/** * Copyright (C) 2015 10gen Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License, version 3, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . * * As a special exception, the copyright holders give permission to link the * code of portions of this program with the OpenSSL library under certain * conditions as described in each individual source file and distribute * linked combinations including the program with the OpenSSL library. You * must comply with the GNU Affero General Public License in all respects for * all of the code used other than as permitted herein. If you modify file(s) * with this exception, you may extend this exception to your version of the * file(s), but you are not obligated to do so. If you do not wish to do so, * delete this exception statement from your version. If you delete this * exception statement from all source files in the program, then also delete * it in the license file. */ #include "mongo/platform/basic.h" #include "mongo/db/json.h" #include "mongo/db/matcher/expression_parser.h" #include "mongo/db/pipeline/expression_context_for_test.h" #include "mongo/db/query/collation/collator_interface_mock.h" #include "mongo/db/query/index_entry.h" #include "mongo/db/query/plan_cache_indexability.h" #include "mongo/unittest/unittest.h" namespace mongo { namespace { std::unique_ptr parseMatchExpression(const BSONObj& obj, const CollatorInterface* collator = nullptr) { boost::intrusive_ptr expCtx(new ExpressionContextForTest()); expCtx->setCollator(collator); StatusWithMatchExpression status = MatchExpressionParser::parse(obj, std::move(expCtx)); if (!status.isOK()) { FAIL(str::stream() << "failed to parse query: " << obj.toString() << ". Reason: " << status.getStatus().toString()); } return std::move(status.getValue()); } // Test sparse index discriminators for a simple sparse index. TEST(PlanCacheIndexabilityTest, SparseIndexSimple) { PlanCacheIndexabilityState state; state.updateDiscriminators({IndexEntry(BSON("a" << 1), false, // multikey true, // sparse false, // unique "a_1", // name nullptr, // filterExpr BSONObj())}); auto discriminators = state.getDiscriminators("a"); ASSERT_EQ(1U, discriminators.size()); ASSERT(discriminators.find("a_1") != discriminators.end()); auto disc = discriminators["a_1"]; ASSERT_EQ(true, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("a" << 1)).get())); ASSERT_EQ(false, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("a" << BSONNULL)).get())); ASSERT_EQ(true, disc.isMatchCompatibleWithIndex( parseMatchExpression(BSON("a" << BSON("$_internalExprEq" << 1))).get())); ASSERT_EQ(true, disc.isMatchCompatibleWithIndex( parseMatchExpression(BSON("a" << BSON("$_internalExprEq" << BSONNULL))).get())); ASSERT_EQ(true, disc.isMatchCompatibleWithIndex( parseMatchExpression(BSON("a" << BSON("$in" << BSON_ARRAY(1)))).get())); ASSERT_EQ(false, disc.isMatchCompatibleWithIndex( parseMatchExpression(BSON("a" << BSON("$in" << BSON_ARRAY(BSONNULL)))).get())); } // Test sparse index discriminators for a compound sparse index. TEST(PlanCacheIndexabilityTest, SparseIndexCompound) { PlanCacheIndexabilityState state; state.updateDiscriminators({IndexEntry(BSON("a" << 1 << "b" << 1), false, // multikey true, // sparse false, // unique "a_1_b_1", // name nullptr, // filterExpr BSONObj())}); { auto discriminators = state.getDiscriminators("a"); ASSERT_EQ(1U, discriminators.size()); ASSERT(discriminators.find("a_1_b_1") != discriminators.end()); auto disc = discriminators["a_1_b_1"]; ASSERT_EQ(true, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("a" << 1)).get())); ASSERT_EQ( false, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("a" << BSONNULL)).get())); } { auto discriminators = state.getDiscriminators("b"); ASSERT_EQ(1U, discriminators.size()); ASSERT(discriminators.find("a_1_b_1") != discriminators.end()); auto disc = discriminators["a_1_b_1"]; ASSERT_EQ(true, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("b" << 1)).get())); ASSERT_EQ( false, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("b" << BSONNULL)).get())); } } // Test partial index discriminators for an index with a simple filter. TEST(PlanCacheIndexabilityTest, PartialIndexSimple) { BSONObj filterObj = BSON("f" << BSON("$gt" << 0)); std::unique_ptr filterExpr(parseMatchExpression(filterObj)); PlanCacheIndexabilityState state; state.updateDiscriminators({IndexEntry(BSON("a" << 1), false, // multikey false, // sparse false, // unique "a_1", // name filterExpr.get(), BSONObj())}); { auto discriminators = state.getDiscriminators("f"); ASSERT_EQ(1U, discriminators.size()); ASSERT(discriminators.find("a_1") != discriminators.end()); auto disc = discriminators["a_1"]; ASSERT_EQ(false, disc.isMatchCompatibleWithIndex( parseMatchExpression(BSON("f" << BSON("$gt" << -5))).get())); ASSERT_EQ(true, disc.isMatchCompatibleWithIndex( parseMatchExpression(BSON("f" << BSON("$gt" << 5))).get())); } { auto discriminators = state.getDiscriminators("a"); ASSERT_EQ(1U, discriminators.size()); ASSERT(discriminators.find("a_1") != discriminators.end()); auto disc = discriminators["a_1"]; ASSERT_EQ(true, disc.isMatchCompatibleWithIndex( parseMatchExpression(BSON("a" << BSON("$gt" << -5))).get())); ASSERT_EQ(true, disc.isMatchCompatibleWithIndex( parseMatchExpression(BSON("a" << BSON("$gt" << -5))).get())); } } // Test partial index discriminators for an index where the filter expression is an AND. TEST(PlanCacheIndexabilityTest, PartialIndexAnd) { BSONObj filterObj = BSON("f" << 1 << "g" << 1); std::unique_ptr filterExpr(parseMatchExpression(filterObj)); PlanCacheIndexabilityState state; state.updateDiscriminators({IndexEntry(BSON("a" << 1), false, // multikey false, // sparse false, // unique "a_1", // name filterExpr.get(), BSONObj())}); { auto discriminators = state.getDiscriminators("f"); ASSERT_EQ(1U, discriminators.size()); ASSERT(discriminators.find("a_1") != discriminators.end()); auto disc = discriminators["a_1"]; ASSERT_EQ(false, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("f" << 0)).get())); ASSERT_EQ(true, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("f" << 1)).get())); } { auto discriminators = state.getDiscriminators("g"); ASSERT_EQ(1U, discriminators.size()); ASSERT(discriminators.find("a_1") != discriminators.end()); auto disc = discriminators["a_1"]; ASSERT_EQ(false, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("g" << 0)).get())); ASSERT_EQ(true, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("g" << 1)).get())); } { auto discriminators = state.getDiscriminators("a"); ASSERT_EQ(1U, discriminators.size()); ASSERT(discriminators.find("a_1") != discriminators.end()); auto disc = discriminators["a_1"]; ASSERT_EQ(true, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("a" << 0)).get())); ASSERT_EQ(true, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("a" << 1)).get())); } } // Test partial index discriminators where there are multiple partial indexes. TEST(PlanCacheIndexabilityTest, MultiplePartialIndexes) { BSONObj filterObj1 = BSON("f" << 1); std::unique_ptr filterExpr1(parseMatchExpression(filterObj1)); BSONObj filterObj2 = BSON("f" << 2); std::unique_ptr filterExpr2(parseMatchExpression(filterObj2)); PlanCacheIndexabilityState state; state.updateDiscriminators({IndexEntry(BSON("a" << 1), false, // multikey false, // sparse false, // unique "a_1", // name filterExpr1.get(), BSONObj()), IndexEntry(BSON("b" << 1), false, // multikey false, // sparse false, // unique "b_1", // name filterExpr2.get(), BSONObj())}); { auto discriminators = state.getDiscriminators("f"); ASSERT_EQ(2U, discriminators.size()); ASSERT(discriminators.find("a_1") != discriminators.end()); ASSERT(discriminators.find("b_1") != discriminators.end()); auto discA = discriminators["a_1"]; auto discB = discriminators["b_1"]; ASSERT_EQ(false, discA.isMatchCompatibleWithIndex(parseMatchExpression(BSON("f" << 0)).get())); ASSERT_EQ(false, discB.isMatchCompatibleWithIndex(parseMatchExpression(BSON("f" << 0)).get())); ASSERT_EQ(true, discA.isMatchCompatibleWithIndex(parseMatchExpression(BSON("f" << 1)).get())); ASSERT_EQ(false, discB.isMatchCompatibleWithIndex(parseMatchExpression(BSON("f" << 1)).get())); ASSERT_EQ(false, discA.isMatchCompatibleWithIndex(parseMatchExpression(BSON("f" << 2)).get())); ASSERT_EQ(true, discB.isMatchCompatibleWithIndex(parseMatchExpression(BSON("f" << 2)).get())); } { auto discriminators = state.getDiscriminators("a"); ASSERT_EQ(1U, discriminators.size()); ASSERT(discriminators.find("a_1") != discriminators.end()); auto disc = discriminators["a_1"]; ASSERT_EQ(true, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("a" << 0)).get())); ASSERT_EQ(true, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("a" << 1)).get())); ASSERT_EQ(true, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("a" << 2)).get())); } { auto discriminators = state.getDiscriminators("b"); ASSERT_EQ(1U, discriminators.size()); ASSERT(discriminators.find("b_1") != discriminators.end()); auto disc = discriminators["b_1"]; ASSERT_EQ(true, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("b" << 0)).get())); ASSERT_EQ(true, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("b" << 1)).get())); ASSERT_EQ(true, disc.isMatchCompatibleWithIndex(parseMatchExpression(BSON("b" << 2)).get())); } } // Test that a discriminator is generated for a regular index (this discriminator will only encode // collation indexability). TEST(PlanCacheIndexabilityTest, IndexNeitherSparseNorPartial) { PlanCacheIndexabilityState state; state.updateDiscriminators({IndexEntry(BSON("a" << 1), false, // multikey false, // sparse false, // unique "a_1", // name nullptr, BSONObj())}); auto discriminators = state.getDiscriminators("a"); ASSERT_EQ(1U, discriminators.size()); ASSERT(discriminators.find("a_1") != discriminators.end()); } // Test discriminator for a simple index with a collation. TEST(PlanCacheIndexabilityTest, DiscriminatorForCollationIndicatesWhenCollationsAreCompatible) { PlanCacheIndexabilityState state; IndexEntry entry(BSON("a" << 1), false, // multikey false, // sparse false, // unique "a_1", // name nullptr, // filterExpr BSONObj()); CollatorInterfaceMock collator(CollatorInterfaceMock::MockType::kReverseString); entry.collator = &collator; state.updateDiscriminators({entry}); auto discriminators = state.getDiscriminators("a"); ASSERT_EQ(1U, discriminators.size()); ASSERT(discriminators.find("a_1") != discriminators.end()); auto disc = discriminators["a_1"]; // Index collator matches query collator. ASSERT_EQ(true, disc.isMatchCompatibleWithIndex( parseMatchExpression(fromjson("{a: 'abc'}"), &collator).get())); ASSERT_EQ(true, disc.isMatchCompatibleWithIndex( parseMatchExpression(fromjson("{a: {$in: ['abc', 'xyz']}}"), &collator).get())); ASSERT_EQ( true, disc.isMatchCompatibleWithIndex( parseMatchExpression(fromjson("{a: {$_internalExprEq: 'abc'}}}"), &collator).get())); // Expression is not a ComparisonMatchExpression, InternalExprEqMatchExpression or // InMatchExpression. ASSERT_EQ(true, disc.isMatchCompatibleWithIndex( parseMatchExpression(fromjson("{a: {$exists: true}}"), nullptr).get())); // Expression is a ComparisonMatchExpression with non-matching collator. ASSERT_EQ( true, disc.isMatchCompatibleWithIndex(parseMatchExpression(fromjson("{a: 5}"), nullptr).get())); ASSERT_EQ(false, disc.isMatchCompatibleWithIndex( parseMatchExpression(fromjson("{a: 'abc'}"), nullptr).get())); ASSERT_EQ(false, disc.isMatchCompatibleWithIndex( parseMatchExpression(fromjson("{a: {b: 'abc'}}"), nullptr).get())); ASSERT_EQ(false, disc.isMatchCompatibleWithIndex( parseMatchExpression(fromjson("{a: ['abc', 'xyz']}"), nullptr).get())); // Expression is an InternalExprEqMatchExpression with non-matching collator. ASSERT_EQ(true, disc.isMatchCompatibleWithIndex( parseMatchExpression(fromjson("{a: {$_internalExprEq: 5}}"), nullptr).get())); ASSERT_EQ(false, disc.isMatchCompatibleWithIndex( parseMatchExpression(fromjson("{a: {$_internalExprEq: 'abc'}}"), nullptr).get())); ASSERT_EQ( false, disc.isMatchCompatibleWithIndex( parseMatchExpression(fromjson("{a: {$_internalExprEq: {b: 'abc'}}}"), nullptr).get())); // Expression is an InMatchExpression with non-matching collator. ASSERT_EQ(true, disc.isMatchCompatibleWithIndex( parseMatchExpression(fromjson("{a: {$in: [1, 2]}}"), nullptr).get())); ASSERT_EQ(false, disc.isMatchCompatibleWithIndex( parseMatchExpression(fromjson("{a: {$in: [1, 'abc', 2]}}"), nullptr).get())); ASSERT_EQ(false, disc.isMatchCompatibleWithIndex( parseMatchExpression(fromjson("{a: {$in: [1, {b: 'abc'}, 2]}}"), nullptr).get())); ASSERT_EQ( false, disc.isMatchCompatibleWithIndex( parseMatchExpression(fromjson("{a: {$in: [1, ['abc', 'xyz'], 2]}}"), nullptr).get())); } // Test that a discriminator is produced for each field in a compound index (this discriminator will // only encode collation indexability). TEST(PlanCacheIndexabilityTest, CompoundIndexCollationDiscriminator) { PlanCacheIndexabilityState state; state.updateDiscriminators({IndexEntry(BSON("a" << 1 << "b" << 1), false, // multikey false, // sparse false, // unique "a_1_b_1", // name nullptr, BSONObj())}); auto discriminatorsA = state.getDiscriminators("a"); ASSERT_EQ(1U, discriminatorsA.size()); ASSERT(discriminatorsA.find("a_1_b_1") != discriminatorsA.end()); auto discriminatorsB = state.getDiscriminators("b"); ASSERT_EQ(1U, discriminatorsB.size()); ASSERT(discriminatorsB.find("a_1_b_1") != discriminatorsB.end()); } } // namespace } // namespace mongo