSONObjBuilder* bob, ExplainCommon::Verbosity verbosity) { statsToBSON(stats, verbosity, bob, bob); } // static BSONObj Explain::getWinningPlanStats(const PlanExecutor* exec) { BSONObjBuilder bob; getWinningPlanStats(exec, &bob); return bob.obj(); } // static void Explain::getWinningPlanStats(const PlanExecutor* exec, BSONObjBuilder* bob) { MultiPlanStage* mps = getMultiPlanStage(exec->getRootStage()); unique_ptr winningStats( mps ? std::move(mps->getStats()->children[mps->bestPlanIdx()]) : std::move(exec->getRootStage()->getStats())); statsToBSON(*winningStats, ExplainCommon::EXEC_STATS, bob, bob); } // static void Explain::generatePlannerInfo(PlanExecutor* exec, const Collection* collection, PlanStageStats* winnerStats, const vector>& rejectedStats, BSONObjBuilder* out) { CanonicalQuery* query = exec->getCanonicalQuery(); BSONObjBuilder plannerBob(out->subobjStart("queryPlanner")); plannerBob.append("plannerVersion", QueryPlanner::kPlannerVersion); plannerBob.append("namespace", exec->ns()); // Find whether there is an index filter set for the query shape. The 'indexFilterSet' // field will always be false in the case of EOF or idhack plans. bool indexFilterSet = false; if (collection && exec->getCanonicalQuery()) { const CollectionInfoCache* infoCache = collection->infoCache(); const QuerySettings* querySettings = infoCache->getQuerySettings(); PlanCacheKey planCacheKey = infoCache->getPlanCache()->computeKey(*exec->getCanonicalQuery()); if (auto allowedIndicesFilter = querySettings->getAllowedIndicesFilter(planCacheKey)) { // Found an index filter set on the query shape. indexFilterSet = true; } } plannerBob.append("indexFilterSet", indexFilterSet); // In general we should have a canonical query, but sometimes we may avoid // creating a canonical query as an optimization (specifically, the update system // does not canonicalize for idhack updates). In these cases, 'query' is NULL. if (NULL != query) { BSONObjBuilder parsedQueryBob(plannerBob.subobjStart("parsedQuery")); query->root()->serialize(&parsedQueryBob); parsedQueryBob.doneFast(); if (query->getCollator()) { plannerBob.append("collation", query->getCollator()->getSpec().toBSON()); } } BSONObjBuilder winningPlanBob(plannerBob.subobjStart("winningPlan")); statsToBSON(*winnerStats, &winningPlanBob, ExplainCommon::QUERY_PLANNER); winningPlanBob.doneFast(); // Genenerate array of rejected plans. BSONArrayBuilder allPlansBob(plannerBob.subarrayStart("rejectedPlans")); for (size_t i = 0; i < rejectedStats.size(); i++) { BSONObjBuilder childBob(allPlansBob.subobjStart()); statsToBSON(*rejectedStats[i], &childBob, ExplainCommon::QUERY_PLANNER); } allPlansBob.doneFast(); plannerBob.doneFast(); } // static void Explain::generateExecStats(PlanStageStats* stats, ExplainCommon::Verbosity verbosity, BSONObjBuilder* out, boost::optional totalTimeMillis) { out->appendNumber("nReturned", stats->common.advanced); // Time elapsed could might be either precise or approximate. if (totalTimeMillis) { out->appendNumber("executionTimeMillis", *totalTimeMillis); } else { out->appendNumber("executionTimeMillisEstimate", stats->common.executionTimeMillis); } // Flatten the stats tree into a list. vector statsNodes; flattenStatsTree(stats, &statsNodes); // Iterate over all stages in the tree and get the total number of keys/docs examined. // These are just aggregations of information already available in the stats tree. size_t totalKeysExamined = 0; size_t totalDocsExamined = 0; for (size_t i = 0; i < statsNodes.size(); ++i) { totalKeysExamined += getKeysExamined(statsNodes[i]->stageType, statsNodes[i]->specific.get()); totalDocsExamined += getDocsExamined(statsNodes[i]->stageType, statsNodes[i]->specific.get()); } out->appendNumber("totalKeysExamined", totalKeysExamined); out->appendNumber("totalDocsExamined", totalDocsExamined); // Add the tree of stages, with individual execution stats for each stage. BSONObjBuilder stagesBob(out->subobjStart("executionStages")); statsToBSON(*stats, &stagesBob, verbosity); stagesBob.doneFast(); } // static void Explain::generateServerInfo(BSONObjBuilder* out) { BSONObjBuilder serverBob(out->subobjStart("serverInfo")); out->append("host", getHostNameCached()); out->appendNumber("port", serverGlobalParams.port); auto&& vii = VersionInfoInterface::instance(); out->append("version", vii.version()); out->append("gitVersion", vii.gitVersion()); serverBob.doneFast(); } // static void Explain::explainStages(PlanExecutor* exec, const Collection* collection, ExplainCommon::Verbosity verbosity, BSONObjBuilder* out) { // // Collect plan stats, running the plan if necessary. The stats also give the structure of the // plan tree. // // Inspect the tree to see if there is a MultiPlanStage. Plan selection has already happened at // this point, since we have a PlanExecutor. MultiPlanStage* mps = getMultiPlanStage(exec->getRootStage()); // Get stats of the winning plan from the trial period, if the verbosity level is high enough // and there was a runoff between multiple plans. unique_ptr winningStatsTrial; if (verbosity >= ExplainCommon::EXEC_ALL_PLANS && mps) { winningStatsTrial = std::move(mps->getStats()->children[mps->bestPlanIdx()]); invariant(winningStatsTrial.get()); } // If more than one plan was considered, get the stats from the trial period for the rejected // plans. vector> allPlansStats; if (mps) { auto mpsStats = mps->getStats(); for (size_t i = 0; i < mpsStats->children.size(); ++i) { if (i != static_cast(mps->bestPlanIdx())) { allPlansStats.emplace_back(std::move(mpsStats->children[i])); } } } // If we need execution stats, then run the plan in order to gather the stats. Status executePlanStatus = Status::OK(); if (verbosity >= ExplainCommon::EXEC_STATS) { executePlanStatus = exec->executePlan(); } // If executing the query failed because it was killed, then the collection may no longer be // valid. We indicate this by setting our collection pointer to null. if (executePlanStatus == ErrorCodes::QueryPlanKilled) { collection = nullptr; } // Get stats for the winning plan. If there is only a single candidate plan, it is considered // the winner. unique_ptr winningStats( mps ? std::move(mps->getStats()->children[mps->bestPlanIdx()]) : std::move(exec->getStats())); // // Use the stats trees to produce explain BSON. // if (verbosity >= ExplainCommon::QUERY_PLANNER) { generatePlannerInfo(exec, collection, winningStats.get(), allPlansStats, out); } if (verbosity >= ExplainCommon::EXEC_STATS) { BSONObjBuilder execBob(out->subobjStart("executionStats")); // If there is an execution error while running the query, the error is reported under // the "executionStats" section and the explain as a whole succeeds. execBob.append("executionSuccess", executePlanStatus.isOK()); if (!executePlanStatus.isOK()) { execBob.append("errorMessage", executePlanStatus.reason()); execBob.append("errorCode", executePlanStatus.code()); } // Generate exec stats BSON for the winning plan. OperationContext* opCtx = exec->getOpCtx(); long long totalTimeMillis = CurOp::get(opCtx)->elapsedMicros() / 1000; generateExecStats(winningStats.get(), verbosity, &execBob, totalTimeMillis); // Also generate exec stats for all plans, if the verbosity level is high enough. // These stats reflect what happened during the trial period that ranked the plans. if (verbosity >= ExplainCommon::EXEC_ALL_PLANS) { // If we ranked multiple plans against each other, then add stats collected // from the trial period of the winning plan. The "allPlansExecution" section // will contain an apples-to-apples comparison of the winning plan's stats against // all rejected plans' stats collected during the trial period. if (mps) { invariant(winningStatsTrial.get()); allPlansStats.emplace_back(std::move(winningStatsTrial)); } BSONArrayBuilder allPlansBob(execBob.subarrayStart("allPlansExecution")); for (size_t i = 0; i < allPlansStats.size(); ++i) { BSONObjBuilder planBob(allPlansBob.subobjStart()); generateExecStats(allPlansStats[i].get(), verbosity, &planBob, boost::none); planBob.doneFast(); } allPlansBob.doneFast(); } execBob.doneFast(); } generateServerInfo(out); } // static std::string Explain::getPlanSummary(const PlanExecutor* exec) { return getPlanSummary(exec->getRootStage()); } // static std::string Explain::getPlanSummary(const PlanStage* root) { if (root->stageType() == STAGE_PIPELINE_PROXY) { auto pipelineProxy = static_cast(root); return pipelineProxy->getPlanSummaryStr(); } std::vector stages; flattenExecTree(root, &stages); // Use this stream to build the plan summary string. StringBuilder sb; bool seenLeaf = false; for (size_t i = 0; i < stages.size(); i++) { if (stages[i]->getChildren().empty()) { // This is a leaf node. Add to the plan summary string accordingly. Unless // this is the first leaf we've seen, add a delimiting string first. if (seenLeaf) { sb << ", "; } else { seenLeaf = true; } addStageSummaryStr(stages[i], sb); } } return sb.str(); } // static void Explain::getSummaryStats(const PlanExecutor& exec, PlanSummaryStats* statsOut) { invariant(NULL != statsOut); PlanStage* root = exec.getRootStage(); if (root->stageType() == STAGE_PIPELINE_PROXY) { auto pipelineProxy = static_cast(root); pipelineProxy->getPlanSummaryStats(statsOut); return; } // We can get some of the fields we need from the common stats stored in the // root stage of the plan tree. const CommonStats* common = root->getCommonStats(); statsOut->nReturned = common->advanced; statsOut->executionTimeMillis = common->executionTimeMillis; // The other fields are aggregations over the stages in the plan tree. We flatten // the tree into a list and then compute these aggregations. std::vector stages; flattenExecTree(root, &stages); statsOut->totalKeysExamined = 0; statsOut->totalDocsExamined = 0; for (size_t i = 0; i < stages.size(); i++) { statsOut->totalKeysExamined += getKeysExamined(stages[i]->stageType(), stages[i]->getSpecificStats()); statsOut->totalDocsExamined += getDocsExamined(stages[i]->stageType(), stages[i]->getSpecificStats()); if (STAGE_SORT == stages[i]->stageType()) { statsOut->hasSortStage = true; } if (STAGE_IXSCAN == stages[i]->stageType()) { const IndexScan* ixscan = static_cast(stages[i]); const IndexScanStats* ixscanStats = static_cast(ixscan->getSpecificStats()); statsOut->indexesUsed.insert(ixscanStats->indexName); } else if (STAGE_COUNT_SCAN == stages[i]->stageType()) { const CountScan* countScan = static_cast(stages[i]); const CountScanStats* countScanStats = static_cast(countScan->getSpecificStats()); statsOut->indexesUsed.insert(countScanStats->indexName); } else if (STAGE_IDHACK == stages[i]->stageType()) { const IDHackStage* idHackStage = static_cast(stages[i]); const IDHackStats* idHackStats = static_cast(idHackStage->getSpecificStats()); statsOut->indexesUsed.insert(idHackStats->indexName); } else if (STAGE_DISTINCT_SCAN == stages[i]->stageType()) { const DistinctScan* distinctScan = static_cast(stages[i]); const DistinctScanStats* distinctScanStats = static_cast(distinctScan->getSpecificStats()); statsOut->indexesUsed.insert(distinctScanStats->indexName); } else if (STAGE_TEXT == stages[i]->stageType()) { const TextStage* textStage = static_cast(stages[i]); const TextStats* textStats = static_cast(textStage->getSpecificStats()); statsOut->indexesUsed.insert(textStats->indexName); } else if (STAGE_GEO_NEAR_2D == stages[i]->stageType() || STAGE_GEO_NEAR_2DSPHERE == stages[i]->stageType()) { const NearStage* nearStage = static_cast(stages[i]); const NearStats* nearStats = static_cast(nearStage->getSpecificStats()); statsOut->indexesUsed.insert(nearStats->indexName); } else if (STAGE_CACHED_PLAN == stages[i]->stageType()) { const CachedPlanStage* cachedPlan = static_cast(stages[i]); const CachedPlanStats* cachedStats = static_cast(cachedPlan->getSpecificStats()); statsOut->replanned = cachedStats->replanned; } else if (STAGE_MULTI_PLAN == stages[i]->stageType()) { statsOut->fromMultiPlanner = true; } } } } // namespace mongo