/** * Copyright (C) 2018-present MongoDB, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the Server Side Public License, version 1, * as published by MongoDB, Inc. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * Server Side Public License for more details. * * You should have received a copy of the Server Side Public License * along with this program. If not, see * . * * As a special exception, the copyright holders give permission to link the * code of portions of this program with the OpenSSL library under certain * conditions as described in each individual source file and distribute * linked combinations including the program with the OpenSSL library. You * must comply with the Server Side Public License in all respects for * all of the code used other than as permitted herein. If you modify file(s) * with this exception, you may extend this exception to your version of the * file(s), but you are not obligated to do so. If you do not wish to do so, * delete this exception statement from your version. If you delete this * exception statement from all source files in the program, then also delete * it in the license file. */ #define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kCommand #include "mongo/base/status.h" #include "mongo/db/concurrency/d_concurrency.h" #include "mongo/db/concurrency/write_conflict_exception.h" #include "mongo/db/curop_failpoint_helpers.h" #include "mongo/db/logical_clock.h" #include "mongo/db/op_observer.h" #include "mongo/db/operation_context.h" #include "mongo/db/read_concern.h" #include "mongo/db/read_concern_mongod_gen.h" #include "mongo/db/repl/optime.h" #include "mongo/db/repl/repl_client_info.h" #include "mongo/db/repl/speculative_majority_read_info.h" #include "mongo/db/s/sharding_state.h" #include "mongo/db/server_options.h" #include "mongo/db/storage/recovery_unit.h" #include "mongo/s/grid.h" #include "mongo/util/concurrency/notification.h" #include "mongo/util/log.h" namespace mongo { namespace { MONGO_FAIL_POINT_DEFINE(hangBeforeLinearizableReadConcern); /** * Synchronize writeRequests */ class WriteRequestSynchronizer; const auto getWriteRequestsSynchronizer = ServiceContext::declareDecoration(); class WriteRequestSynchronizer { public: WriteRequestSynchronizer() = default; /** * Returns a tuple if it can find the one that happened after or * at clusterTime. * Returns a tuple otherwise. */ std::tuple>> getOrCreateWriteRequest( LogicalTime clusterTime) { stdx::unique_lock lock(_mutex); auto lastEl = _writeRequests.rbegin(); if (lastEl != _writeRequests.rend() && lastEl->first >= clusterTime.asTimestamp()) { return std::make_tuple(false, lastEl->second); } else { auto newWriteRequest = std::make_shared>(); _writeRequests[clusterTime.asTimestamp()] = newWriteRequest; return std::make_tuple(true, newWriteRequest); } } /** * Erases writeRequest that happened at clusterTime */ void deleteWriteRequest(LogicalTime clusterTime) { stdx::unique_lock lock(_mutex); auto el = _writeRequests.find(clusterTime.asTimestamp()); invariant(el != _writeRequests.end()); invariant(el->second); el->second.reset(); _writeRequests.erase(el); } private: Mutex _mutex = MONGO_MAKE_LATCH("WriteRequestSynchronizer::_mutex"); std::map>> _writeRequests; }; /** * Schedule a write via appendOplogNote command to the primary of this replica set. */ Status makeNoopWriteIfNeeded(OperationContext* opCtx, LogicalTime clusterTime) { repl::ReplicationCoordinator* const replCoord = repl::ReplicationCoordinator::get(opCtx); invariant(replCoord->isReplEnabled()); auto& writeRequests = getWriteRequestsSynchronizer(opCtx->getClient()->getServiceContext()); auto lastAppliedOpTime = LogicalTime(replCoord->getMyLastAppliedOpTime().getTimestamp()); // secondaries may lag primary so wait first to avoid unnecessary noop writes. if (clusterTime > lastAppliedOpTime && replCoord->getMemberState().secondary()) { auto deadline = Date_t::now() + Milliseconds(waitForSecondaryBeforeNoopWriteMS.load()); auto readConcernArgs = repl::ReadConcernArgs(clusterTime, repl::ReadConcernLevel::kLocalReadConcern); auto waitStatus = replCoord->waitUntilOpTimeForReadUntil(opCtx, readConcernArgs, deadline); lastAppliedOpTime = LogicalTime(replCoord->getMyLastAppliedOpTime().getTimestamp()); if (!waitStatus.isOK()) { LOG(1) << "Wait for clusterTime: " << clusterTime.toString() << " until deadline: " << deadline << " failed with " << waitStatus.toString(); } } auto status = Status::OK(); int remainingAttempts = 3; // this loop addresses the case when two or more threads need to advance the opLog time but the // one that waits for the notification gets the later clusterTime, so when the request finishes // it needs to be repeated with the later time. while (clusterTime > lastAppliedOpTime) { // standalone replica set, so there is no need to advance the OpLog on the primary. if (serverGlobalParams.clusterRole == ClusterRole::None) { return Status::OK(); } bool isConfig = (serverGlobalParams.clusterRole == ClusterRole::ConfigServer); if (!isConfig && !ShardingState::get(opCtx)->enabled()) { return {ErrorCodes::ShardingStateNotInitialized, "Failed noop write because sharding state has not been initialized"}; } auto myShard = isConfig ? Grid::get(opCtx)->shardRegistry()->getConfigShard() : Grid::get(opCtx)->shardRegistry()->getShard( opCtx, ShardingState::get(opCtx)->shardId()); if (!myShard.isOK()) { return myShard.getStatus(); } if (!remainingAttempts--) { std::stringstream ss; ss << "Requested clusterTime " << clusterTime.toString() << " is greater than the last primary OpTime: " << lastAppliedOpTime.toString() << " no retries left"; return Status(ErrorCodes::InternalError, ss.str()); } auto myWriteRequest = writeRequests.getOrCreateWriteRequest(clusterTime); if (std::get<0>(myWriteRequest)) { // Its a new request try { LOG(2) << "New appendOplogNote request on clusterTime: " << clusterTime.toString() << " remaining attempts: " << remainingAttempts; auto swRes = myShard.getValue()->runCommand( opCtx, ReadPreferenceSetting(ReadPreference::PrimaryOnly), "admin", BSON("appendOplogNote" << 1 << "maxClusterTime" << clusterTime.asTimestamp() << "data" << BSON("noop write for afterClusterTime read concern" << 1)), Shard::RetryPolicy::kIdempotent); status = swRes.getStatus(); std::get<1>(myWriteRequest)->set(status); writeRequests.deleteWriteRequest(clusterTime); } catch (const DBException& ex) { status = ex.toStatus(); // signal the writeRequest to unblock waiters std::get<1>(myWriteRequest)->set(status); writeRequests.deleteWriteRequest(clusterTime); } } else { LOG(2) << "Join appendOplogNote request on clusterTime: " << clusterTime.toString() << " remaining attempts: " << remainingAttempts; try { status = std::get<1>(myWriteRequest)->get(opCtx); } catch (const DBException& ex) { return ex.toStatus(); } } // If the write status is ok need to wait for the oplog to replicate. if (status.isOK()) { return status; } lastAppliedOpTime = LogicalTime(replCoord->getMyLastAppliedOpTime().getTimestamp()); } // This is when the noop write failed but the opLog caught up to clusterTime by replicating. if (!status.isOK()) { LOG(1) << "Reached clusterTime " << lastAppliedOpTime.toString() << " but failed noop write due to " << status.toString(); } return Status::OK(); } /** * Evaluates if it's safe for the command to ignore prepare conflicts. */ bool canIgnorePrepareConflicts(OperationContext* opCtx, const repl::ReadConcernArgs& readConcernArgs) { if (opCtx->inMultiDocumentTransaction()) { return false; } auto readConcernLevel = readConcernArgs.getLevel(); // Only these read concern levels are eligible for ignoring prepare conflicts. if (readConcernLevel != repl::ReadConcernLevel::kLocalReadConcern && readConcernLevel != repl::ReadConcernLevel::kAvailableReadConcern && readConcernLevel != repl::ReadConcernLevel::kMajorityReadConcern) { return false; } auto afterClusterTime = readConcernArgs.getArgsAfterClusterTime(); auto atClusterTime = readConcernArgs.getArgsAtClusterTime(); if (afterClusterTime || atClusterTime) { return false; } return true; } } // namespace MONGO_REGISTER_SHIM(setPrepareConflictBehaviorForReadConcern) (OperationContext* opCtx, const repl::ReadConcernArgs& readConcernArgs, PrepareConflictBehavior prepareConflictBehavior) ->void { // DBDirectClient should inherit whether or not to ignore prepare conflicts from its parent. if (opCtx->getClient()->isInDirectClient()) { return; } // Enforce prepare conflict behavior if the command is not eligible to ignore prepare conflicts. if (!(prepareConflictBehavior == PrepareConflictBehavior::kEnforce || canIgnorePrepareConflicts(opCtx, readConcernArgs))) { prepareConflictBehavior = PrepareConflictBehavior::kEnforce; } opCtx->recoveryUnit()->setPrepareConflictBehavior(prepareConflictBehavior); } MONGO_REGISTER_SHIM(waitForReadConcern) (OperationContext* opCtx, const repl::ReadConcernArgs& readConcernArgs, bool allowAfterClusterTime) ->Status { // If we are in a direct client within a transaction, then we may be holding locks, so it is // illegal to wait for read concern. This is fine, since the outer operation should have handled // waiting for read concern. We don't want to ignore prepare conflicts because reads in // transactions should block on prepared transactions. if (opCtx->getClient()->isInDirectClient() && opCtx->inMultiDocumentTransaction()) { return Status::OK(); } repl::ReplicationCoordinator* const replCoord = repl::ReplicationCoordinator::get(opCtx); invariant(replCoord); if (readConcernArgs.getLevel() == repl::ReadConcernLevel::kLinearizableReadConcern) { if (replCoord->getReplicationMode() != repl::ReplicationCoordinator::modeReplSet) { // For standalone nodes, Linearizable Read is not supported. return {ErrorCodes::NotAReplicaSet, "node needs to be a replica set member to use read concern"}; } if (readConcernArgs.getArgsOpTime()) { return {ErrorCodes::FailedToParse, "afterOpTime not compatible with linearizable read concern"}; } if (!replCoord->getMemberState().primary()) { return {ErrorCodes::NotMaster, "cannot satisfy linearizable read concern on non-primary node"}; } } auto afterClusterTime = readConcernArgs.getArgsAfterClusterTime(); auto atClusterTime = readConcernArgs.getArgsAtClusterTime(); if (afterClusterTime) { if (!allowAfterClusterTime) { return {ErrorCodes::InvalidOptions, "afterClusterTime is not allowed for this command"}; } } if (!readConcernArgs.isEmpty()) { invariant(!afterClusterTime || !atClusterTime); auto targetClusterTime = afterClusterTime ? afterClusterTime : atClusterTime; if (targetClusterTime) { std::string readConcernName = afterClusterTime ? "afterClusterTime" : "atClusterTime"; if (!replCoord->isReplEnabled()) { return {ErrorCodes::IllegalOperation, str::stream() << "Cannot specify " << readConcernName << " readConcern without replication enabled"}; } auto currentTime = LogicalClock::get(opCtx)->getClusterTime(); if (currentTime < *targetClusterTime) { return {ErrorCodes::InvalidOptions, str::stream() << "readConcern " << readConcernName << " value must not be greater than the current clusterTime. " "Requested clusterTime: " << targetClusterTime->toString() << "; current clusterTime: " << currentTime.toString()}; } auto status = makeNoopWriteIfNeeded(opCtx, *targetClusterTime); if (!status.isOK()) { LOG(0) << "Failed noop write at clusterTime: " << targetClusterTime->toString() << " due to " << status.toString(); } } if (replCoord->isReplEnabled() || !afterClusterTime) { auto status = replCoord->waitUntilOpTimeForRead(opCtx, readConcernArgs); if (!status.isOK()) { return status; } } } if (readConcernArgs.getLevel() == repl::ReadConcernLevel::kSnapshotReadConcern) { if (replCoord->getReplicationMode() != repl::ReplicationCoordinator::modeReplSet) { return {ErrorCodes::NotAReplicaSet, "node needs to be a replica set member to use readConcern: snapshot"}; } } if (atClusterTime) { opCtx->recoveryUnit()->setTimestampReadSource(RecoveryUnit::ReadSource::kProvided, atClusterTime->asTimestamp()); } else if (readConcernArgs.getLevel() == repl::ReadConcernLevel::kMajorityReadConcern && replCoord->getReplicationMode() == repl::ReplicationCoordinator::Mode::modeReplSet) { // This block is not used for kSnapshotReadConcern because snapshots are always speculative; // we wait for majority when the transaction commits. // It is not used for atClusterTime because waitUntilOpTimeForRead handles waiting for // the majority snapshot in that case. // Handle speculative majority reads. if (readConcernArgs.getMajorityReadMechanism() == repl::ReadConcernArgs::MajorityReadMechanism::kSpeculative) { // For speculative majority reads, we utilize the "no overlap" read source as a means of // always reading at the minimum of the all-committed and lastApplied timestamps. This // allows for safe behavior on both primaries and secondaries, where the behavior of the // all-committed and lastApplied timestamps differ significantly. opCtx->recoveryUnit()->setTimestampReadSource(RecoveryUnit::ReadSource::kNoOverlap); auto& speculativeReadInfo = repl::SpeculativeMajorityReadInfo::get(opCtx); speculativeReadInfo.setIsSpeculativeRead(); return Status::OK(); } const int debugLevel = serverGlobalParams.clusterRole == ClusterRole::ConfigServer ? 1 : 2; LOG(debugLevel) << "Waiting for 'committed' snapshot to be available for reading: " << readConcernArgs; opCtx->recoveryUnit()->setTimestampReadSource(RecoveryUnit::ReadSource::kMajorityCommitted); Status status = opCtx->recoveryUnit()->obtainMajorityCommittedSnapshot(); // Wait until a snapshot is available. while (status == ErrorCodes::ReadConcernMajorityNotAvailableYet) { LOG(debugLevel) << "Snapshot not available yet."; replCoord->waitUntilSnapshotCommitted(opCtx, Timestamp()); status = opCtx->recoveryUnit()->obtainMajorityCommittedSnapshot(); } if (!status.isOK()) { return status; } LOG(debugLevel) << "Using 'committed' snapshot: " << CurOp::get(opCtx)->opDescription() << " with readTs: " << opCtx->recoveryUnit()->getPointInTimeReadTimestamp(); } return Status::OK(); } MONGO_REGISTER_SHIM(waitForLinearizableReadConcern) (OperationContext* opCtx, const int readConcernTimeout)->Status { CurOpFailpointHelpers::waitWhileFailPointEnabled( &hangBeforeLinearizableReadConcern, opCtx, "hangBeforeLinearizableReadConcern", [opCtx]() { log() << "batch update - hangBeforeLinearizableReadConcern fail point enabled. " "Blocking until fail point is disabled."; }); repl::ReplicationCoordinator* replCoord = repl::ReplicationCoordinator::get(opCtx->getClient()->getServiceContext()); { Lock::DBLock lk(opCtx, "local", MODE_IX); Lock::CollectionLock lock(opCtx, NamespaceString("local.oplog.rs"), MODE_IX); if (!replCoord->canAcceptWritesForDatabase(opCtx, "admin")) { return {ErrorCodes::NotMaster, "No longer primary when waiting for linearizable read concern"}; } // With linearizable readConcern, read commands may write to the oplog, which is an // exception to the rule that writes are not allowed while ignoring prepare conflicts. If we // are ignoring prepare conflicts (during a read command), force the prepare conflict // behavior to permit writes. auto originalBehavior = opCtx->recoveryUnit()->getPrepareConflictBehavior(); if (originalBehavior == PrepareConflictBehavior::kIgnoreConflicts) { opCtx->recoveryUnit()->setPrepareConflictBehavior( PrepareConflictBehavior::kIgnoreConflictsAllowWrites); } writeConflictRetry( opCtx, "waitForLinearizableReadConcern", NamespaceString::kRsOplogNamespace.ns(), [&opCtx] { WriteUnitOfWork uow(opCtx); opCtx->getClient()->getServiceContext()->getOpObserver()->onOpMessage( opCtx, BSON("msg" << "linearizable read")); uow.commit(); }); } WriteConcernOptions wc = WriteConcernOptions( WriteConcernOptions::kMajority, WriteConcernOptions::SyncMode::UNSET, readConcernTimeout); repl::OpTime lastOpApplied = repl::ReplClientInfo::forClient(opCtx->getClient()).getLastOp(); auto awaitReplResult = replCoord->awaitReplication(opCtx, lastOpApplied, wc); if (awaitReplResult.status == ErrorCodes::WriteConcernFailed) { return Status(ErrorCodes::LinearizableReadConcernError, "Failed to confirm that read was linearizable."); } return awaitReplResult.status; } MONGO_REGISTER_SHIM(waitForSpeculativeMajorityReadConcern) (OperationContext* opCtx, repl::SpeculativeMajorityReadInfo speculativeReadInfo)->Status { invariant(speculativeReadInfo.isSpeculativeRead()); // Select the timestamp to wait on. A command may have selected a specific timestamp to wait on. // If not, then we use the timestamp selected by the read source. auto replCoord = repl::ReplicationCoordinator::get(opCtx); Timestamp waitTs; auto speculativeReadTimestamp = speculativeReadInfo.getSpeculativeReadTimestamp(); if (speculativeReadTimestamp) { waitTs = *speculativeReadTimestamp; } else { // Speculative majority reads are required to use the 'kNoOverlap' read source. invariant(opCtx->recoveryUnit()->getTimestampReadSource() == RecoveryUnit::ReadSource::kNoOverlap); boost::optional readTs = opCtx->recoveryUnit()->getPointInTimeReadTimestamp(); invariant(readTs); waitTs = *readTs; } // Block to make sure returned data is majority committed. LOG(1) << "Servicing speculative majority read, waiting for timestamp " << waitTs << " to become committed, current commit point: " << replCoord->getLastCommittedOpTime(); if (!opCtx->hasDeadline()) { // This hard-coded value represents the maximum time we are willing to wait for a timestamp // to majority commit when doing a speculative majority read if no maxTimeMS value has been // set for the command. We make this value rather conservative. This exists primarily to // address the fact that getMore commands do not respect maxTimeMS properly. In this case, // we still want speculative majority reads to time out after some period if a timestamp // cannot majority commit. auto timeout = Seconds(15); opCtx->setDeadlineAfterNowBy(timeout, ErrorCodes::MaxTimeMSExpired); } Timer t; auto waitStatus = replCoord->awaitTimestampCommitted(opCtx, waitTs); if (waitStatus.isOK()) { LOG(1) << "Timestamp " << waitTs << " became majority committed, waited " << t.millis() << "ms for speculative majority read to be satisfied."; } return waitStatus; } } // namespace mongo