/** * Copyright (C) 2018-present MongoDB, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the Server Side Public License, version 1, * as published by MongoDB, Inc. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * Server Side Public License for more details. * * You should have received a copy of the Server Side Public License * along with this program. If not, see * . * * As a special exception, the copyright holders give permission to link the * code of portions of this program with the OpenSSL library under certain * conditions as described in each individual source file and distribute * linked combinations including the program with the OpenSSL library. You * must comply with the Server Side Public License in all respects for * all of the code used other than as permitted herein. If you modify file(s) * with this exception, you may extend this exception to your version of the * file(s), but you are not obligated to do so. If you do not wish to do so, * delete this exception statement from your version. If you delete this * exception statement from all source files in the program, then also delete * it in the license file. */ #include "mongo/platform/decimal128.h" #include "mongo/platform/basic.h" #include #include #include #include #include #include #include #include // The Intel C library typedefs wchar_t, but it is a distinct fundamental type // in C++, so we #define _WCHAR_T here to prevent the library from trying to typedef. #define _WCHAR_T #include #include #undef _WCHAR_T #include "mongo/base/static_assert.h" #include "mongo/config.h" #include "mongo/util/assert_util.h" #include "mongo/util/stringutils.h" namespace { void validateInputString(mongo::StringData input, std::uint32_t* signalingFlags) { // Input must be of these forms: // * Valid decimal (standard or scientific notation): // /[-+]?\d*(.\d+)?([e][+\-]?\d+)?/ // * NaN: /[-+]?[[Nn][Aa][Nn]]/ // * Infinity: /[+\-]?(inf|infinity) bool isSigned = input[0] == '-' || input[0] == '+'; // Check for NaN and Infinity size_t start = (isSigned) ? 1 : 0; mongo::StringData noSign = input.substr(start); bool isNanOrInf = noSign == "nan" || noSign == "inf" || noSign == "infinity"; if (isNanOrInf) return; // Input starting with non digit if (!std::isdigit(noSign[0])) { if (noSign[0] != '.') { *signalingFlags = mongo::Decimal128::SignalingFlag::kInvalid; return; } else if (noSign.size() == 1) { *signalingFlags = mongo::Decimal128::SignalingFlag::kInvalid; return; } } bool isZero = true; bool hasCoefficient = false; // Check coefficient, i.e. the part before the e int dotCount = 0; size_t i = 0; for (/*i = 0*/; i < noSign.size(); i++) { char c = noSign[i]; if (c == '.') { dotCount++; if (dotCount > 1) { *signalingFlags = mongo::Decimal128::SignalingFlag::kInvalid; return; } } else if (!std::isdigit(c)) { break; } else { hasCoefficient = true; if (c != '0') { isZero = false; } } } if (isZero) { // Override inexact/overflow flag set by the intel library *signalingFlags = mongo::Decimal128::SignalingFlag::kNoFlag; } // Input is valid if we've parsed the entire string if (i == noSign.size()) { return; } // String with empty coefficient and non-empty exponent if (!hasCoefficient) { *signalingFlags = mongo::Decimal128::SignalingFlag::kInvalid; return; } // Check exponent mongo::StringData exponent = noSign.substr(i); if (exponent[0] != 'e' || exponent.size() < 2) { *signalingFlags = mongo::Decimal128::SignalingFlag::kInvalid; return; } if (exponent[1] == '-' || exponent[1] == '+') { exponent = exponent.substr(2); if (exponent.size() == 0) { *signalingFlags = mongo::Decimal128::SignalingFlag::kInvalid; return; } } else { exponent = exponent.substr(1); } for (size_t j = 0; j < exponent.size(); j++) { char c = exponent[j]; if (!std::isdigit(c)) { *signalingFlags = mongo::Decimal128::SignalingFlag::kInvalid; return; } } } } // namespace namespace mongo { namespace { // Determine system's endian ordering in order to construct decimal 128 values directly #if MONGO_CONFIG_BYTE_ORDER == 1234 const int kHigh64 = 1; const int kLow64 = 0; #else const int kHigh64 = 0; const int kLow64 = 1; #endif // The Intel library uses long long for BID_UINT128s parts, which on some // systems is longer than a uint64_t. We need to cast down, although there // will not be data loss. inline Decimal128::Value libraryTypeToValue(BID_UINT128 value) { return {static_cast(value.w[kLow64]), static_cast(value.w[kHigh64])}; } /** * This helper function creates a library specific type for the * IntelRDFPMathLib20U1 library from Decimal128's _value */ BID_UINT128 decimal128ToLibraryType(Decimal128::Value value) { BID_UINT128 dec128; dec128.w[kLow64] = value.low64; dec128.w[kHigh64] = value.high64; return dec128; } } // namespace Decimal128::Decimal128(std::int32_t int32Value) : _value(libraryTypeToValue(bid128_from_int32(int32Value))) {} Decimal128::Decimal128(std::int64_t int64Value) : _value(libraryTypeToValue(bid128_from_int64(int64Value))) {} /** * Quantize a doubleValue argument to a Decimal128 with exactly 15 digits * of precision. * * To highlight the motivation for this function, consider doubleValue = 0.1. * The quantity 0.1 does not have an exact respresentation as a double. * The actual value stored in the 64-bit type is 0.1000000000000000055511... * * Although imprecise, the double type does guarantee a minimum of 15 digits * of decimal precision. When casting the double to a decimal type, we choose * to only appreciate the double's first 15 digits and round accordingly. * * To perform this operation, doubleValue is converted to a decimal and then quantized * with the appropriate quantum (Q) to yield exactly 15 digits of precision. * For example, * doubleValue = 0.1 * dec128 = Decimal128(doubleValue) <== 0.1000000000000000055511151231257827 * Q = 1E-15 * dec128.quantize(Q) * ==> 0.100000000000000 * * The value to quantize dec128 on (Q) is related to the base 10 exponent of the rounded * doubleValue, * Q = 10 ** (floor(log10(doubleValue rounded to 15 decimal digits)) - 14) * * * =============================================================================== * * Convert a double's base 2 exponent to base 10 using integer arithmetic. * * Given doubleValue with exponent base2Exp, we would like to find base10Exp such that: * (1) 10**base10Exp > |doubleValue rounded to 15 decimal digits| * (2) 10**(base10Exp-1) <= |doubleValue rounded to 15 decimal digits| * * Given a double precision number of the form 2**E, we can compute base10Exp such that these * conditions hold for 2**E. However, because the absolute value of doubleValue maybe up to a * factor of two higher, the required base10Exp may be 1 higher. Exactly knowing in which case we * are would require knowing how the double value will round, so just try with the lowest * possible base10Exp, and retry if we need to increase the exponent by 1. It is important to first * try the lower exponent, as the other way around might unnecessarily lose a significant digit, * as in 0.9999999999999994 (15 nines) -> 1.00000000000000 (14 zeros) instead of 0.999999999999999 * (15 nines). * * +-------------+-------------------+----------------------+---------------------------+ * | doubleValue | base2Exp | computed base10Exp | Q | * +-------------+-------------------+----------------------+---------------------------+ * | 100000 | 16 | 4 | 10**(5 - 14) <= Retry | * | 500000 | 18 | 5 | 10**(5 - 14) | * | 999999 | 19 | 5 | 10**(5 - 14) | * | .00001 | -17 | -6 | 10**(5 - 14) <= Retry | * | .00005 | -15 | -5 | 10**(5 - 14) | * | .00009 | -14 | -5 | 10**(5 - 14) | * +-------------+-------------------+----------------------+---------------------------+ */ Decimal128::Decimal128(double doubleValue, RoundingPrecision roundPrecision, RoundingMode roundMode) { std::uint32_t throwAwayFlag = 0; Decimal128 convertedDoubleValue( libraryTypeToValue(binary64_to_bid128(doubleValue, roundMode, &throwAwayFlag))); // If the original number was zero, infinity, or NaN, there's no need to quantize if (doubleValue == 0.0 || std::isinf(doubleValue) || std::isnan(doubleValue) || roundPrecision == kRoundTo34Digits) { *this = convertedDoubleValue; return; } // Get the base2 exponent from doubleValue. int base2Exp; frexp(doubleValue, &base2Exp); // As frexp normalizes doubleValue between 0.5 and 1.0 rather than 1.0 and 2.0, adjust. base2Exp--; // We will use base10Exp = base2Exp * 30103 / (100*1000) as lowerbound (using integer division). // // This formula is derived from the following, with base2Exp the binary exponent of doubleValue: // (1) 10**(base2Exp * log10(2)) == 2**base2Exp // (2) 0.30103 closely approximates log10(2) // // Exhaustive testing using Python shows : // { base2Exp * 30103 / (100 * 1000) == math.floor(math.log10(2**base2Exp)) // for base2Exp in xrange(-1074, 1023) } == { True } int base10Exp = (base2Exp * 30103) / (100 * 1000); // As integer division truncates, rather than rounds down (as in Python), adjust accordingly. if (base2Exp < 0) base10Exp--; Decimal128 Q(0, base10Exp - 14 + Decimal128::kExponentBias, 0, 1); *this = convertedDoubleValue.quantize(Q, roundMode); // Check if the quantization was done correctly: _value stores exactly 15 // decimal digits of precision (15 digits can fit into the low 64 bits of the decimal) uint64_t kSmallest15DigitInt = 1E14; // A 1 with 14 zeros uint64_t kLargest15DigitInt = 1E15 - 1; // 15 nines if (getCoefficientLow() > kLargest15DigitInt) { // If we didn't precisely get 15 digits of precision, the original base 10 exponent // guess was 1 off, so quantize once more with base10Exp + 1 Q = Decimal128(0, base10Exp - 13 + Decimal128::kExponentBias, 0, 1); *this = convertedDoubleValue.quantize(Q, roundMode); } // The decimal must have exactly 15 digits of precision invariant(getCoefficientHigh() == 0); invariant(getCoefficientLow() >= kSmallest15DigitInt); invariant(getCoefficientLow() <= kLargest15DigitInt); } Decimal128::Decimal128(std::string stringValue, RoundingMode roundMode) { std::uint32_t throwAwayFlag = 0; *this = Decimal128(stringValue, &throwAwayFlag, roundMode); } Decimal128::Decimal128(std::string stringValue, std::uint32_t* signalingFlags, RoundingMode roundMode) { std::string lower = toAsciiLowerCase(stringValue); BID_UINT128 dec128; // The intel library function requires a char * while c_str() returns a const char*. // We're using const_cast here since the library function should not modify the input. dec128 = bid128_from_string(const_cast(lower.c_str()), roundMode, signalingFlags); validateInputString(StringData(lower), signalingFlags); _value = libraryTypeToValue(dec128); } Decimal128::Value Decimal128::getValue() const { return _value; } Decimal128 Decimal128::toAbs() const { BID_UINT128 dec128 = decimal128ToLibraryType(_value); dec128 = bid128_abs(dec128); return Decimal128(libraryTypeToValue(dec128)); } std::int32_t Decimal128::toInt(RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; return toInt(&throwAwayFlag, roundMode); } std::int32_t Decimal128::toInt(std::uint32_t* signalingFlags, RoundingMode roundMode) const { BID_UINT128 dec128 = decimal128ToLibraryType(_value); switch (roundMode) { case kRoundTiesToEven: return bid128_to_int32_rnint(dec128, signalingFlags); case kRoundTowardNegative: return bid128_to_int32_floor(dec128, signalingFlags); case kRoundTowardPositive: return bid128_to_int32_ceil(dec128, signalingFlags); case kRoundTowardZero: return bid128_to_int32_int(dec128, signalingFlags); case kRoundTiesToAway: return bid128_to_int32_rninta(dec128, signalingFlags); default: return bid128_to_int32_rnint(dec128, signalingFlags); } } int64_t Decimal128::toLong(RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; return toLong(&throwAwayFlag, roundMode); } int64_t Decimal128::toLong(std::uint32_t* signalingFlags, RoundingMode roundMode) const { BID_UINT128 dec128 = decimal128ToLibraryType(_value); switch (roundMode) { case kRoundTiesToEven: return bid128_to_int64_rnint(dec128, signalingFlags); case kRoundTowardNegative: return bid128_to_int64_floor(dec128, signalingFlags); case kRoundTowardPositive: return bid128_to_int64_ceil(dec128, signalingFlags); case kRoundTowardZero: return bid128_to_int64_int(dec128, signalingFlags); case kRoundTiesToAway: return bid128_to_int64_rninta(dec128, signalingFlags); default: return bid128_to_int64_rnint(dec128, signalingFlags); } } std::int32_t Decimal128::toIntExact(RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; return toIntExact(&throwAwayFlag, roundMode); } std::int32_t Decimal128::toIntExact(std::uint32_t* signalingFlags, RoundingMode roundMode) const { BID_UINT128 dec128 = decimal128ToLibraryType(_value); switch (roundMode) { case kRoundTiesToEven: return bid128_to_int32_xrnint(dec128, signalingFlags); case kRoundTowardNegative: return bid128_to_int32_xfloor(dec128, signalingFlags); case kRoundTowardPositive: return bid128_to_int32_xceil(dec128, signalingFlags); case kRoundTowardZero: return bid128_to_int32_xint(dec128, signalingFlags); case kRoundTiesToAway: return bid128_to_int32_xrninta(dec128, signalingFlags); default: return bid128_to_int32_xrnint(dec128, signalingFlags); } } std::int64_t Decimal128::toLongExact(RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; return toLongExact(&throwAwayFlag, roundMode); } std::int64_t Decimal128::toLongExact(std::uint32_t* signalingFlags, RoundingMode roundMode) const { BID_UINT128 dec128 = decimal128ToLibraryType(_value); switch (roundMode) { case kRoundTiesToEven: return bid128_to_int64_xrnint(dec128, signalingFlags); case kRoundTowardNegative: return bid128_to_int64_xfloor(dec128, signalingFlags); case kRoundTowardPositive: return bid128_to_int64_xceil(dec128, signalingFlags); case kRoundTowardZero: return bid128_to_int64_xint(dec128, signalingFlags); case kRoundTiesToAway: return bid128_to_int64_xrninta(dec128, signalingFlags); default: return bid128_to_int64_xrnint(dec128, signalingFlags); } } double Decimal128::toDouble(RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; return toDouble(&throwAwayFlag, roundMode); } double Decimal128::toDouble(std::uint32_t* signalingFlags, RoundingMode roundMode) const { BID_UINT128 dec128 = decimal128ToLibraryType(_value); return bid128_to_binary64(dec128, roundMode, signalingFlags); } std::string Decimal128::toString() const { // If the decimal is a variant of NaN (i.e. sNaN, -NaN, +NaN, etc...) or a variant of // Inf (i.e. +Inf, Inf, -Inf), return either NaN, Infinity, or -Infinity if (!isFinite()) { if (this->isEqual(kPositiveInfinity)) { return "Infinity"; } else if (this->isEqual(kNegativeInfinity)) { return "-Infinity"; } invariant(isNaN()); return "NaN"; } BID_UINT128 dec128 = decimal128ToLibraryType(_value); char decimalCharRepresentation[1 /* mantissa sign */ + 34 /* mantissa */ + 1 /* scientific E */ + 1 /* exponent sign */ + 4 /* exponent */ + 1 /* null terminator */]; std::uint32_t idec_signaling_flags = 0; /** * Use the library's defined to_string method, which returns a string composed of a * sign ('+' or '-') * 1 to 34 decimal digits (no leading zeros) * the character 'E' * sign ('+' or '-') * 1 to 4 decimal digits (no leading zeros) * For example: +10522E-3 */ bid128_to_string(decimalCharRepresentation, dec128, &idec_signaling_flags); StringData dec128String(decimalCharRepresentation); int ePos = dec128String.find("E"); // Calculate the precision and exponent of the number and output it in a readable manner int precision = 0; int exponent = 0; StringData exponentString = dec128String.substr(ePos); // Get the value of the exponent, start at 2 to ignore the E and the sign for (size_t i = 2; i < exponentString.size(); ++i) { exponent = exponent * 10 + (exponentString[i] - '0'); } if (exponentString[1] == '-') { exponent *= -1; } // Get the total precision of the number, i.e. the length of the coefficient precision = dec128String.size() - exponentString.size() - 1 /* mantissa sign */; std::string result; // Initially result is set to equal just the sign of the dec128 string // For formatting, leave off the sign if it is positive if (dec128String[0] == '-') result = "-"; StringData coefficient = dec128String.substr(1, precision); int adjustedExponent = exponent + precision - 1; if (exponent > 0 || adjustedExponent < -6) { result += _convertToScientificNotation(coefficient, adjustedExponent); } else { result += _convertToStandardDecimalNotation(coefficient, exponent); } return result; } std::string Decimal128::_convertToScientificNotation(StringData coefficient, int adjustedExponent) const { int cLength = coefficient.size(); std::string result; for (int i = 0; i < cLength; i++) { result += coefficient[i]; if (i == 0 && cLength > 1) { result += '.'; } } result += 'E'; if (adjustedExponent > 0) { result += '+'; } result += std::to_string(adjustedExponent); return result; } std::string Decimal128::_convertToStandardDecimalNotation(StringData coefficient, int exponent) const { if (exponent == 0) { return coefficient.toString(); } else { invariant(exponent < 0); std::string result; int precision = coefficient.size(); // Absolute value of the exponent int significantDecimalDigits = -exponent; bool decimalAppended = false; // Pre-pend 0's before the coefficient as necessary for (int i = precision; i <= significantDecimalDigits; i++) { result += '0'; if (i == precision) { result += '.'; decimalAppended = true; } } // Copy over the digits in the coefficient for (int i = 0; i < precision; i++) { if (precision - i == significantDecimalDigits && !decimalAppended) { result += '.'; } result += coefficient[i]; } return result; } } bool Decimal128::isZero() const { return bid128_isZero(decimal128ToLibraryType(_value)); } bool Decimal128::isNaN() const { return bid128_isNaN(decimal128ToLibraryType(_value)); } bool Decimal128::isInfinite() const { return bid128_isInf(decimal128ToLibraryType(_value)); } bool Decimal128::isFinite() const { return bid128_isFinite(decimal128ToLibraryType(_value)); } bool Decimal128::isNegative() const { return bid128_isSigned(decimal128ToLibraryType(_value)); } Decimal128 Decimal128::add(const Decimal128& other, RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; return add(other, &throwAwayFlag, roundMode); } Decimal128 Decimal128::add(const Decimal128& other, std::uint32_t* signalingFlags, RoundingMode roundMode) const { BID_UINT128 current = decimal128ToLibraryType(_value); BID_UINT128 addend = decimal128ToLibraryType(other.getValue()); current = bid128_add(current, addend, roundMode, signalingFlags); Decimal128::Value value = libraryTypeToValue(current); Decimal128 result(value); return result; } Decimal128 Decimal128::subtract(const Decimal128& other, RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; return subtract(other, &throwAwayFlag, roundMode); } Decimal128 Decimal128::subtract(const Decimal128& other, std::uint32_t* signalingFlags, RoundingMode roundMode) const { BID_UINT128 current = decimal128ToLibraryType(_value); BID_UINT128 sub = decimal128ToLibraryType(other.getValue()); current = bid128_sub(current, sub, roundMode, signalingFlags); Decimal128::Value value = libraryTypeToValue(current); Decimal128 result(value); return result; } Decimal128 Decimal128::multiply(const Decimal128& other, RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; return multiply(other, &throwAwayFlag, roundMode); } Decimal128 Decimal128::multiply(const Decimal128& other, std::uint32_t* signalingFlags, RoundingMode roundMode) const { BID_UINT128 current = decimal128ToLibraryType(_value); BID_UINT128 factor = decimal128ToLibraryType(other.getValue()); current = bid128_mul(current, factor, roundMode, signalingFlags); Decimal128::Value value = libraryTypeToValue(current); Decimal128 result(value); return result; } Decimal128 Decimal128::divide(const Decimal128& other, RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; return divide(other, &throwAwayFlag, roundMode); } Decimal128 Decimal128::divide(const Decimal128& other, std::uint32_t* signalingFlags, RoundingMode roundMode) const { BID_UINT128 current = decimal128ToLibraryType(_value); BID_UINT128 divisor = decimal128ToLibraryType(other.getValue()); current = bid128_div(current, divisor, roundMode, signalingFlags); Decimal128::Value value = libraryTypeToValue(current); Decimal128 result(value); return result; } Decimal128 Decimal128::exponential(RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; return exponential(&throwAwayFlag); } Decimal128 Decimal128::exponential(std::uint32_t* signalingFlags, RoundingMode roundMode) const { BID_UINT128 current = decimal128ToLibraryType(_value); current = bid128_exp(current, roundMode, signalingFlags); return Decimal128{libraryTypeToValue(current)}; } Decimal128 Decimal128::logarithm(RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; return logarithm(&throwAwayFlag); } Decimal128 Decimal128::logarithm(std::uint32_t* signalingFlags, RoundingMode roundMode) const { BID_UINT128 current = decimal128ToLibraryType(_value); current = bid128_log(current, roundMode, signalingFlags); return Decimal128{libraryTypeToValue(current)}; } Decimal128 Decimal128::logarithm(const Decimal128& other, RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; if (other.isEqual(Decimal128(2))) { BID_UINT128 current = decimal128ToLibraryType(_value); current = bid128_log2(current, roundMode, &throwAwayFlag); return Decimal128{libraryTypeToValue(current)}; } if (other.isEqual(Decimal128(10))) { BID_UINT128 current = decimal128ToLibraryType(_value); current = bid128_log10(current, roundMode, &throwAwayFlag); return Decimal128{libraryTypeToValue(current)}; } return logarithm(other, &throwAwayFlag); } Decimal128 Decimal128::logarithm(const Decimal128& other, std::uint32_t* signalingFlags, RoundingMode roundMode) const { return logarithm(signalingFlags, roundMode).divide(other); } Decimal128 Decimal128::modulo(const Decimal128& other) const { std::uint32_t throwAwayFlag = 0; return modulo(other, &throwAwayFlag); } Decimal128 Decimal128::modulo(const Decimal128& other, std::uint32_t* signalingFlags) const { BID_UINT128 current = decimal128ToLibraryType(_value); BID_UINT128 divisor = decimal128ToLibraryType(other.getValue()); current = bid128_fmod(current, divisor, signalingFlags); return Decimal128{libraryTypeToValue(current)}; } Decimal128 Decimal128::power(const Decimal128& other, RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; return power(other, &throwAwayFlag, roundMode); } Decimal128 Decimal128::power(const Decimal128& other, std::uint32_t* signalingFlags, RoundingMode roundMode) const { BID_UINT128 base = decimal128ToLibraryType(_value); BID_UINT128 exp = decimal128ToLibraryType(other.getValue()); BID_UINT128 result; if (this->isEqual(Decimal128(10))) result = bid128_exp10(exp, roundMode, signalingFlags); else if (this->isEqual(Decimal128(2))) result = bid128_exp2(exp, roundMode, signalingFlags); else result = bid128_pow(base, exp, roundMode, signalingFlags); return Decimal128{libraryTypeToValue(result)}.add(kLargestNegativeExponentZero); } Decimal128 Decimal128::quantize(const Decimal128& other, RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; return quantize(other, &throwAwayFlag, roundMode); } Decimal128 Decimal128::quantize(const Decimal128& reference, std::uint32_t* signalingFlags, RoundingMode roundMode) const { BID_UINT128 current = decimal128ToLibraryType(_value); BID_UINT128 q = decimal128ToLibraryType(reference.getValue()); BID_UINT128 quantizedResult = bid128_quantize(current, q, roundMode, signalingFlags); Decimal128::Value value = libraryTypeToValue(quantizedResult); Decimal128 result(value); return result; } Decimal128 Decimal128::squareRoot(RoundingMode roundMode) const { std::uint32_t throwAwayFlag = 0; return exponential(&throwAwayFlag); } Decimal128 Decimal128::squareRoot(std::uint32_t* signalingFlags, RoundingMode roundMode) const { BID_UINT128 current = decimal128ToLibraryType(_value); current = bid128_sqrt(current, roundMode, signalingFlags); return Decimal128{libraryTypeToValue(current)}; } bool Decimal128::isEqual(const Decimal128& other) const { std::uint32_t throwAwayFlag = 0; BID_UINT128 current = decimal128ToLibraryType(_value); BID_UINT128 compare = decimal128ToLibraryType(other.getValue()); return bid128_quiet_equal(current, compare, &throwAwayFlag); } bool Decimal128::isNotEqual(const Decimal128& other) const { std::uint32_t throwAwayFlag = 0; BID_UINT128 current = decimal128ToLibraryType(_value); BID_UINT128 compare = decimal128ToLibraryType(other.getValue()); return bid128_quiet_not_equal(current, compare, &throwAwayFlag); } bool Decimal128::isGreater(const Decimal128& other) const { std::uint32_t throwAwayFlag = 0; BID_UINT128 current = decimal128ToLibraryType(_value); BID_UINT128 compare = decimal128ToLibraryType(other.getValue()); return bid128_quiet_greater(current, compare, &throwAwayFlag); } bool Decimal128::isGreaterEqual(const Decimal128& other) const { std::uint32_t throwAwayFlag = 0; BID_UINT128 current = decimal128ToLibraryType(_value); BID_UINT128 compare = decimal128ToLibraryType(other.getValue()); return bid128_quiet_greater_equal(current, compare, &throwAwayFlag); } bool Decimal128::isLess(const Decimal128& other) const { std::uint32_t throwAwayFlag = 0; BID_UINT128 current = decimal128ToLibraryType(_value); BID_UINT128 compare = decimal128ToLibraryType(other.getValue()); return bid128_quiet_less(current, compare, &throwAwayFlag); } bool Decimal128::isLessEqual(const Decimal128& other) const { std::uint32_t throwAwayFlag = 0; BID_UINT128 current = decimal128ToLibraryType(_value); BID_UINT128 compare = decimal128ToLibraryType(other.getValue()); return bid128_quiet_less_equal(current, compare, &throwAwayFlag); } /** * The following static const variables are used to mathematically produce * frequently needed Decimal128 constants. */ namespace { // Get the representation of 1 with 17 zeros (half of decimal128's 34 digit precision) const std::uint64_t t17 = 100ull * 1000 * 1000 * 1000 * 1000 * 1000; // Get the low 64 bits of 34 consecutive decimal 9's // t17 * 17 gives 1 with 34 0's, so subtract 1 to get all 9's == 4003012203950112767 // Using the computed constant avoids a MSVC warning. // Computed by running the calculations in Python, and verified with static_assert. const std::uint64_t t34lo64 = 4003012203950112767ULL; #if defined(__GNUC__) static_assert(t34lo64 == t17 * t17 - 1, "precomputed constant is wrong"); #endif // Mod t17 by 2^32 to get the low 32 bits of t17's binary representation const std::uint64_t t17lo32 = t17 % (1ull << 32); // Divide t17 by 2^32 to get the high 32 bits of t17's binary representation const std::uint64_t t17hi32 = t17 >> 32; // Multiply t17 by t17 and keep the high 64 bits by distributing the operation to // t17hi32*t17hi32 + 2*t17hi32*t17lo32 + t17lo32*t17lo32 where the 2nd term // is shifted right by 32 and the 3rd term by 64 (which effectively drops the 3rd term) const std::uint64_t t34hi64 = t17hi32 * t17hi32 + (((t17hi32 * t17lo32) >> 31)); MONGO_STATIC_ASSERT(t34hi64 == 0x1ed09bead87c0); MONGO_STATIC_ASSERT(t34lo64 == 0x378d8e63ffffffff); } // namespace // (t34hi64 << 64) + t34lo64 == 1e34 - 1 const Decimal128 Decimal128::kLargestPositive(0, Decimal128::kMaxBiasedExponent, t34hi64, t34lo64); // The smallest positive decimal is 1 with the largest negative exponent of 0 (biased) const Decimal128 Decimal128::kSmallestPositive(0, 0, 0, 1); // Add a sign bit to the largest and smallest positive to get their corresponding negatives const Decimal128 Decimal128::kLargestNegative(1, Decimal128::kMaxBiasedExponent, t34hi64, t34lo64); const Decimal128 Decimal128::kSmallestNegative(1, 0, 0, 1); // Get the representation of 0 (0E0). const Decimal128 Decimal128::kNormalizedZero(Decimal128::Value( {0, static_cast(Decimal128::kExponentBias) << Decimal128::kExponentFieldPos})); // Get the representation of 0 with the most negative exponent const Decimal128 Decimal128::kLargestNegativeExponentZero(Decimal128::Value({0ull, 0ull})); // Shift the format of the combination bits to the right position to get Inf and NaN // +Inf = 0111 1000 ... ... = 0x78 ... ..., -Inf = 1111 1000 ... ... = 0xf8 ... ... // +NaN = 0111 1100 ... ... = 0x7c ... ..., -NaN = 1111 1100 ... ... = 0xfc ... ... const Decimal128 Decimal128::kPositiveInfinity(Decimal128::Value({0ull, 0x78ull << 56})); const Decimal128 Decimal128::kNegativeInfinity(Decimal128::Value({0ull, 0xf8ull << 56})); const Decimal128 Decimal128::kPositiveNaN(Decimal128::Value({0ull, 0x7cull << 56})); const Decimal128 Decimal128::kNegativeNaN(Decimal128::Value({0ull, 0xfcull << 56})); std::ostream& operator<<(std::ostream& stream, const Decimal128& value) { return stream << value.toString(); } } // namespace mongo