// random_test.cpp
/* Copyright 2012 10gen Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License, version 3,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see .
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the GNU Affero General Public License in all respects
* for all of the code used other than as permitted herein. If you modify
* file(s) with this exception, you may extend this exception to your
* version of the file(s), but you are not obligated to do so. If you do not
* wish to do so, delete this exception statement from your version. If you
* delete this exception statement from all source files in the program,
* then also delete it in the license file.
*/
#include
#include
#include "mongo/platform/random.h"
#include "mongo/unittest/unittest.h"
namespace mongo {
TEST(RandomTest, Seed1) {
PseudoRandom a(12);
PseudoRandom b(12);
for (int i = 0; i < 100; i++) {
ASSERT_EQUALS(a.nextInt32(), b.nextInt32());
}
}
TEST(RandomTest, Seed2) {
PseudoRandom a(12);
PseudoRandom b(12);
for (int i = 0; i < 100; i++) {
ASSERT_EQUALS(a.nextInt64(), b.nextInt64());
}
}
TEST(RandomTest, Seed3) {
PseudoRandom a(11);
PseudoRandom b(12);
ASSERT_NOT_EQUALS(a.nextInt32(), b.nextInt32());
}
TEST(RandomTest, Seed4) {
PseudoRandom a(11);
std::set s;
for (int i = 0; i < 100; i++) {
s.insert(a.nextInt32());
}
ASSERT_EQUALS(100U, s.size());
}
TEST(RandomTest, Seed5) {
const int64_t seed = 0xCC453456FA345FABLL;
PseudoRandom a(seed);
std::set s;
for (int i = 0; i < 100; i++) {
s.insert(a.nextInt32());
}
ASSERT_EQUALS(100U, s.size());
}
TEST(RandomTest, R1) {
PseudoRandom a(11);
std::set s;
for (int i = 0; i < 100; i++) {
s.insert(a.nextInt32());
}
ASSERT_EQUALS(100U, s.size());
}
TEST(RandomTest, R2) {
PseudoRandom a(11);
std::set s;
for (int i = 0; i < 100; i++) {
s.insert(a.nextInt64());
}
ASSERT_EQUALS(100U, s.size());
}
/**
* Test that if two PsuedoRandom's have the same seed, then subsequent calls to
* nextCanonicalDouble() will return the same value.
*/
TEST(RandomTest, NextCanonicalSameSeed) {
PseudoRandom a(12);
PseudoRandom b(12);
for (int i = 0; i < 100; i++) {
ASSERT_EQUALS(a.nextCanonicalDouble(), b.nextCanonicalDouble());
}
}
/**
* Test that if two PsuedoRandom's have different seeds, then nextCanonicalDouble() will return
* different values.
*/
TEST(RandomTest, NextCanonicalDifferentSeeds) {
PseudoRandom a(12);
PseudoRandom b(11);
ASSERT_NOT_EQUALS(a.nextCanonicalDouble(), b.nextCanonicalDouble());
}
/**
* Test that nextCanonicalDouble() avoids returning a value soon after it has previously returned
* that value.
*/
TEST(RandomTest, NextCanonicalDistinctValues) {
PseudoRandom a(11);
std::set s;
for (int i = 0; i < 100; i++) {
s.insert(a.nextCanonicalDouble());
}
ASSERT_EQUALS(100U, s.size());
}
/**
* Test that nextCanonicalDouble() always returns values between 0 and 1.
*/
TEST(RandomTest, NextCanonicalWithinRange) {
PseudoRandom prng(10);
for (int i = 0; i < 100; i++) {
double next = prng.nextCanonicalDouble();
ASSERT_LTE(0.0, next);
ASSERT_LT(next, 1.0);
}
}
TEST(RandomTest, NextInt32SanityCheck) {
// Generate 1000 int32s and assert that each bit is set between 40% and 60% of the time. This is
// a bare minimum sanity check, not an attempt to ensure quality random numbers.
PseudoRandom a(11);
std::vector nums;
for (int i = 0; i < 1000; i++) {
nums.push_back(a.nextInt32());
}
for (int bit = 0; bit < 32; bit++) {
int onesCount = 0;
for (auto&& num : nums) {
bool isSet = (num >> bit) & 1;
if (isSet)
onesCount++;
}
if (onesCount < 400 || onesCount > 600)
FAIL(str::stream() << "bit " << bit << " was set " << (onesCount / 10.)
<< "% of the time.");
}
}
TEST(RandomTest, NextInt64SanityCheck) {
// Generate 1000 int64s and assert that each bit is set between 40% and 60% of the time. This is
// a bare minimum sanity check, not an attempt to ensure quality random numbers.
PseudoRandom a(11);
std::vector nums;
for (int i = 0; i < 1000; i++) {
nums.push_back(a.nextInt64());
}
for (int bit = 0; bit < 64; bit++) {
int onesCount = 0;
for (auto&& num : nums) {
bool isSet = (num >> bit) & 1;
if (isSet)
onesCount++;
}
if (onesCount < 400 || onesCount > 600)
FAIL(str::stream() << "bit " << bit << " was set " << (onesCount / 10.)
<< "% of the time.");
}
}
TEST(RandomTest, NextInt32InRange) {
PseudoRandom a(11);
for (int i = 0; i < 1000; i++) {
auto res = a.nextInt32(10);
ASSERT_GTE(res, 0);
ASSERT_LT(res, 10);
}
}
TEST(RandomTest, NextInt64InRange) {
PseudoRandom a(11);
for (int i = 0; i < 1000; i++) {
auto res = a.nextInt64(10);
ASSERT_GTE(res, 0);
ASSERT_LT(res, 10);
}
}
TEST(RandomTest, Secure1) {
SecureRandom* a = SecureRandom::create();
SecureRandom* b = SecureRandom::create();
for (int i = 0; i < 100; i++) {
ASSERT_NOT_EQUALS(a->nextInt64(), b->nextInt64());
}
delete a;
delete b;
}
}