// key_string_test.cpp /** * Copyright (C) 2018-present MongoDB, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the Server Side Public License, version 1, * as published by MongoDB, Inc. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * Server Side Public License for more details. * * You should have received a copy of the Server Side Public License * along with this program. If not, see * . * * As a special exception, the copyright holders give permission to link the * code of portions of this program with the OpenSSL library under certain * conditions as described in each individual source file and distribute * linked combinations including the program with the OpenSSL library. You * must comply with the Server Side Public License in all respects for * all of the code used other than as permitted herein. If you modify file(s) * with this exception, you may extend this exception to your version of the * file(s), but you are not obligated to do so. If you do not wish to do so, * delete this exception statement from your version. If you delete this * exception statement from all source files in the program, then also delete * it in the license file. */ #define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kStorage #include "mongo/platform/basic.h" #include #include #include #include #include #include #include #include "mongo/base/owned_pointer_vector.h" #include "mongo/base/simple_string_data_comparator.h" #include "mongo/bson/bsonobj_comparator.h" #include "mongo/bson/simple_bsonobj_comparator.h" #include "mongo/config.h" #include "mongo/db/storage/key_string.h" #include "mongo/platform/decimal128.h" #include "mongo/stdx/functional.h" #include "mongo/stdx/future.h" #include "mongo/stdx/memory.h" #include "mongo/unittest/death_test.h" #include "mongo/unittest/unittest.h" #include "mongo/util/hex.h" #include "mongo/util/log.h" #include "mongo/util/timer.h" using std::string; using namespace mongo; BSONObj toBson(const KeyString& ks, Ordering ord) { return KeyString::toBson(ks.getBuffer(), ks.getSize(), ord, ks.getTypeBits()); } BSONObj toBsonAndCheckKeySize(const KeyString& ks, Ordering ord) { auto keyStringSize = ks.getSize(); // Validate size of the key in KeyString. ASSERT_EQUALS(keyStringSize, KeyString::getKeySize(ks.getBuffer(), keyStringSize, ord, ks.getTypeBits())); return KeyString::toBson(ks.getBuffer(), keyStringSize, ord, ks.getTypeBits()); } Ordering ALL_ASCENDING = Ordering::make(BSONObj()); Ordering ONE_ASCENDING = Ordering::make(BSON("a" << 1)); Ordering ONE_DESCENDING = Ordering::make(BSON("a" << -1)); class KeyStringTest : public mongo::unittest::Test { public: void run() { auto base = static_cast(this); try { version = KeyString::Version::V0; base->run(); version = KeyString::Version::V1; base->run(); } catch (...) { log() << "exception while testing KeyString version " << mongo::KeyString::versionToString(version); throw; } } protected: KeyString::Version version; }; template void checkSizeWhileAppendingTypeBits(int numOfBitsUsedForType, T&& appendBitsFunc) { KeyString::TypeBits typeBits(KeyString::Version::V1); const int kItems = 10000; // Pick an arbitrary large number. for (int i = 0; i < kItems; i++) { appendBitsFunc(typeBits); size_t currentRawSize = ((i + 1) * numOfBitsUsedForType - 1) / 8 + 1; size_t currentSize = currentRawSize; if (currentRawSize > KeyString::TypeBits::kMaxBytesForShortEncoding) { // Case 4: plus 1 signal byte + 4 size bytes. currentSize += 5; ASSERT(typeBits.isLongEncoding()); } else { ASSERT(!typeBits.isLongEncoding()); if (currentRawSize == 1 && !(typeBits.getBuffer()[0] & 0x80)) { // Case 2 currentSize = 1; } else { // Case 3: plus 1 size byte. currentSize += 1; } } ASSERT_EQ(typeBits.getSize(), currentSize); } } TEST(TypeBitsTest, AppendSymbol) { checkSizeWhileAppendingTypeBits( 1, [](KeyString::TypeBits& typeBits) -> void { typeBits.appendSymbol(); }); } TEST(TypeBitsTest, AppendString) { // The typeBits should be all zeros, so numOfBitsUsedForType is set to 0 for // passing the test although it technically uses 1 bit. checkSizeWhileAppendingTypeBits( 0, [](KeyString::TypeBits& typeBits) -> void { typeBits.appendString(); }); } TEST(typebitstest, appendDouble) { checkSizeWhileAppendingTypeBits( 2, [](KeyString::TypeBits& typeBits) -> void { typeBits.appendNumberDouble(); }); } TEST(TypeBitsTest, AppendNumberLong) { checkSizeWhileAppendingTypeBits( 2, [](KeyString::TypeBits& typeBits) -> void { typeBits.appendNumberLong(); }); } TEST(TypeBitsTest, AppendNumberInt) { // The typeBits should be all zeros, so numOfBitsUsedForType is set to 0 for // passing the test although it technically uses 2 bits. checkSizeWhileAppendingTypeBits( 0, [](KeyString::TypeBits& typeBits) -> void { typeBits.appendNumberInt(); }); } TEST(TypeBitsTest, AppendNumberDecimal) { checkSizeWhileAppendingTypeBits( 2, [](KeyString::TypeBits& typeBits) -> void { typeBits.appendNumberDecimal(); }); } TEST(TypeBitsTest, AppendLongZero) { checkSizeWhileAppendingTypeBits(2, [](KeyString::TypeBits& typeBits) -> void { typeBits.appendZero(KeyString::TypeBits::kLong); }); } TEST(TypeBitsTest, AppendDecimalZero) { checkSizeWhileAppendingTypeBits(12 + 5, [](KeyString::TypeBits& typeBits) -> void { typeBits.appendDecimalZero(KeyString::TypeBits::kDecimalZero1xxx); }); } TEST(TypeBitsTest, AppendDecimalExponent) { checkSizeWhileAppendingTypeBits( KeyString::TypeBits::kStoredDecimalExponentBits, [](KeyString::TypeBits& typeBits) -> void { typeBits.appendDecimalExponent(1); }); } TEST(TypeBitsTest, UninitializedTypeBits) { KeyString::TypeBits typeBits(KeyString::Version::V1); ASSERT_EQ(typeBits.getSize(), 1u); ASSERT_EQ(typeBits.getBuffer()[0], 0); ASSERT(typeBits.isAllZeros()); } TEST(TypeBitsTest, AllZerosTypeBits) { { std::string emptyBuffer = ""; BufReader reader(emptyBuffer.c_str(), 0); KeyString::TypeBits typeBits = KeyString::TypeBits::fromBuffer(KeyString::Version::V1, &reader); ASSERT_EQ(typeBits.getSize(), 1u); ASSERT_EQ(typeBits.getBuffer()[0], 0); ASSERT(typeBits.isAllZeros()); } { std::string allZerosBuffer = "0000000000000000"; BufReader reader(allZerosBuffer.c_str(), 0); KeyString::TypeBits typeBits = KeyString::TypeBits::fromBuffer(KeyString::Version::V1, &reader); ASSERT_EQ(typeBits.getSize(), 1u); ASSERT_EQ(typeBits.getBuffer()[0], 0); ASSERT(typeBits.isAllZeros()); } } TEST(TypeBitsTest, AppendLotsOfZeroTypeBits) { KeyString::TypeBits typeBits(KeyString::Version::V1); for (int i = 0; i < 100000; i++) { typeBits.appendString(); } // TypeBits should still be in short encoding format. ASSERT(!typeBits.isLongEncoding()); } TEST_F(KeyStringTest, Simple1) { BSONObj a = BSON("" << 5); BSONObj b = BSON("" << 6); ASSERT_BSONOBJ_LT(a, b); ASSERT_LESS_THAN(KeyString(version, a, ALL_ASCENDING, RecordId()), KeyString(version, b, ALL_ASCENDING, RecordId())); } #define ROUNDTRIP_ORDER(version, x, order) \ do { \ const BSONObj _orig = x; \ const KeyString _ks(version, _orig, order); \ const BSONObj _converted = toBsonAndCheckKeySize(_ks, order); \ ASSERT_BSONOBJ_EQ(_converted, _orig); \ ASSERT(_converted.binaryEqual(_orig)); \ } while (0) #define ROUNDTRIP(version, x) \ do { \ ROUNDTRIP_ORDER(version, x, ALL_ASCENDING); \ ROUNDTRIP_ORDER(version, x, ONE_DESCENDING); \ } while (0) #define COMPARES_SAME(_v, _x, _y) \ do { \ KeyString _xKS(_v, _x, ONE_ASCENDING); \ KeyString _yKS(_v, _y, ONE_ASCENDING); \ if (SimpleBSONObjComparator::kInstance.evaluate(_x == _y)) { \ ASSERT_EQUALS(_xKS, _yKS); \ } else if (SimpleBSONObjComparator::kInstance.evaluate(_x < _y)) { \ ASSERT_LESS_THAN(_xKS, _yKS); \ } else { \ ASSERT_LESS_THAN(_yKS, _xKS); \ } \ \ _xKS.resetToKey(_x, ONE_DESCENDING); \ _yKS.resetToKey(_y, ONE_DESCENDING); \ if (SimpleBSONObjComparator::kInstance.evaluate(_x == _y)) { \ ASSERT_EQUALS(_xKS, _yKS); \ } else if (SimpleBSONObjComparator::kInstance.evaluate(_x < _y)) { \ ASSERT_GREATER_THAN(_xKS, _yKS); \ } else { \ ASSERT_GREATER_THAN(_yKS, _xKS); \ } \ } while (0) TEST_F(KeyStringTest, ActualBytesDouble) { // just one test like this for utter sanity BSONObj a = BSON("" << 5.5); KeyString ks(version, a, ALL_ASCENDING); log() << KeyString::versionToString(version) << " size: " << ks.getSize() << " hex [" << toHex(ks.getBuffer(), ks.getSize()) << "]"; ASSERT_EQUALS(10U, ks.getSize()); string hex = version == KeyString::Version::V0 ? "2B" // kNumericPositive1ByteInt "0B" // (5 << 1) | 1 "02000000000000" // fractional bytes of double "04" // kEnd : "2B" // kNumericPositive1ByteInt "0B" // (5 << 1) | 1 "80000000000000" // fractional bytes "04"; // kEnd ASSERT_EQUALS(hex, toHex(ks.getBuffer(), ks.getSize())); ks.resetToKey(a, Ordering::make(BSON("a" << -1))); ASSERT_EQUALS(10U, ks.getSize()); // last byte (kEnd) doesn't get flipped string hexFlipped; for (size_t i = 0; i < hex.size() - 2; i += 2) { char c = uassertStatusOK(fromHex(hex.c_str() + i)); c = ~c; hexFlipped += toHex(&c, 1); } hexFlipped += hex.substr(hex.size() - 2); ASSERT_EQUALS(hexFlipped, toHex(ks.getBuffer(), ks.getSize())); } TEST_F(KeyStringTest, AllTypesSimple) { ROUNDTRIP(version, BSON("" << 5.5)); ROUNDTRIP(version, BSON("" << "abc")); ROUNDTRIP(version, BSON("" << BSON("a" << 5))); ROUNDTRIP(version, BSON("" << BSON_ARRAY("a" << 5))); ROUNDTRIP(version, BSON("" << BSONBinData("abc", 3, bdtCustom))); ROUNDTRIP(version, BSON("" << BSONUndefined)); ROUNDTRIP(version, BSON("" << OID("abcdefabcdefabcdefabcdef"))); ROUNDTRIP(version, BSON("" << true)); ROUNDTRIP(version, BSON("" << Date_t::fromMillisSinceEpoch(123123123))); ROUNDTRIP(version, BSON("" << BSONRegEx("asdf", "x"))); ROUNDTRIP(version, BSON("" << BSONDBRef("db.c", OID("010203040506070809101112")))); ROUNDTRIP(version, BSON("" << BSONCode("abc_code"))); ROUNDTRIP(version, BSON("" << BSONCodeWScope("def_code", BSON("x_scope" << "a")))); ROUNDTRIP(version, BSON("" << 5)); ROUNDTRIP(version, BSON("" << Timestamp(123123, 123))); ROUNDTRIP(version, BSON("" << Timestamp(~0U, 3))); ROUNDTRIP(version, BSON("" << 1235123123123LL)); } TEST_F(KeyStringTest, Array1) { BSONObj emptyArray = BSON("" << BSONArray()); ASSERT_EQUALS(Array, emptyArray.firstElement().type()); ROUNDTRIP(version, emptyArray); ROUNDTRIP(version, BSON("" << BSON_ARRAY(emptyArray.firstElement()))); ROUNDTRIP(version, BSON("" << BSON_ARRAY(1))); ROUNDTRIP(version, BSON("" << BSON_ARRAY(1 << 2))); ROUNDTRIP(version, BSON("" << BSON_ARRAY(1 << 2 << 3))); { KeyString a(version, emptyArray, ALL_ASCENDING, RecordId::min()); KeyString b(version, emptyArray, ALL_ASCENDING, RecordId(5)); ASSERT_LESS_THAN(a, b); } { KeyString a(version, emptyArray, ALL_ASCENDING, RecordId(0)); KeyString b(version, emptyArray, ALL_ASCENDING, RecordId(5)); ASSERT_LESS_THAN(a, b); } } TEST_F(KeyStringTest, SubDoc1) { ROUNDTRIP(version, BSON("" << BSON("foo" << 2))); ROUNDTRIP(version, BSON("" << BSON("foo" << 2 << "bar" << "asd"))); ROUNDTRIP(version, BSON("" << BSON("foo" << BSON_ARRAY(2 << 4)))); } TEST_F(KeyStringTest, SubDoc2) { BSONObj a = BSON("" << BSON("a" << "foo")); BSONObj b = BSON("" << BSON("b" << 5.5)); BSONObj c = BSON("" << BSON("c" << BSON("x" << 5))); ROUNDTRIP(version, a); ROUNDTRIP(version, b); ROUNDTRIP(version, c); COMPARES_SAME(version, a, b); COMPARES_SAME(version, a, c); COMPARES_SAME(version, b, c); } TEST_F(KeyStringTest, Compound1) { ROUNDTRIP(version, BSON("" << BSON("a" << 5) << "" << 1)); ROUNDTRIP(version, BSON("" << BSON("" << 5) << "" << 1)); } TEST_F(KeyStringTest, Undef1) { ROUNDTRIP(version, BSON("" << BSONUndefined)); } TEST_F(KeyStringTest, NumberLong0) { double d = (1ll << 52) - 1; long long ll = static_cast(d); double d2 = static_cast(ll); ASSERT_EQUALS(d, d2); } TEST_F(KeyStringTest, NumbersNearInt32Max) { int64_t start = std::numeric_limits::max(); for (int64_t i = -1000; i < 1000; i++) { long long toTest = start + i; ROUNDTRIP(version, BSON("" << toTest)); ROUNDTRIP(version, BSON("" << static_cast(toTest))); ROUNDTRIP(version, BSON("" << static_cast(toTest))); } } TEST_F(KeyStringTest, DecimalNumbers) { if (version == KeyString::Version::V0) { log() << "not testing DecimalNumbers for KeyString V0"; return; } const auto V1 = KeyString::Version::V1; // Zeros ROUNDTRIP(V1, BSON("" << Decimal128("0"))); ROUNDTRIP(V1, BSON("" << Decimal128("0.0"))); ROUNDTRIP(V1, BSON("" << Decimal128("-0"))); ROUNDTRIP(V1, BSON("" << Decimal128("0E5000"))); ROUNDTRIP(V1, BSON("" << Decimal128("-0.0000E-6172"))); // Special numbers ROUNDTRIP(V1, BSON("" << Decimal128("NaN"))); ROUNDTRIP(V1, BSON("" << Decimal128("+Inf"))); ROUNDTRIP(V1, BSON("" << Decimal128("-Inf"))); // Decimal representations of whole double numbers ROUNDTRIP(V1, BSON("" << Decimal128("1"))); ROUNDTRIP(V1, BSON("" << Decimal128("2.0"))); ROUNDTRIP(V1, BSON("" << Decimal128("-2.0E1"))); ROUNDTRIP(V1, BSON("" << Decimal128("1234.56E15"))); ROUNDTRIP(V1, BSON("" << Decimal128("2.00000000000000000000000"))); ROUNDTRIP(V1, BSON("" << Decimal128("-9223372036854775808.00000000000000"))); // -2**63 ROUNDTRIP(V1, BSON("" << Decimal128("973555660975280180349468061728768E1"))); // 1.875 * 2**112 // Decimal representations of fractional double numbers ROUNDTRIP(V1, BSON("" << Decimal128("1.25"))); ROUNDTRIP(V1, BSON("" << Decimal128("3.141592653584666550159454345703125"))); ROUNDTRIP(V1, BSON("" << Decimal128("-127.50"))); // Decimal representations of whole int64 non-double numbers ROUNDTRIP(V1, BSON("" << Decimal128("243290200817664E4"))); // 20! ROUNDTRIP(V1, BSON("" << Decimal128("9007199254740993"))); // 2**53 + 1 ROUNDTRIP(V1, BSON("" << Decimal128(std::numeric_limits::max()))); ROUNDTRIP(V1, BSON("" << Decimal128(std::numeric_limits::min()))); // Decimals in int64_t range without decimal or integer representation ROUNDTRIP(V1, BSON("" << Decimal128("1.23"))); ROUNDTRIP(V1, BSON("" << Decimal128("-1.1"))); ROUNDTRIP(V1, BSON("" << Decimal128("-12345.60"))); ROUNDTRIP(V1, BSON("" << Decimal128("3.141592653589793238462643383279502"))); ROUNDTRIP(V1, BSON("" << Decimal128("-3.141592653589793115997963468544185"))); // Decimal representations of small double numbers ROUNDTRIP(V1, BSON("" << Decimal128("0.50"))); ROUNDTRIP(V1, BSON("" << Decimal128("-0.3552713678800500929355621337890625E-14"))); // -2**(-48) ROUNDTRIP(V1, BSON("" << Decimal128("-0.000000000000001234567890123456789012345678901234E-99"))); // Decimal representations of small decimals not representable as double ROUNDTRIP(V1, BSON("" << Decimal128("0.02"))); // Large decimals ROUNDTRIP(V1, BSON("" << Decimal128("1234567890123456789012345678901234E6000"))); ROUNDTRIP(V1, BSON("" << Decimal128("-19950631168.80758384883742162683585E3000"))); // -2**10000 // Tiny, tiny decimals ROUNDTRIP(V1, BSON("" << Decimal128("0.2512388057698744585180135042133610E-6020"))); // 2**(-10000) ROUNDTRIP(V1, BSON("" << Decimal128("4.940656458412465441765687928682213E-324") << "" << 1)); ROUNDTRIP(V1, BSON("" << Decimal128("-0.8289046058458094980903836776809409E-316"))); // Decimal inside sub-doc ROUNDTRIP(V1, BSON("" << BSONNULL << "" << BSON("a" << Decimal128::kPositiveInfinity))); } TEST_F(KeyStringTest, LotsOfNumbers1) { for (int i = 0; i < 64; i++) { int64_t x = 1LL << i; ROUNDTRIP(version, BSON("" << static_cast(x))); ROUNDTRIP(version, BSON("" << static_cast(x))); ROUNDTRIP(version, BSON("" << static_cast(x))); ROUNDTRIP(version, BSON("" << (static_cast(x) + .1))); ROUNDTRIP(version, BSON("" << (static_cast(x) - .1))); ROUNDTRIP(version, BSON("" << (static_cast(x) + 1))); ROUNDTRIP(version, BSON("" << (static_cast(x) + 1))); ROUNDTRIP(version, BSON("" << (static_cast(x) + 1))); ROUNDTRIP(version, BSON("" << (static_cast(x) + 1.1))); // Avoid negating signed integral minima if (i < 63) ROUNDTRIP(version, BSON("" << -static_cast(x))); if (i < 31) ROUNDTRIP(version, BSON("" << -static_cast(x))); ROUNDTRIP(version, BSON("" << -static_cast(x))); ROUNDTRIP(version, BSON("" << -(static_cast(x) + .1))); ROUNDTRIP(version, BSON("" << -(static_cast(x) + 1))); ROUNDTRIP(version, BSON("" << -(static_cast(x) + 1))); ROUNDTRIP(version, BSON("" << -(static_cast(x) + 1))); ROUNDTRIP(version, BSON("" << -(static_cast(x) + 1.1))); } } TEST_F(KeyStringTest, LotsOfNumbers2) { for (double i = -1100; i < 1100; i++) { double x = pow(2, i); ROUNDTRIP(version, BSON("" << x)); } for (double i = -1100; i < 1100; i++) { double x = pow(2.1, i); ROUNDTRIP(version, BSON("" << x)); } } TEST_F(KeyStringTest, LotsOfNumbers3) { std::vector> futures; for (double k = 0; k < 8; k++) { futures.push_back(stdx::async(stdx::launch::async, [k, this] { for (double i = -1100; i < 1100; i++) { for (double j = 0; j < 52; j++) { const auto V1 = KeyString::Version::V1; Decimal128::RoundingPrecision roundingPrecisions[]{ Decimal128::kRoundTo15Digits, Decimal128::kRoundTo34Digits}; Decimal128::RoundingMode roundingModes[]{Decimal128::kRoundTowardNegative, Decimal128::kRoundTowardPositive}; double x = pow(2, i); double y = pow(2, i - j); double z = pow(2, i - 53 + k); double bin = x + y - z; // In general NaNs don't roundtrip as we only store a single NaN, see the NaNs // test. if (std::isnan(bin)) continue; ROUNDTRIP(version, BSON("" << bin)); ROUNDTRIP(version, BSON("" << -bin)); if (version < V1) continue; for (auto precision : roundingPrecisions) { for (auto mode : roundingModes) { Decimal128 rounded = Decimal128(bin, precision, mode); ROUNDTRIP(V1, BSON("" << rounded)); ROUNDTRIP(V1, BSON("" << rounded.negate())); } } } } })); } for (auto&& future : futures) { future.get(); } } TEST_F(KeyStringTest, RecordIdOrder1) { Ordering ordering = Ordering::make(BSON("a" << 1)); KeyString a(version, BSON("" << 5), ordering, RecordId::min()); KeyString b(version, BSON("" << 5), ordering, RecordId(2)); KeyString c(version, BSON("" << 5), ordering, RecordId(3)); KeyString d(version, BSON("" << 6), ordering, RecordId()); KeyString e(version, BSON("" << 6), ordering, RecordId(1)); ASSERT_LESS_THAN(a, b); ASSERT_LESS_THAN(b, c); ASSERT_LESS_THAN(c, d); ASSERT_LESS_THAN(d, e); } TEST_F(KeyStringTest, RecordIdOrder2) { Ordering ordering = Ordering::make(BSON("a" << -1 << "b" << -1)); KeyString a(version, BSON("" << 5 << "" << 6), ordering, RecordId::min()); KeyString b(version, BSON("" << 5 << "" << 6), ordering, RecordId(5)); KeyString c(version, BSON("" << 5 << "" << 5), ordering, RecordId(4)); KeyString d(version, BSON("" << 3 << "" << 4), ordering, RecordId(3)); ASSERT_LESS_THAN(a, b); ASSERT_LESS_THAN(b, c); ASSERT_LESS_THAN(c, d); ASSERT_LESS_THAN(a, c); ASSERT_LESS_THAN(a, d); ASSERT_LESS_THAN(b, d); } TEST_F(KeyStringTest, RecordIdOrder2Double) { Ordering ordering = Ordering::make(BSON("a" << -1 << "b" << -1)); KeyString a(version, BSON("" << 5.0 << "" << 6.0), ordering, RecordId::min()); KeyString b(version, BSON("" << 5.0 << "" << 6.0), ordering, RecordId(5)); KeyString c(version, BSON("" << 3.0 << "" << 4.0), ordering, RecordId(3)); ASSERT_LESS_THAN(a, b); ASSERT_LESS_THAN(b, c); ASSERT_LESS_THAN(a, c); } TEST_F(KeyStringTest, Timestamp) { BSONObj a = BSON("" << Timestamp(0, 0)); BSONObj b = BSON("" << Timestamp(1234, 1)); BSONObj c = BSON("" << Timestamp(1234, 2)); BSONObj d = BSON("" << Timestamp(1235, 1)); BSONObj e = BSON("" << Timestamp(~0U, 0)); { ROUNDTRIP(version, a); ROUNDTRIP(version, b); ROUNDTRIP(version, c); ASSERT_BSONOBJ_LT(a, b); ASSERT_BSONOBJ_LT(b, c); ASSERT_BSONOBJ_LT(c, d); KeyString ka(version, a, ALL_ASCENDING); KeyString kb(version, b, ALL_ASCENDING); KeyString kc(version, c, ALL_ASCENDING); KeyString kd(version, d, ALL_ASCENDING); KeyString ke(version, e, ALL_ASCENDING); ASSERT(ka.compare(kb) < 0); ASSERT(kb.compare(kc) < 0); ASSERT(kc.compare(kd) < 0); ASSERT(kd.compare(ke) < 0); } { Ordering ALL_ASCENDING = Ordering::make(BSON("a" << -1)); ROUNDTRIP(version, a); ROUNDTRIP(version, b); ROUNDTRIP(version, c); ASSERT(d.woCompare(c, ALL_ASCENDING) < 0); ASSERT(c.woCompare(b, ALL_ASCENDING) < 0); ASSERT(b.woCompare(a, ALL_ASCENDING) < 0); KeyString ka(version, a, ALL_ASCENDING); KeyString kb(version, b, ALL_ASCENDING); KeyString kc(version, c, ALL_ASCENDING); KeyString kd(version, d, ALL_ASCENDING); ASSERT(ka.compare(kb) > 0); ASSERT(kb.compare(kc) > 0); ASSERT(kc.compare(kd) > 0); } } TEST_F(KeyStringTest, AllTypesRoundtrip) { for (int i = 1; i <= JSTypeMax; i++) { { BSONObjBuilder b; b.appendMinForType("", i); BSONObj o = b.obj(); ROUNDTRIP(version, o); } { BSONObjBuilder b; b.appendMaxForType("", i); BSONObj o = b.obj(); ROUNDTRIP(version, o); } } } const std::vector& getInterestingElements(KeyString::Version version) { static std::vector elements; elements.clear(); // These are used to test strings that include NUL bytes. const auto ball = "ball"_sd; const auto ball00n = "ball\0\0n"_sd; const auto zeroBall = "\0ball"_sd; elements.push_back(BSON("" << 1)); elements.push_back(BSON("" << 1.0)); elements.push_back(BSON("" << 1LL)); elements.push_back(BSON("" << 123456789123456789LL)); elements.push_back(BSON("" << -123456789123456789LL)); elements.push_back(BSON("" << 112353998331165715LL)); elements.push_back(BSON("" << 112353998331165710LL)); elements.push_back(BSON("" << 1123539983311657199LL)); elements.push_back(BSON("" << 123456789123456789.123)); elements.push_back(BSON("" << -123456789123456789.123)); elements.push_back(BSON("" << 112353998331165715.0)); elements.push_back(BSON("" << 112353998331165710.0)); elements.push_back(BSON("" << 1123539983311657199.0)); elements.push_back(BSON("" << 5.0)); elements.push_back(BSON("" << 5)); elements.push_back(BSON("" << 2)); elements.push_back(BSON("" << -2)); elements.push_back(BSON("" << -2.2)); elements.push_back(BSON("" << -12312312.2123123123123)); elements.push_back(BSON("" << 12312312.2123123123123)); elements.push_back(BSON("" << "aaa")); elements.push_back(BSON("" << "AAA")); elements.push_back(BSON("" << zeroBall)); elements.push_back(BSON("" << ball)); elements.push_back(BSON("" << ball00n)); elements.push_back(BSON("" << BSONSymbol(zeroBall))); elements.push_back(BSON("" << BSONSymbol(ball))); elements.push_back(BSON("" << BSONSymbol(ball00n))); elements.push_back(BSON("" << BSON("a" << 5))); elements.push_back(BSON("" << BSON("a" << 6))); elements.push_back(BSON("" << BSON("b" << 6))); elements.push_back(BSON("" << BSON_ARRAY("a" << 5))); elements.push_back(BSON("" << BSONNULL)); elements.push_back(BSON("" << BSONUndefined)); elements.push_back(BSON("" << OID("abcdefabcdefabcdefabcdef"))); elements.push_back(BSON("" << Date_t::fromMillisSinceEpoch(123))); elements.push_back(BSON("" << BSONCode("abc_code"))); elements.push_back(BSON("" << BSONCode(zeroBall))); elements.push_back(BSON("" << BSONCode(ball))); elements.push_back(BSON("" << BSONCode(ball00n))); elements.push_back(BSON("" << BSONCodeWScope("def_code1", BSON("x_scope" << "a")))); elements.push_back(BSON("" << BSONCodeWScope("def_code2", BSON("x_scope" << "a")))); elements.push_back(BSON("" << BSONCodeWScope("def_code2", BSON("x_scope" << "b")))); elements.push_back(BSON("" << BSONCodeWScope(zeroBall, BSON("a" << 1)))); elements.push_back(BSON("" << BSONCodeWScope(ball, BSON("a" << 1)))); elements.push_back(BSON("" << BSONCodeWScope(ball00n, BSON("a" << 1)))); elements.push_back(BSON("" << true)); elements.push_back(BSON("" << false)); // Something that needs multiple bytes of typeBits elements.push_back(BSON("" << BSON_ARRAY("" << BSONSymbol("") << 0 << 0ll << 0.0 << -0.0))); if (version != KeyString::Version::V0) { // Something with exceptional typeBits for Decimal elements.push_back( BSON("" << BSON_ARRAY("" << BSONSymbol("") << Decimal128::kNegativeInfinity << Decimal128::kPositiveInfinity << Decimal128::kPositiveNaN << Decimal128("0.0000000") << Decimal128("-0E1000")))); } // // Interesting numeric cases // elements.push_back(BSON("" << 0)); elements.push_back(BSON("" << 0ll)); elements.push_back(BSON("" << 0.0)); elements.push_back(BSON("" << -0.0)); if (version != KeyString::Version::V0) { Decimal128("0.0.0000000"); Decimal128("-0E1000"); } elements.push_back(BSON("" << std::numeric_limits::quiet_NaN())); elements.push_back(BSON("" << std::numeric_limits::infinity())); elements.push_back(BSON("" << -std::numeric_limits::infinity())); elements.push_back(BSON("" << std::numeric_limits::max())); elements.push_back(BSON("" << -std::numeric_limits::max())); elements.push_back(BSON("" << std::numeric_limits::min())); elements.push_back(BSON("" << -std::numeric_limits::min())); elements.push_back(BSON("" << std::numeric_limits::denorm_min())); elements.push_back(BSON("" << -std::numeric_limits::denorm_min())); elements.push_back(BSON("" << std::numeric_limits::denorm_min())); elements.push_back(BSON("" << -std::numeric_limits::denorm_min())); elements.push_back(BSON("" << std::numeric_limits::max())); elements.push_back(BSON("" << -std::numeric_limits::max())); elements.push_back(BSON("" << std::numeric_limits::min())); elements.push_back(BSON("" << std::numeric_limits::max())); elements.push_back(BSON("" << -std::numeric_limits::max())); elements.push_back(BSON("" << std::numeric_limits::min())); for (int powerOfTwo = 0; powerOfTwo < 63; powerOfTwo++) { const long long lNum = 1ll << powerOfTwo; const double dNum = double(lNum); // All powers of two in this range can be represented exactly as doubles. invariant(lNum == static_cast(dNum)); elements.push_back(BSON("" << lNum)); elements.push_back(BSON("" << -lNum)); elements.push_back(BSON("" << dNum)); elements.push_back(BSON("" << -dNum)); elements.push_back(BSON("" << (lNum + 1))); elements.push_back(BSON("" << (lNum - 1))); elements.push_back(BSON("" << (-lNum + 1))); elements.push_back(BSON("" << (-lNum - 1))); if (powerOfTwo <= 52) { // is dNum - 0.5 representable? elements.push_back(BSON("" << (dNum - 0.5))); elements.push_back(BSON("" << -(dNum - 0.5))); elements.push_back(BSON("" << (dNum - 0.1))); elements.push_back(BSON("" << -(dNum - 0.1))); } if (powerOfTwo <= 51) { // is dNum + 0.5 representable? elements.push_back(BSON("" << (dNum + 0.5))); elements.push_back(BSON("" << -(dNum + 0.5))); elements.push_back(BSON("" << (dNum + 0.1))); elements.push_back(BSON("" << -(dNum + -.1))); } if (version != KeyString::Version::V0) { const Decimal128 dec(static_cast(lNum)); const Decimal128 one("1"); const Decimal128 half("0.5"); const Decimal128 tenth("0.1"); elements.push_back(BSON("" << dec)); elements.push_back(BSON("" << dec.add(one))); elements.push_back(BSON("" << dec.subtract(one))); elements.push_back(BSON("" << dec.negate())); elements.push_back(BSON("" << dec.add(one).negate())); elements.push_back(BSON("" << dec.subtract(one).negate())); elements.push_back(BSON("" << dec.subtract(half))); elements.push_back(BSON("" << dec.subtract(half).negate())); elements.push_back(BSON("" << dec.add(half))); elements.push_back(BSON("" << dec.add(half).negate())); elements.push_back(BSON("" << dec.subtract(tenth))); elements.push_back(BSON("" << dec.subtract(tenth).negate())); elements.push_back(BSON("" << dec.add(tenth))); elements.push_back(BSON("" << dec.add(tenth).negate())); } } { // Numbers around +/- numeric_limits::max() which can't be represented // precisely as a double. const long long maxLL = std::numeric_limits::max(); const double closestAbove = 9223372036854775808.0; // 2**63 const double closestBelow = 9223372036854774784.0; // 2**63 - epsilon elements.push_back(BSON("" << maxLL)); elements.push_back(BSON("" << (maxLL - 1))); elements.push_back(BSON("" << closestAbove)); elements.push_back(BSON("" << closestBelow)); elements.push_back(BSON("" << -maxLL)); elements.push_back(BSON("" << -(maxLL - 1))); elements.push_back(BSON("" << -closestAbove)); elements.push_back(BSON("" << -closestBelow)); } { // Numbers around numeric_limits::min() which can be represented precisely as // a double, but not as a positive long long. const long long minLL = std::numeric_limits::min(); const double closestBelow = -9223372036854777856.0; // -2**63 - epsilon const double equal = -9223372036854775808.0; // 2**63 const double closestAbove = -9223372036854774784.0; // -2**63 + epsilon elements.push_back(BSON("" << minLL)); elements.push_back(BSON("" << equal)); elements.push_back(BSON("" << closestAbove)); elements.push_back(BSON("" << closestBelow)); } if (version != KeyString::Version::V0) { // Numbers that are hard to round to between binary and decimal. elements.push_back(BSON("" << 0.1)); elements.push_back(BSON("" << Decimal128("0.100000000"))); // Decimals closest to the double representation of 0.1. elements.push_back(BSON("" << Decimal128("0.1000000000000000055511151231257827"))); elements.push_back(BSON("" << Decimal128("0.1000000000000000055511151231257828"))); // Decimals that failed at some point during testing. elements.push_back(BSON("" << Decimal128("0.999999999999999"))); elements.push_back(BSON("" << Decimal128("2.22507385850721E-308"))); elements.push_back(BSON("" << Decimal128("9.881312916824930883531375857364428E-324"))); elements.push_back(BSON("" << Decimal128(9223372036854776000.0))); elements.push_back(BSON("" << Decimal128("9223372036854776000"))); // Numbers close to numerical underflow/overflow for double. elements.push_back(BSON("" << Decimal128("1.797693134862315708145274237317044E308"))); elements.push_back(BSON("" << Decimal128("1.797693134862315708145274237317043E308"))); elements.push_back(BSON("" << Decimal128("-1.797693134862315708145274237317044E308"))); elements.push_back(BSON("" << Decimal128("-1.797693134862315708145274237317043E308"))); elements.push_back(BSON("" << Decimal128("9.881312916824930883531375857364427"))); elements.push_back(BSON("" << Decimal128("9.881312916824930883531375857364428"))); elements.push_back(BSON("" << Decimal128("-9.881312916824930883531375857364427"))); elements.push_back(BSON("" << Decimal128("-9.881312916824930883531375857364428"))); elements.push_back(BSON("" << Decimal128("4.940656458412465441765687928682213E-324"))); elements.push_back(BSON("" << Decimal128("4.940656458412465441765687928682214E-324"))); elements.push_back(BSON("" << Decimal128("-4.940656458412465441765687928682214E-324"))); elements.push_back(BSON("" << Decimal128("-4.940656458412465441765687928682213E-324"))); // Non-finite values. Note: can't roundtrip negative NaNs, so not testing here. elements.push_back(BSON("" << Decimal128::kPositiveNaN)); elements.push_back(BSON("" << Decimal128::kNegativeInfinity)); elements.push_back(BSON("" << Decimal128::kPositiveInfinity)); } // Tricky double precision number for binary/decimal conversion: very close to a decimal if (version != KeyString::Version::V0) elements.push_back(BSON("" << Decimal128("3743626360493413E-165"))); elements.push_back(BSON("" << 3743626360493413E-165)); return elements; } void testPermutation(KeyString::Version version, const std::vector& elementsOrig, const std::vector& orderings, bool debug) { // Since KeyStrings are compared using memcmp we can assume it provides a total ordering such // that there won't be cases where (a < b && b < c && !(a < c)). This test still needs to ensure // that it provides the *correct* total ordering. std::vector> futures; for (size_t k = 0; k < orderings.size(); k++) { futures.push_back( stdx::async(stdx::launch::async, [k, version, elementsOrig, orderings, debug] { BSONObj orderObj = orderings[k]; Ordering ordering = Ordering::make(orderObj); if (debug) log() << "ordering: " << orderObj; std::vector elements = elementsOrig; BSONObjComparator bsonCmp(orderObj, BSONObjComparator::FieldNamesMode::kConsider, &SimpleStringDataComparator::kInstance); std::stable_sort(elements.begin(), elements.end(), bsonCmp.makeLessThan()); for (size_t i = 0; i < elements.size(); i++) { const BSONObj& o1 = elements[i]; if (debug) log() << "\to1: " << o1; ROUNDTRIP_ORDER(version, o1, ordering); KeyString k1(version, o1, ordering); KeyString l1(version, BSON("l" << o1.firstElement()), ordering); // kLess KeyString g1(version, BSON("g" << o1.firstElement()), ordering); // kGreater ASSERT_LT(l1, k1); ASSERT_GT(g1, k1); if (i + 1 < elements.size()) { const BSONObj& o2 = elements[i + 1]; if (debug) log() << "\t\t o2: " << o2; KeyString k2(version, o2, ordering); KeyString g2(version, BSON("g" << o2.firstElement()), ordering); KeyString l2(version, BSON("l" << o2.firstElement()), ordering); int bsonCmp = o1.woCompare(o2, ordering); invariant(bsonCmp <= 0); // We should be sorted... if (bsonCmp == 0) { ASSERT_EQ(k1, k2); } else { ASSERT_LT(k1, k2); } // Test the query encodings using kLess and kGreater int firstElementComp = o1.firstElement().woCompare(o2.firstElement()); if (ordering.descending(1)) firstElementComp = -firstElementComp; invariant(firstElementComp <= 0); if (firstElementComp == 0) { // If they share a first element then l1/g1 should equal l2/g2 and l1 // should // be // less than both and g1 should be greater than both. ASSERT_EQ(l1, l2); ASSERT_EQ(g1, g2); ASSERT_LT(l1, k2); ASSERT_GT(g1, k2); } else { // k1 is less than k2. Less(k2) and Greater(k1) should be between them. ASSERT_LT(g1, k2); ASSERT_GT(l2, k1); } } } })); } for (auto&& future : futures) { future.get(); } } namespace { std::random_device rd; std::mt19937_64 seedGen(rd()); // To be used by perf test for seeding, so that the entire test is repeatable in case of error. unsigned newSeed() { unsigned int seed = seedGen(); // Replace by the reported number to repeat test execution. log() << "Initializing random number generator using seed " << seed; return seed; }; std::vector thinElements(std::vector elements, unsigned seed, size_t maxElements) { std::mt19937_64 gen(seed); if (elements.size() <= maxElements) return elements; log() << "only keeping " << maxElements << " of " << elements.size() << " elements using random selection"; std::shuffle(elements.begin(), elements.end(), gen); elements.resize(maxElements); return elements; } } // namespace TEST_F(KeyStringTest, AllPermCompare) { std::vector elements = getInterestingElements(version); for (size_t i = 0; i < elements.size(); i++) { const BSONObj& o = elements[i]; ROUNDTRIP(version, o); } std::vector orderings; orderings.push_back(BSON("a" << 1)); orderings.push_back(BSON("a" << -1)); testPermutation(version, elements, orderings, false); } TEST_F(KeyStringTest, AllPerm2Compare) { std::vector baseElements = getInterestingElements(version); auto seed = newSeed(); // Select only a small subset of elements, as the combination is quadratic. // We want to select two subsets independently, so all combinations will get tested eventually. // kMaxPermElements is the desired number of elements to pass to testPermutation. const size_t kMaxPermElements = kDebugBuild ? 100'000 : 500'000; size_t maxElements = sqrt(kMaxPermElements); auto firstElements = thinElements(baseElements, seed, maxElements); auto secondElements = thinElements(baseElements, seed + 1, maxElements); std::vector elements; for (size_t i = 0; i < firstElements.size(); i++) { for (size_t j = 0; j < secondElements.size(); j++) { BSONObjBuilder b; b.appendElements(firstElements[i]); b.appendElements(secondElements[j]); BSONObj o = b.obj(); elements.push_back(o); } } log() << "AllPerm2Compare " << KeyString::versionToString(version) << " size:" << elements.size(); for (size_t i = 0; i < elements.size(); i++) { const BSONObj& o = elements[i]; ROUNDTRIP(version, o); } std::vector orderings; orderings.push_back(BSON("a" << 1 << "b" << 1)); orderings.push_back(BSON("a" << -1 << "b" << 1)); orderings.push_back(BSON("a" << 1 << "b" << -1)); orderings.push_back(BSON("a" << -1 << "b" << -1)); testPermutation(version, elements, orderings, false); } #define COMPARE_HELPER(LHS, RHS) (((LHS) < (RHS)) ? -1 : (((LHS) == (RHS)) ? 0 : 1)) int compareLongToDouble(long long lhs, double rhs) { if (rhs >= std::numeric_limits::max()) return -1; if (rhs < std::numeric_limits::min()) return 1; if (fabs(rhs) >= (1LL << 52)) { return COMPARE_HELPER(lhs, static_cast(rhs)); } return COMPARE_HELPER(static_cast(lhs), rhs); } int compareNumbers(const BSONElement& lhs, const BSONElement& rhs) { invariant(lhs.isNumber()); invariant(rhs.isNumber()); if (lhs.type() == NumberInt || lhs.type() == NumberLong) { if (rhs.type() == NumberInt || rhs.type() == NumberLong) { return COMPARE_HELPER(lhs.numberLong(), rhs.numberLong()); } return compareLongToDouble(lhs.numberLong(), rhs.Double()); } else { // double if (rhs.type() == NumberDouble) { return COMPARE_HELPER(lhs.Double(), rhs.Double()); } return -compareLongToDouble(rhs.numberLong(), lhs.Double()); } } TEST_F(KeyStringTest, NaNs) { // TODO use hex floats to force distinct NaNs const double nan1 = std::numeric_limits::quiet_NaN(); const double nan2 = std::numeric_limits::signaling_NaN(); // Since we only output a single NaN, we can only do ROUNDTRIP testing for nan1. ROUNDTRIP(version, BSON("" << nan1)); const KeyString ks1a(version, BSON("" << nan1), ONE_ASCENDING); const KeyString ks1d(version, BSON("" << nan1), ONE_DESCENDING); const KeyString ks2a(version, BSON("" << nan2), ONE_ASCENDING); const KeyString ks2d(version, BSON("" << nan2), ONE_DESCENDING); ASSERT_EQ(ks1a, ks2a); ASSERT_EQ(ks1d, ks2d); ASSERT(std::isnan(toBson(ks1a, ONE_ASCENDING)[""].Double())); ASSERT(std::isnan(toBson(ks2a, ONE_ASCENDING)[""].Double())); ASSERT(std::isnan(toBson(ks1d, ONE_DESCENDING)[""].Double())); ASSERT(std::isnan(toBson(ks2d, ONE_DESCENDING)[""].Double())); if (version == KeyString::Version::V0) return; const auto nan3 = Decimal128::kPositiveNaN; const auto nan4 = Decimal128::kNegativeNaN; // Since we only output a single NaN, we can only do ROUNDTRIP testing for nan1. ROUNDTRIP(version, BSON("" << nan3)); const KeyString ks3a(version, BSON("" << nan3), ONE_ASCENDING); const KeyString ks3d(version, BSON("" << nan3), ONE_DESCENDING); const KeyString ks4a(version, BSON("" << nan4), ONE_ASCENDING); const KeyString ks4d(version, BSON("" << nan4), ONE_DESCENDING); ASSERT_EQ(ks1a, ks4a); ASSERT_EQ(ks1d, ks4d); ASSERT(toBson(ks3a, ONE_ASCENDING)[""].Decimal().isNaN()); ASSERT(toBson(ks4a, ONE_ASCENDING)[""].Decimal().isNaN()); ASSERT(toBson(ks3d, ONE_DESCENDING)[""].Decimal().isNaN()); ASSERT(toBson(ks4d, ONE_DESCENDING)[""].Decimal().isNaN()); } TEST_F(KeyStringTest, NumberOrderLots) { std::vector numbers; { numbers.push_back(BSON("" << 0)); numbers.push_back(BSON("" << 0.0)); numbers.push_back(BSON("" << -0.0)); numbers.push_back(BSON("" << std::numeric_limits::min())); numbers.push_back(BSON("" << std::numeric_limits::max())); numbers.push_back(BSON("" << static_cast(std::numeric_limits::min()))); numbers.push_back(BSON("" << static_cast(std::numeric_limits::max()))); numbers.push_back(BSON("" << std::numeric_limits::min())); numbers.push_back(BSON("" << std::numeric_limits::max())); numbers.push_back(BSON("" << std::numeric_limits::min())); numbers.push_back(BSON("" << std::numeric_limits::max())); numbers.push_back(BSON("" << std::numeric_limits::min())); numbers.push_back(BSON("" << std::numeric_limits::max())); for (int i = 0; i < 64; i++) { int64_t x = 1LL << i; numbers.push_back(BSON("" << static_cast(x))); numbers.push_back(BSON("" << static_cast(x))); numbers.push_back(BSON("" << static_cast(x))); numbers.push_back(BSON("" << (static_cast(x) + .1))); numbers.push_back(BSON("" << (static_cast(x) + 1))); numbers.push_back(BSON("" << (static_cast(x) + 1))); numbers.push_back(BSON("" << (static_cast(x) + 1))); numbers.push_back(BSON("" << (static_cast(x) + 1.1))); // Avoid negating signed integral minima if (i < 63) numbers.push_back(BSON("" << -static_cast(x))); if (i < 31) numbers.push_back(BSON("" << -static_cast(x))); numbers.push_back(BSON("" << -static_cast(x))); numbers.push_back(BSON("" << -(static_cast(x) + .1))); numbers.push_back(BSON("" << -(static_cast(x) + 1))); numbers.push_back(BSON("" << -(static_cast(x) + 1))); numbers.push_back(BSON("" << -(static_cast(x) + 1))); numbers.push_back(BSON("" << -(static_cast(x) + 1.1))); } for (double i = 0; i < 1000; i++) { double x = pow(2.1, i); numbers.push_back(BSON("" << x)); } } Ordering ordering = Ordering::make(BSON("a" << 1)); std::vector> keyStrings; for (size_t i = 0; i < numbers.size(); i++) { keyStrings.push_back(stdx::make_unique(version, numbers[i], ordering)); } for (size_t i = 0; i < numbers.size(); i++) { for (size_t j = 0; j < numbers.size(); j++) { const KeyString& a = *keyStrings[i]; const KeyString& b = *keyStrings[j]; ASSERT_EQUALS(a.compare(b), -b.compare(a)); if (a.compare(b) != compareNumbers(numbers[i].firstElement(), numbers[j].firstElement())) { log() << numbers[i] << " " << numbers[j]; } ASSERT_EQUALS(a.compare(b), compareNumbers(numbers[i].firstElement(), numbers[j].firstElement())); } } } TEST_F(KeyStringTest, RecordIds) { for (int i = 0; i < 63; i++) { const RecordId rid = RecordId(1ll << i); { // Test encoding / decoding of single RecordIds const KeyString ks(version, rid); ASSERT_GTE(ks.getSize(), 2u); ASSERT_LTE(ks.getSize(), 10u); ASSERT_EQ(KeyString::decodeRecordIdAtEnd(ks.getBuffer(), ks.getSize()), rid); { BufReader reader(ks.getBuffer(), ks.getSize()); ASSERT_EQ(KeyString::decodeRecordId(&reader), rid); ASSERT(reader.atEof()); } if (rid.isValid()) { ASSERT_GT(ks, KeyString(version, RecordId())); ASSERT_GT(ks, KeyString(version, RecordId::min())); ASSERT_LT(ks, KeyString(version, RecordId::max())); ASSERT_GT(ks, KeyString(version, RecordId(rid.repr() - 1))); ASSERT_LT(ks, KeyString(version, RecordId(rid.repr() + 1))); } } for (int j = 0; j < 63; j++) { RecordId other = RecordId(1ll << j); if (rid == other) ASSERT_EQ(KeyString(version, rid), KeyString(version, other)); if (rid < other) ASSERT_LT(KeyString(version, rid), KeyString(version, other)); if (rid > other) ASSERT_GT(KeyString(version, rid), KeyString(version, other)); { // Test concatenating RecordIds like in a unique index. KeyString ks(version); ks.appendRecordId(RecordId::max()); // uses all bytes ks.appendRecordId(rid); ks.appendRecordId(RecordId(0xDEADBEEF)); // uses some extra bytes ks.appendRecordId(rid); ks.appendRecordId(RecordId(1)); // uses no extra bytes ks.appendRecordId(rid); ks.appendRecordId(other); ASSERT_EQ(KeyString::decodeRecordIdAtEnd(ks.getBuffer(), ks.getSize()), other); // forward scan BufReader reader(ks.getBuffer(), ks.getSize()); ASSERT_EQ(KeyString::decodeRecordId(&reader), RecordId::max()); ASSERT_EQ(KeyString::decodeRecordId(&reader), rid); ASSERT_EQ(KeyString::decodeRecordId(&reader), RecordId(0xDEADBEEF)); ASSERT_EQ(KeyString::decodeRecordId(&reader), rid); ASSERT_EQ(KeyString::decodeRecordId(&reader), RecordId(1)); ASSERT_EQ(KeyString::decodeRecordId(&reader), rid); ASSERT_EQ(KeyString::decodeRecordId(&reader), other); ASSERT(reader.atEof()); } } } } TEST_F(KeyStringTest, KeyWithLotsOfTypeBits) { BSONObj obj; { BSONObjBuilder builder; { int kArrSize = 54321; BSONArrayBuilder array(builder.subarrayStart("x")); auto zero = BSON("" << 0.0); for (int i = 0; i < kArrSize; i++) array.append(zero.firstElement()); } obj = BSON("" << builder.obj()); } ROUNDTRIP(version, obj); } BSONObj buildKeyWhichWillHaveNByteOfTypeBits(size_t n, bool allZeros) { int numItems = n * 8 / 2 /* kInt/kDouble needs two bits */; BSONObj obj; BSONArrayBuilder array; for (int i = 0; i < numItems; i++) if (allZeros) array.append(123); /* kInt uses 00 */ else array.append(1.2); /* kDouble uses 10 */ obj = BSON("" << array.arr()); return obj; } void checkKeyWithNByteOfTypeBits(KeyString::Version version, size_t n, bool allZeros) { const BSONObj orig = buildKeyWhichWillHaveNByteOfTypeBits(n, allZeros); const KeyString ks(version, orig, ALL_ASCENDING); const size_t typeBitsSize = ks.getTypeBits().getSize(); if (n == 1 || allZeros) { // Case 1&2 // Case 2: Since we use kDouble, TypeBits="01010101" when n=1. The size // is thus 1. ASSERT_EQ(1u, typeBitsSize); } else if (n <= 127) { // Case 3 ASSERT_EQ(n + 1, typeBitsSize); } else { // Case 4 ASSERT_EQ(n + 5, typeBitsSize); } const BSONObj converted = toBsonAndCheckKeySize(ks, ALL_ASCENDING); ASSERT_BSONOBJ_EQ(converted, orig); ASSERT(converted.binaryEqual(orig)); // Also test TypeBits::fromBuffer() BufReader bufReader(ks.getTypeBits().getBuffer(), typeBitsSize); KeyString::TypeBits newTypeBits = KeyString::TypeBits::fromBuffer(version, &bufReader); ASSERT_EQ(toHex(newTypeBits.getBuffer(), newTypeBits.getSize()), toHex(ks.getTypeBits().getBuffer(), ks.getTypeBits().getSize())); } TEST_F(KeyStringTest, KeysWithNBytesTypeBits) { checkKeyWithNByteOfTypeBits(version, 0, false); checkKeyWithNByteOfTypeBits(version, 1, false); checkKeyWithNByteOfTypeBits(version, 1, true); checkKeyWithNByteOfTypeBits(version, 127, false); checkKeyWithNByteOfTypeBits(version, 127, true); checkKeyWithNByteOfTypeBits(version, 128, false); checkKeyWithNByteOfTypeBits(version, 128, true); checkKeyWithNByteOfTypeBits(version, 129, false); checkKeyWithNByteOfTypeBits(version, 129, true); } TEST_F(KeyStringTest, VeryLargeString) { BSONObj obj = BSON("" << std::string(123456, 'x')); ROUNDTRIP(version, obj); } TEST_F(KeyStringTest, ToBsonSafeShouldNotTerminate) { KeyString::TypeBits typeBits(KeyString::Version::V1); const char invalidString[] = { 60, // CType::kStringLike 55, // Non-null terminated }; ASSERT_THROWS_CODE( KeyString::toBsonSafe(invalidString, sizeof(invalidString), ALL_ASCENDING, typeBits), AssertionException, 50816); const char invalidNumber[] = { 43, // CType::kNumericPositive1ByteInt 1, // Encoded integer part, least significant bit indicates there's a fractional part. 0, // Since the integer part is 1 byte, the next 7 bytes are expected to be the fractional // part and are needed to prevent the BufReader from overflowing. 0, 0, 0, 0, 0, 0, }; ASSERT_THROWS_CODE( KeyString::toBsonSafe(invalidNumber, sizeof(invalidNumber), ALL_ASCENDING, typeBits), AssertionException, 50810); } TEST_F(KeyStringTest, InvalidDecimalExponent) { const Decimal128 dec("1125899906842624.1"); const KeyString ks(KeyString::Version::V1, BSON("" << dec), ALL_ASCENDING); // Overwrite the 1st byte to 0, corrupting the exponent. This is meant to reproduce // SERVER-34767. char* ksBuffer = (char*)ks.getBuffer(); ksBuffer[1] = 0; ASSERT_THROWS_CODE( KeyString::toBsonSafe(ksBuffer, ks.getSize(), ALL_ASCENDING, ks.getTypeBits()), AssertionException, 50814); } TEST_F(KeyStringTest, InvalidDecimalZero) { const KeyString ks(KeyString::Version::V1, BSON("" << Decimal128("-0")), ALL_ASCENDING); char* ksBuffer = (char*)ks.getBuffer(); ksBuffer[2] = 100; uint8_t* typeBits = (uint8_t*)ks.getTypeBits().getBuffer(); typeBits[1] = 147; ASSERT_THROWS_CODE( KeyString::toBsonSafe(ksBuffer, ks.getSize(), ALL_ASCENDING, ks.getTypeBits()), AssertionException, 50846); } TEST_F(KeyStringTest, InvalidDecimalContinuation) { auto elem = Decimal128("1.797693134862315708145274237317043E308"); const KeyString ks(KeyString::Version::V1, BSON("" << elem), ALL_ASCENDING); uint8_t* ksBuffer = (uint8_t*)ks.getBuffer(); ksBuffer[2] = 239; uint8_t* typeBits = (uint8_t*)ks.getTypeBits().getBuffer(); typeBits[1] = 231; ASSERT_THROWS_CODE( KeyString::toBsonSafe((char*)ksBuffer, ks.getSize(), ALL_ASCENDING, ks.getTypeBits()), AssertionException, 50850); } TEST_F(KeyStringTest, RandomizedInputsForToBsonSafe) { std::mt19937 gen(newSeed()); std::uniform_int_distribution randomNum(std::numeric_limits::min(), std::numeric_limits::max()); const auto interestingElements = getInterestingElements(KeyString::Version::V1); for (auto elem : interestingElements) { const KeyString ks(KeyString::Version::V1, elem, ALL_ASCENDING); auto ksBuffer = SharedBuffer::allocate(ks.getSize()); memcpy(ksBuffer.get(), ks.getBuffer(), ks.getSize()); auto tbBuffer = SharedBuffer::allocate(ks.getTypeBits().getSize()); memcpy(tbBuffer.get(), ks.getTypeBits().getBuffer(), ks.getTypeBits().getSize()); // Select a random byte to change, except for the first byte as it will likely become an // invalid CType and not test anything interesting. auto offset = randomNum(gen) % (ks.getSize() - 1); uint8_t newValue = randomNum(gen) % std::numeric_limits::max(); ksBuffer.get()[offset + 1] = newValue; // Ditto for the type bits buffer. offset = randomNum(gen) % ks.getTypeBits().getSize(); newValue = randomNum(gen) % std::numeric_limits::max(); tbBuffer.get()[offset] = newValue; // Build the new TypeBits. BufReader reader(tbBuffer.get(), ks.getTypeBits().getSize()); try { auto newTypeBits = KeyString::TypeBits::fromBuffer(KeyString::Version::V1, &reader); KeyString::toBsonSafe(ksBuffer.get(), ks.getSize(), ALL_ASCENDING, newTypeBits); } catch (const AssertionException&) { // The expectation is that the randomized buffer is likely an invalid KeyString, // however attempting to decode it should fail gracefully. } // Retest with descending. try { auto newTypeBits = KeyString::TypeBits::fromBuffer(KeyString::Version::V1, &reader); KeyString::toBsonSafe(ksBuffer.get(), ks.getSize(), ONE_DESCENDING, newTypeBits); } catch (const AssertionException&) { // The expectation is that the randomized buffer is likely an invalid KeyString, // however attempting to decode it should fail gracefully. } } } namespace { const uint64_t kMinPerfMicros = 20 * 1000; const uint64_t kMinPerfSamples = 50 * 1000; typedef std::vector Numbers; /** * Evaluates ROUNDTRIP on all items in Numbers a sufficient number of times to take at least * kMinPerfMicros microseconds. Logs the elapsed time per ROUNDTRIP evaluation. */ void perfTest(KeyString::Version version, const Numbers& numbers) { uint64_t micros = 0; uint64_t iters; // Ensure at least 16 iterations are done and at least 50 milliseconds is timed for (iters = 16; iters < (1 << 30) && micros < kMinPerfMicros; iters *= 2) { // Measure the number of loops Timer t; for (uint64_t i = 0; i < iters; i++) for (auto item : numbers) { // Assuming there are sufficient invariants in the to/from KeyString methods // that calls will not be optimized away. const KeyString ks(version, item, ALL_ASCENDING); const BSONObj& converted = toBson(ks, ALL_ASCENDING); invariant(converted.binaryEqual(item)); } micros = t.micros(); } auto minmax = std::minmax_element( numbers.begin(), numbers.end(), SimpleBSONObjComparator::kInstance.makeLessThan()); log() << 1E3 * micros / static_cast(iters * numbers.size()) << " ns per " << mongo::KeyString::versionToString(version) << " roundtrip" << (kDebugBuild ? " (DEBUG BUILD!)" : "") << " min " << (*minmax.first)[""] << ", max" << (*minmax.second)[""]; } } // namespace TEST_F(KeyStringTest, CommonIntPerf) { // Exponential distribution, so skewed towards smaller integers. std::mt19937 gen(newSeed()); std::exponential_distribution expReal(1e-3); std::vector numbers; for (uint64_t x = 0; x < kMinPerfSamples; x++) numbers.push_back(BSON("" << static_cast(expReal(gen)))); perfTest(version, numbers); } TEST_F(KeyStringTest, UniformInt64Perf) { std::vector numbers; std::mt19937 gen(newSeed()); std::uniform_int_distribution uniformInt64(std::numeric_limits::min(), std::numeric_limits::max()); for (uint64_t x = 0; x < kMinPerfSamples; x++) numbers.push_back(BSON("" << uniformInt64(gen))); perfTest(version, numbers); } TEST_F(KeyStringTest, CommonDoublePerf) { std::mt19937 gen(newSeed()); std::exponential_distribution expReal(1e-3); std::vector numbers; for (uint64_t x = 0; x < kMinPerfSamples; x++) numbers.push_back(BSON("" << expReal(gen))); perfTest(version, numbers); } TEST_F(KeyStringTest, UniformDoublePerf) { std::vector numbers; std::mt19937 gen(newSeed()); std::uniform_int_distribution uniformInt64(std::numeric_limits::min(), std::numeric_limits::max()); for (uint64_t x = 0; x < kMinPerfSamples; x++) { uint64_t u = uniformInt64(gen); double d; memcpy(&d, &u, sizeof(d)); if (std::isnormal(d)) numbers.push_back(BSON("" << d)); } perfTest(version, numbers); } TEST_F(KeyStringTest, CommonDecimalPerf) { std::mt19937 gen(newSeed()); std::exponential_distribution expReal(1e-3); if (version == KeyString::Version::V0) return; std::vector numbers; for (uint64_t x = 0; x < kMinPerfSamples; x++) numbers.push_back( BSON("" << Decimal128( expReal(gen), Decimal128::kRoundTo34Digits, Decimal128::kRoundTiesToAway) .quantize(Decimal128("0.01", Decimal128::kRoundTiesToAway)))); perfTest(version, numbers); } TEST_F(KeyStringTest, UniformDecimalPerf) { std::mt19937 gen(newSeed()); std::uniform_int_distribution uniformInt64(std::numeric_limits::min(), std::numeric_limits::max()); if (version == KeyString::Version::V0) return; std::vector numbers; for (uint64_t x = 0; x < kMinPerfSamples; x++) { uint64_t hi = uniformInt64(gen); uint64_t lo = uniformInt64(gen); Decimal128 d(Decimal128::Value{lo, hi}); if (!d.isZero() && !d.isNaN() && !d.isInfinite()) numbers.push_back(BSON("" << d)); } perfTest(version, numbers); } TEST_F(KeyStringTest, DecimalFromUniformDoublePerf) { std::vector numbers; std::mt19937 gen(newSeed()); std::uniform_int_distribution uniformInt64(std::numeric_limits::min(), std::numeric_limits::max()); if (version == KeyString::Version::V0) return; // In addition to serve as a data ponit for performance, this test also generates many decimal // values close to binary floating point numbers, so edge cases around 15-digit approximations // get extra randomized coverage over time. for (uint64_t x = 0; x < kMinPerfSamples; x++) { uint64_t u = uniformInt64(gen); double d; memcpy(&d, &u, sizeof(d)); if (!std::isnan(d)) { Decimal128::RoundingMode mode = x & 1 ? Decimal128::kRoundTowardPositive : Decimal128::kRoundTowardNegative; Decimal128::RoundingPrecision prec = x & 2 ? Decimal128::kRoundTo15Digits : Decimal128::kRoundTo34Digits; numbers.push_back(BSON("" << Decimal128(d, prec, mode))); } } perfTest(version, numbers); } DEATH_TEST(KeyStringTest, ToBsonPromotesAssertionsToTerminate, "terminate() called") { const char invalidString[] = { 60, // CType::kStringLike 55, // Non-null terminated }; KeyString::TypeBits typeBits(KeyString::Version::V1); KeyString::toBson(invalidString, sizeof(invalidString), ALL_ASCENDING, typeBits); }